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1 Introduction

The modelling of droplet heating and evaporation has been extensively studied since
the beginning of the last century, and the results have been summarised in numer-
ous reviews and monographs including [1, 2, 3]. These studies have been mainly
motivated by engineering, environmental and pharmaceutical applications of the
results of this modelling. These processes are an integral part of the processes lead-
ing to autoignition of the automotive fuel vapour/air mixture in Diesel engines [4].
The following analysis will concentrate primarily on the modelling of automotive
fuel droplets, although most of the results may have a much wider range of appli-
cation. There will be some overlap with the results presented in [1, 2, 3] and the
analysis of the most recent publications, not included in [1, 2, 3], will be reported.
As in the above-mentioned publications, some topics related to droplet heating and
evaporation will not be covered. These include heating and evaporation of droplets
during their interaction with walls, and the Soret effect [5]. The analysis of purely
experimental papers and papers focused on multi-dimensional simulations of these
processes will be limited. This chapter is intended to be complementary to reviews
[6, 7], which look mainly at the ignition and combustion of individual droplets and
arrays of droplets.

The approaches to modelling of non-evaporating droplets are discussed in Sec-
tion 2. The hydrodynamic models for droplet heating and evaporation of mono-
component droplets are presented in Section 3. The hydrodynamic heating and evap-
oration models for multi-component droplets are summarised in Section 4. Section
5 considers the kinetic and molecular dynamics models.
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2 Heating of non-evaporating droplets

The most widely used model for convective droplet heating is the one based on the
assumption that liquid thermal conductivity is infinitely large. In this model the evo-
lution of droplet temperature with time is inferred from the energy balance equation.
This approach is almost universally used in research and commercial Computational
Fluid Dynamics (CFD) codes and many original investigations of the problem of
droplet heating, including the most recent ones [8, 9, 10, 11].

The simplest way to take into account the effects of temperature gradient within
droplets was based on the solution to the one-dimensional (1D) heat transfer equa-
tion, assuming that the heating process is spherically symmetric. This equation was
solved either numerically [12] or analytically [2]. It was shown that the analyt-
ical solution to this equation in the liquid phase with Robin boundary conditions
(see Solution (10)) is particularly useful for practical applications in Computational
Fluid Dynamics codes. This approach was implemented into the ANSYS Fluent
CFD code using User-Defined Functions (UDF) [13].

The above-mentioned solution is strictly valid only for stationary spherical
droplets, but it was generalised to the case of moving droplets based on the so-
called Effective Thermal Conductivity (ETC) model [2]. In this model, the effects
of droplet motion on the heat transfer processes inside the droplet were taken into
account by replacing the liquid thermal conductivity (kl) with the effective thermal
conductivity keff = χT kl , where the values of χT varied from 1 for stationary droplets
to 2.72 for fast moving droplets. This model could predict the average surface tem-
perature of the droplets, which is particularly useful for many engineering applica-
tions. In the limiting case where liquid thermal conductivity is infinitely large, the
effects of temperature gradient inside droplets and the effect of recirculation can be
ignored. This model is known as the Infinite Thermal Conductivity (ITC) model.

The solution to the 1D heat transfer equation for spherical droplets shows that
the dependence of temperature on the distance from the droplet centre is close to
parabolic (except at the very beginning of the heating process). This allows one to
assume that this dependence is parabolic and is characterised by two temperatures:
at the centre and at the surface of the droplet. This model is known as the parabolic
model [2]. The values of these temperatures were obtained from analysis of the
energy balance equation at the surface of the droplet. The modification of this model
made it applicable both at the beginning of the heating process and at times when
the temperature profiles inside droplets are close to parabolic [2].

The limitations of the parabolic model and the complexity of the model based
on the rigorous analytical/numerical solutions to the heat transfer equation inside
droplets stimulated efforts to develop new models. These were more accurate than
the parabolic model and more simple than the models based on the rigorous solu-
tions to the heat transfer equation. One such model, known as the power law ap-
proximation, was suggested in [14] and further investigated in [15]. This model is
based on the assumption that the temperature profile inside the droplet can be ap-
proximated as:
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T (R) = cp0 + cpp

(
R
Rd

)p

, (1)

where R is the distance from the droplet centre, p is the parameter adjusted to repli-
cate temperature profiles, cp0 and cpp are inferred from the values of the heat flux at
the surface of the droplets and their average temperature. For p = 2, Expression (1)
describes the parabolic temperature profile.

To describe the transient process it was assumed that p is time dependent. At the
initial stage of heating the values of p were in the range 10 to 100, and then these
values decreased with time, approaching 2, with p ≥ 2 at all times.

The model developed in [16] is also based on (1) but with cp0 = Tc and cpp =
Ts −Tc, where Tc and Ts are temperatures at the centre and surface of the droplet,
respectively. An empirical formula for p was obtained based on the distribution of
temperature predicted by the rigorous 1D solution. One of the limitations of this
approximation is that it can predict only monotonic temperature profiles. This lim-
itation was overcome by the so-called polynomial approximation, originally sug-
gested in [17], and further investigated in [15]. This approximation is based on the
following presentation of the temperature profile inside the droplet:

T (R) = cp0 + cp2

(
R
Rd

)2

+ cpp

(
R
Rd

)p

, (2)

where p > 2.
The most important limitation of the power law and polynomial approximations

stems from the assumption that the temperature profile is instantly established in the
whole droplet volume, when one would expect that initially only a thin layer close
to the droplet surface is affected by the external heat, and that this heat gradually
penetrates inside the droplet. These processes are taken into account in the heat
balance integral method. The method is based on the introduction of the thermal
layer of time-dependent thickness δ (t) [18, 15]. Inside this layer, temperature is
approximated by the parabolic profile, while the temperature outside this layer is
assumed equal to the initial temperature:

T (t)

{
ch0 + ch2

(
R−(Rd−δ )

Rd

)2
, Rd −δ < R ≤ Rd

T0 0 ≤ R ≤ Rd −δ ≤ R.
(3)

The droplet average temperature is found from the heat balance equation for the
whole droplet; thickness δ is estimated by iterations of the following equation:

δ (i) = Rd

√√√√2keff
(
T0 −T

)
qsRd

[
1− 1

2
δ (i−1)

Rd
+

1
10

(
δ (i−1)

Rd

)2
]−1

, (4)

where i = 1,2,3, ... is the iteration number, qs is the heat flux at the droplet surface,
keff is the droplet effective thermal conductivity. In the case when T > T0 we expect
that qs < 0. In the limiting case when δ (i) = δ (i−1) = Rd , Equation (4) reduces to:
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T0 = T +
3qsRd

10keff
. (5)

This expression coincides with the one predicted by the parabolic model for R = Rd .
It was shown that the thermal layer expands to δ = Rd when the Fourier number
Fo = kefft/(clρlR2

d) (cl and ρl are specific liquid heat capacity and density respec-
tively) reaches 0.1. This method, as well as the power law and polynomial approx-
imations, were verified in [15] based on the analytical solution to the heat transfer
equation inside a droplet using the Neumann boundary condition. The limits of ap-
plicability of this solution have not been investigated. A solution to this equation
based upon the Robin boundary condition [2] would have been a more rigorous
approach.

The approaches to droplet heating discussed so far are based on the assumption
that the heat conduction equation is linear and the heat conduction process follows
the Fourier law (see [19, 20, 21, 22] for possible approaches to the solution to the
non-linear problem and [23, 24, 25, 26, 27, 28, 29] for the analysis of non-Fourier
models of heat transfer).

The heat supplied to the droplets from the gas phase is characterised by convec-
tion heat transfer coefficient h. In the case of stationary droplets h = kg/Rd , where
kg is gas thermal conductivity, Rd is the droplet radius. In many practically impor-
tant cases the convective heating of droplets is described by the Nusselt number
Nu = 2hRd/kg. Several correlations were suggested for the estimation of Nu for the
moving droplets, including [2]:

Nu = 2+βcRe1/2Pr1/3, (6)

where Re and Pr are Reynolds and Prandtl numbers based on gas properties and
the relative velocity of droplets, βc = 0.6 (Ranz and Marshall correlation) and βc =
0.552 (Frossling correlation) (see [30] for a discussion of other similar correlations).
An alternative correlation for Nu was suggested by Clift et al. [31]:

Nu = 1+(1+RePr)1/3 max
[
1,Re0.077] (7)

for Re ≤ 400. Correlation (7) was recommended in [32]. Correlations for Nu, in-
ferred from experimental studies, are discussed in [33].

The most widely used model for radiative heating of droplets is based on the as-
sumption that they are opaque grey spheres with emissivity ε . This approach allows
us to consider the effect of radiative heating of droplets as a surface phenomenon:
radiative heat fluxes are added to the convective heat fluxes at the droplet surface.
This approach is used in all CFD codes we are aware of, and even in a number of
original recent studies (e.g. [34]). The main assumption of this model contradicts
a simple observation that one can see the bottom of a glass filled with Diesel or
gasoline fuel. One might anticipate that these fuels are at least partially transparent
in the infra-red part of the spectrum. Thus one would expect that droplet radiative
heating takes place not at their surface but via the absorption of thermal radiation
penetrating inside the droplets.
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The rigorous approach to the calculation of absorption of external thermal radia-
tion inside fuel droplets should be based on the solution to the Maxwell equations,
with boundary conditions at the droplet’s surface [2]. This solution was obtained
in the well-known Mie theory. Direct application of the formulae predicted by this
theory is limited by the complexity of relevant calculations. In most practical appli-
cations, however, we are interested not in the details of the distribution of thermal
radiation absorption inside droplets but in the integral absorption of this radiation in
the whole volume of droplets. This integral absorption is characterised by the effi-
ciency factor of absorption Qa (the ratio of radiative power absorbed in a droplet to
the radiative power illuminating the droplet). The results of Mie calculations of Qa
at a certain wave length λ for a typical Diesel fuel were approximated as:

Qa =
4n

(n+1)2 [1− exp(−2τ0)] , (8)

where n ≡ nλ ≈ 1.46 is the index of refraction, τ0 = aλ Rd is the optical thickness of
droplets, aλ is the absorption coefficient.

Using the experimentally measured values of the index of absorption κλ =
aλ λ/(4π) it was found that a reasonably good approximation of the average val-
ues of Qa (Qa) in the ranges 5 µm ≤ Rd ≤ 50 µm and 1000K ≤ θR ≤ 3000K can be
described by the following expression:

Qa = aRb
d , (9)

where a and b are polynomials (or quadratic functions) of the radiative temperature
θR (external temperature in the case of optically thin media), Rd is in µm.

Approximation (9) appears to be particularly useful for implementation into CFD
and research numerical codes (e.g. [35]). It was shown that the predictions of typical
droplet heating and evaporation based on (9) are very close to those based on a more
complex model taking into account the difference in thermal radiation absorption in
different areas inside droplets [36]. Classical Mie theory can be applied to spherical
droplets only. In the case of illumination of droplets of more complex shapes, more
advanced mathematical tools, including the generalised Lorenz-Mie theories [37],
would be needed.

3 Hydrodynamic models (mono-component droplet heating and
evaporation)

In a number of papers, including the most recent ones [38, 39, 40], the problem of
heating and evaporation of droplets was solved based on direct numerical solution
of transport equations in the vicinity of individual droplets. This approach, however,
cannot be applied in CFD codes and will not be considered in this chapter.

In a series of our earlier papers, summarised in [2], the heating of mono-
component evaporating spherical droplets was described by the following analytical
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solution to the heat transfer equation inside them:

T (R, t) =
Rd

R

∞

∑
n=1

{
qn exp

[
−κRλ 2

n t
]
− sinλn

|| vn ||2 λ 2
n

µ0(0)exp
[
−κRλ 2

n t
]
−

− sinλn

|| vn ||2 λ 2
n

∫ t

0

dµ0(τ)
dτ

exp
[
−κRλ 2

n (t − τ)
]

dτ
}

sin
[

λn

(
R
Rd

)]
+Teff(t), (10)

where λn are solutions to the equation:

λ cosλ +h0 sinλ = 0, (11)

|| vn ||2=
1
2

(
1− sin2λn

2λn

)
=

1
2

(
1+

h0

h2
0 +λ 2

n

)
,

qn =
1

Rd || vn ||2
∫ Rd

0
T̃0(R)sin

[
λn

(
R
Rd

)]
dR, κR =

kl

clρlR2
d
, µ0(t) =

hTg(t)Rd

kl
,

h0 = (hRd/kl)−1, T̃0(R) = RTd0(R)/Rd ; the solution to Equation (11) gives a set of
positive eigenvalues λn numbered in ascending order (n = 1,2, ...);

Teff = Tg +
ρlLṘd

h
, (12)

L is the specific heat of evaporation, the value of Ṙd , the derivative of the droplet
radius with respect to time, describes the rate of droplet evaporation; remembering
that in numerical codes Solution (10) was applied at each time step, the value of Ṙd
was taken from the previous time step (it was taken as zero at the first time step).

The effect of evaporation on the Nusselt number for stationary spherical droplets
can be described by the following equation (the Stefan-Fuchs model):

Nu = Nu0
ln(1+BT )

BT
, (13)

where Nu0 = 2h0Rdkg = 2, h0 = kg/Rd is the convective heat transfer coefficient for
a non-evaporating sphere, BT is the Spalding heat transfer number

BT =
cpv(Tg −Ts)

L(Ts)− (|q̇d |/ṁd)
, (14)

cpv is the specific heat capacity of fuel vapour at constant pressure, Ts is the droplet
surface temperature, |q̇d | is heat spent on raising droplet internal energy. The droplet
evaporation rate ṁd ≤ 0 for stationary droplets can be estimated as:

ṁd =−4πRdDvρtotal ln(1+BM) , (15)

where Dv is the binary diffusion coefficient of fuel vapour in air, ρtotal = ρv + ρg
is the density of the mixture of vapour and ambient air, BM is the Spalding mass
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transfer number defined as
BM =

ρvs −ρv∞

ρgs
, (16)

where subscript s refers to the surface of the droplet, subscript ∞ refers to ambient
conditions. When deriving (15) it was assumed that ρtotal does not depend on the
distance from the surface of the droplet. This is expected to be a serious limitation
of the model for strongly evaporating droplets with high surface temperatures. A
model in which this assumption is relaxed was developed in [41].

Note that ρvs is controlled by the droplet surface temperature. This leads to a
strong link between (15) and the corresponding equation for droplet heating.

Expression (15) can be presented in a more compact form:

ṁd =−2πRdDvρtotalShBM, (17)

where

Sh ≡ 2hmRd

Dv
= Sh0

ln(1+BM)

BM
=

2hm0Rd

Dv

ln(1+BM)

BM
= 2

ln(1+BM)

BM
(18)

is the Sherwood number, hm is the convective mass transfer coefficient, subscript 0
indicates non-evaporating droplets.

An alternative expression for ṁd for stationary droplets was derived as [2]:

ṁd =−4πkmRd

cpv
ln(1+BT ), (19)

where km is thermal conductivity of the mixture of ambient gas and fuel vapour (in
the case of weak evaporation, km ≈ kg), BT is defined by (14).

Expressions (13), (15), (18) and (19) could be generalised to the case of moving
evaporating droplets using the so-called ‘film theory’ [32]. The key concepts of
this theory are film thicknesses δT and δM . Ignoring the Stefan flow, they can be
estimated as [32]:

δT 0 =
2Rd

Nu0 −2
, δM0 =

2Rd

Sh0 −2
. (20)

For stationary droplets Nu0 = Sh0 = 2. Hence, δT 0 = δM0 = ∞.
The effect of droplet motion on Nu0 for non-evaporating droplets is described by

Equations (6) and (7) (subscripts 0 in these equations need to be added to indicate
non-evaporating droplets). Similar expressions were obtained for Sh0 [32]:

Sh0 = 2+βcRe1/2Sc1/3, (21)

Sh0 = 1+(1+ReSc)1/3 max
[
1,Re0.077] (22)

for Re ≤ 400, where Sc = νm/Dv, νm is the kinematic viscosity of the mixture of
gas and vapour. δT 0 and δM0, defined by (20), can be considered as thicknesses of
the thermal and diffusional boundary layers. The thickening of these layers due to
the effect of the Stefan flow was described by parameters FT and FM [32]:
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FT = δT/δT 0, FM = δM/δM0. (23)

The following correlations were suggested in the ranges 0 ≤ (BT ,BM) ≤ 20 and
1 ≤ (Pr,Sc)≤ 3 [32]:

FT,M = (1+BT,M)0.7 ln(1+BT,M)

BT,M
. (24)

Using film theory, we would expect that an increase in the film thicknesses, de-
scribed by (23) and (24), would lead to a corresponding decrease in Nu0 and Sh0.
The new decreased values of Nu0 and Sh0, called ‘modified’ Nusselt and Sherwood
numbers in [32] (Nu∗ and Sh∗), were estimated as [32]:

Nu∗ = 2+
Nu0 −2

FT
, Sh∗ = 2+

Sh0 −2
FM

. (25)

These parameters allow us to present the expressions for Nu and Sh as:

Nu = Nu∗
ln(1+BT )

BT
, Sh = Sh∗

ln(1+BM)

BM
. (26)

The introduction of Nu∗ and Sh∗ allows one to present (15) and (19) as [32]:

ṁd =−2πRdDvρtotalSh∗ ln(1+BM) , (27)

ṁd =−2πkmRd

cpv
Nu∗ ln(1+BT ). (28)

Note that [32]:
BT = (1+BM)φ −1, (29)

where

φ =

(
cpv

cpg

)(
Sh∗

Nu∗

)
1

Le
, (30)

Le = km/(Dvρtotalcpg) is the gas Lewis number but with thermal conductivity and
density equal to those of a mixture of air and vapour.1

The evaporation process leads to the inward movement of the droplet surface
(liquid/vapour interface). The effect of this movement on droplet heating was con-
sidered in a series of our papers summarised in Section 4.4 of [2].

The model based on the combination of the above-mentioned model for the gas
phase and the analytical solution to the heat transfer equation for the liquid phase
(Solution (10)) was extensively validated [44].

Remembering (14) and (29), one can obtain the heat rate supplied to the droplet
to raise (or reduce) its temperature (internal energy) in the form:

1 Note that in many papers, including the most recent ones (e.g. [42]), it is assumed that cpv = cpg
in (28) and (30) which is obviously not correct. In [43] cp = cpv in the definition of Le but cp = cpg
in the definition of Pr, which led to ambiguity in their model.
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q̇d =−ṁd

[
cpv(Tg −Ts)

BT
−L(Ts)

]
=−ṁd

[
cpv(Tg −Ts)

(1+BM)φ −1
−L(Ts)

]
, (31)

where q̇d > 0 when the droplet is heated; for stationary droplets: φ =
(

cpv
cpg

)
1

Le .
An alternative approach to the calculation of q̇d could be based on the analysis

of the temperature distribution inside droplets, predicted by Equation (10):

q̇d = 4πR2
dkl

∂T
∂R

∣∣∣∣
R=Rd−0

. (32)

Having substituted (10) into (32) we obtain:

q̇d = 4πRdkl

∞

∑
n=1

{
qn exp

[
−κRλ 2

n t
]
− sinλn

|| vn ||2 λ 2
n

µ0(0)exp
[
−κRλ 2

n t
]
−

− sinλn

|| vn ||2 λ 2
n

∫ t

0

dµ0(τ)
dτ

exp
[
−κRλ 2

n (t − τ)
]

dτ
}
[−1−h0]sinλn, (33)

where all notations are the same as in Solution (10).
Once the value of q̇d has been found, the evaporation rate can be found from

Equation (19). Remembering the definition of BT , this equation can be rewritten as:

ṁd =−
4πkgRd

cpv
ln
(

1+
cpv(Tg −Ts)ṁd

L(Ts)ṁd − q̇d

)
. (34)

Thus we have two approaches to modelling the heating and evaporation of sta-
tionary droplets. The first is based on Equations (15) and (31) (conventional ap-
proach originally suggested in [32], Model 1), and the second is based on Equations
(33) and (34) (Model 2). Detailed comparison between the predictions of these mod-
els was performed by [45]. Although these predictions were qualitatively similar,
there were noticeable quantitative differences between them. The reasons behind
these differences are still unclear.

The models described so far are based on the assumption that droplets are perfect
spheres. However, the shapes of most actually observed droplets in engineering and
environmental applications are far from spherical (see [46, 47]). In most cases the
effects of non-sphericity of droplets have been investigated assuming that droplet
shapes can be approximated by prolate or oblate spheroids.

The heat conduction equation inside a spheroidal body (droplet), using the
Dirichlet boundary conditions, was first solved analytically more than 135 years
ago [48]. This solution, however, turned out to be too complex for most practical
applications. In most cases this problem (and the related problem of mass transfer
inside the body) has been investigated based on the numerical solutions to the heat
transfer (and mass diffusion) equations [49, 50, 51].

The problem of heat/mass transfer inside spheroidal bodies, considered in the
above-mentioned papers, is complementary to the problem of heat/mass transfer
from/to an ambient fluid (gas) to/from a spheroidal body, taking into account the
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relative velocity between the gas and the body, in the general case. The latter prob-
lem has been considered in numerous papers based on the numerical solutions to
momentum and heat transfer equations in the ambient fluid (gas) in the ellipsoidal
coordinate system. The analysis of [52, 53, 54, 55, 56] was based on the assumption
that the body surface was fixed. Juncu [57] took into account changes in body tem-
perature with time, while assuming that there is no temperature gradient inside the
body (the thermal conductivity of the body was assumed infinitely high).

These approaches are equally applicable to solid bodies and droplets. In the case
of droplets, however, apart from heating, the evaporation processes should also be
taken into account in the general case. Grow [58] was perhaps the first to solve the
problem of heat and mass transfer in the vicinity of spheroidal particles assuming
that their relative velocities are equal to zero, although she considered coal chars
rather than droplets. One of the main limitations of this paper is that both mass and
heat transfer equations were presented in the form of Laplace equations, which im-
plies that the effects of Stefan flow from the surface of the particles were ignored.
The latter effects were taken into account in the exact solutions to the mass and heat
transfer equations in the gas phase around a spheroidal droplet suggested in [59].
In that paper it was assumed that the temperatures at all points at the surface of a
droplet are the same and constant, and the droplet’s shape remains spheroidal. A
combined problem of spheroidal droplet heating and evaporation, similar to the one
studied in [59], was considered in [60]. As in [59], the authors of [60] based their
analysis on the solution to the species conservation equation in the gas phase and
assumed that the thermal conductivity of droplets is infinitely large. In contrast to
[59], the authors of [60] took into account the relative velocities of droplets, assum-
ing that the dependencies of the Nusselt and Sherwood numbers on the Reynolds
and Prandtl numbers are the same as those for the spherical droplets. Also, they
took into account the time dependence of droplet temperatures and sizes, although
their analysis focused on oblate droplets only.

Strotos et al. [61] presented CFD analysis of the evaporation of nearly spherical
suspended droplets. They solved the Navier-Stokes, energy conservation and species
transport equations; the Volume of Fluid (VOF) approach was used to capture the
liquid-gas interface.

As follows from an overview of the models described above, the general problem
of heating and evaporation of spheroidal droplets is far from resolved. We believe,
however, that the results presented in [59] could be considered a starting point for
solving this problem at least for slightly deformed spheroids.

The model described in [59] was generalised to the case of oscillating droplets
under the assumption that the process can be considered quasi-steady-state [62].
The instantaneous and average mass and heat transfer rates over an oscillation pe-
riod were functions of the oscillating frequency and amplitude. The results were
compared with the predictions of the approximate model described by Mashayek
[63]. The model was able to capture different evaporating mechanisms for oblate
and prolate droplets.

The results of the generalisation of the model described above to the case of
triaxial ellipsoidal droplets are presented in [64]. In this paper, a new analytical
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model for heat and mass transfer from deformed droplets was developed, based on
the solutions to the species and energy conservation equations under steady-state
conditions. It was shown that the droplet deformation enhances both the total and
local mass and heat transfer. The evaporation rate from deformed droplets, having
the same volume and surface area, was shown to be at a maximum for the prolate
droplet and at a minimum for the oblate droplet. Purely numerical investigation of
fluid flow and heat transfer from heated spheroids was conducted in [65].

The solutions developed in [59] for the gas phase surrounding a spheroidal
droplet were used as boundary conditions for the solutions to heat/mass equations
in the liquid phase [66]. The temperature gradients inside and at the surface of the
droplets, and the changes in their shape during the heating and evaporation process
were taken into account. The effects of surface tension and droplet motion on droplet
heating and evaporation were ignored. The results were applied to the analysis of an
n-dodecane fuel droplet in Diesel engine-like conditions.

4 Hydrodynamic models (multi-component droplet heating and
evaporation)

All models for mono-component droplets discussed in the previous section are ap-
plicable to multi-component droplets. In addition to the processes considered in the
previous section, however, for multi-component droplets we need to take into ac-
count that different components evaporate at different rates, creating concentration
gradients in the liquid phase. The latter leads to the liquid phase mass diffusion of
species described by the diffusion equation for the mass fractions of each compo-
nent. The simplest form of this equation, when only the radial diffusion is accounted
for and species diffusion coefficient Dl is constant, can be presented as [2]:

∂Yli

∂ t
= Dl

(
∂ 2Yli

∂R2 +
2
R

∂Yli

∂R

)
, (35)

where subscripts l and i indicate liquid phase and type of species, respectively.
This equation needs to be solved subject to the boundary condition at the surface:

∂Yli

∂R

∣∣∣∣
R=Rd−0

=
Dvρtotal ln(1+BM)

DlρlRd
(Yli − εi) , (36)

where
εi =

Yvsi

∑i Yvsi
, (37)

(subscript v indicates the vapour phase) and at the centre of the droplet:

∂Yli

∂R

∣∣∣∣
R=0

= 0, (38)
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and the relevant initial conditions. Note that Condition (38) can be replaced by a
more general requirement, that Yli(R, t) are twice continuously differentiable func-
tions at R ≤ Rd .

In the equilibrium state, the partial pressure of the ith vapour species at the sur-
face of the droplet can be found from the equation:

pvi = γiXlsi p∗vi, (39)

where Xlsi is the molar fraction of the ith species in the liquid at the droplet surface,
p∗vi is the partial vapour pressure of the ith species when Xli = 1, γi is the activity
coefficient. If γi = 1 Equation (39) leads to Raoult’s law:

pvi = Xli p∗vi. (40)

In many engineering applications, Dl was considered to be either infinitely small
(multi-component droplets were modelled as mono-component ones) or infinitely
large (perfect mixing of species). Both these simplified approaches, however, can
lead to unacceptably large errors in predicted droplet temperatures and droplet evap-
oration times compared with the prediction of the model taking into account finite
species diffusion rates inside droplets. Where species diffusion was taken into ac-
count, this was mainly performed based on the numerical solution to Equation (35)
(e.g. [67, 68, 69]). In contrast to this approach, in a series of our papers, the results
of which are summarised in [2], a new approach to this problem based on the ana-
lytical solution to (35), subject to boundary conditions (36) and (38), was suggested.
Assuming that Rd = const, this solution for a short time step, subject to the initial
condition Yli(t = 0) = Yli0(R) was obtained in the form [2]:

Yli = εi +
1
R

{
exp

[
Dl

(
λ0

Rd

)2

t

]
[qYi0 −QY 0εi]sinh

(
λ0

R
Rd

)

+
∞

∑
n=1

[
exp

[
−Dl

(
λn

Rd

)2

t

]
[qYin −QY nεi]sin

(
λn

R
Rd

)]}
, (41)

where λ0 and λn (n ≥ 1) are solutions to equations

tanhλ =− λ
hY 0

and tanλ =− λ
hY 0

,

respectively, hY 0 =−
(

1+ αmRd
Dl

)
,

QY n =

− 1
||vY 0||2

(
Rd
λ0

)2
(1+hY 0)sinhλ0 when n = 0

1
||vY n||2

(
Rd
λn

)2
(1+hY 0)sinλn when n ≥ 1

(42)
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qYin =
1

||vY n||2
∫ Rd

0
RYli0(R)vY n(R)dR, n ≥ 0, (43)

vY 0(R) = sinh
(

λ0
R
Rd

)
, vY n(R) = sin

(
λn

R
Rd

)
, n ≥ 1,

||vY 0||2 =
∫ Rd

0
v2

Y 0(R)dR =−Rd

2

[
1+

hY 0

h2
Y 0 −λ 2

n

]
, (44)

||vY n||2 =
∫ Rd

0
v2

Y n(R)dR =
Rd

2

[
1+

hY 0

h2
Y 0 +λ 2

n

]
, n ≥ 1, (45)

Ylsi = Ylsi(t) are liquid components’ mass fractions at the droplet’s surface,

αm =
|ṁd |

4πρlR2
d
= const. (46)

There are obvious typos in Equations (5.18) and (5.20) in [2] corrected in [3].
In the case of moving droplets, the distribution of mass fractions of species can

be described by (41), but with Dl replaced by the effective diffusivity Deff:

Deff = χY Dl , (47)

where the coefficient χY can be approximated as:

χY = 1.86+0.86tanh
[
2.225log10

(
Red(l)Scl/30

)]
, (48)

Scl = νl/Dl is the liquid Schmidt number, νl is the liquid kinematic viscosity. Liquid
fuel transport properties and the liquid velocity just below the droplet surface were
used to calculate Red(l). The model based on (47) and (48) is known as the Effective
Diffusivity (ED) model. The model, based on the assumption that species diffusivity
is infinitely fast (Deff = ∞) is referred to as the Infinite Diffusivity (ID) model.

As in the case of the heat transfer equation inside droplets, Solution (41) was
generalised to the case of time-dependent droplet radii during the time step. Also,
as in the case of mono-component droplets, the model based on (41) was validated
based on the experimental results [44].

The model based on Equation (35) or its solution (41) is known as the Discrete
Component Model (DCM). It is typically applicable only in the case when the num-
ber of components in the droplets is small (e.g. biodiesel droplets [70, 71]) which
is not the case in most automotive fuels. An alternative approach is based on the
probabilistic analysis of a large number of components (e.g. Continuous Thermo-
dynamics approach and the Distillation Curve Model; see [2] for details). Further
developments of these models led to the Quadrature Method of Moments (QMoM)
[72] and Direct Quadrature Method of Moments (DQMoM). The latter method was
further developed in [73] which led to the Direct Quadrature Method of Moments
with delumping. In this family of models a number of additional simplifying as-
sumptions were used, including the assumption that species inside droplets mix in-
finitely quickly.



14 Sergei S Sazhin

A new approach to modelling heating and evaporation of multi-component
droplets, suitable for the case when a large number of components is present in the
droplets, was suggested in [74, 75]. In contrast to the previously suggested models,
designed for large numbers of components, the new model takes into account the
diffusion of liquid species and thermal diffusion as in the classical Discrete Compo-
nent Model. This model was called the quasi-discrete model. As in the case of the
Continuous Thermodynamics approach, the quasi-discrete model is based on the
distribution function with respect to a particular property. Describing this property
by a carbon number n, this function was approximated as:

fm(n) =Cm(n0,n f )
(M(n)− γ)α−1

β αΓ (α)
exp
[
−
(

M(n)− γ
β

)]
, (49)

where n0 ≤ n ≤ n f , subscripts 0 and f stand for initial and final (the smallest and
the largest values of n), M is the molar mass, Γ (α) is the Gamma function, α ,
β and γ are parameters that determine the shape of the distribution, the choice of
Cm(n0,n f ) assured that

∫ n f
n0 fm(n)dn = 1. Assuming that fuel includes only alkanes,

M (in kg/kmole) and n can be linked by the following expression:

M = 14n+2. (50)

As follows from the previous analysis [2], the transport and thermodynamic prop-
erties of alkanes are weak functions of n. In this case, one can assume that their
properties in a certain narrow range of n are close, and replace the continuous dis-
tribution (49) with a discrete one, consisting of N f quasi-components with carbon
numbers

n j =

∫ n j
n j−1

n fm(n)dn∫ n j
n j−1

fm(n)dn
, (51)

and molar fractions
X j =

∫ n j

n j−1

fm(n)dn, (52)

where j is an integer in the range 1 ≤ j ≤ N f . It was assumed that all n j − n j−1
are equal, i.e. all quasi-components have the same range of values of n. For the
case when N f = 1 the analysis of multi-component droplets is reduced to that of
mono-component droplets. n j are not integers in the general case and do not repre-
sent carbon numbers for actual components. Hence, this model is called the quasi-
discrete model. These quasi-components, however, were treated as actual compo-
nents in the conventional Discrete Component Model (DCM). This model is ex-
pected to be particularly useful when N f is much less than the number of actual
species in the hydrocarbon mixture. All thermodynamic and transport properties of
quasi-components were determined for n = n j. For example, partial pressures of in-
dividual quasi-components were estimated as (Raoult’s law is assumed to be valid):

pv(n j) = Xlsi(n j)p∗(n j), (53)
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where Xlsi are the surface molar fractions of liquid quasi-components.
The main limitation of the quasi-discrete model is that it is based on the assump-

tion that fuels consist only of alkanes, whilst the total molar fraction of alkanes
(n-alkanes and iso-alkanes) is only about 40% of the overall composition of Diesel
fuels (a similar conclusion could be drawn for gasoline fuel). Hence, the contribu-
tion of other components cannot be ignored. Also, even if we restrict our analysis
to alkanes alone, it is not easy to approximate this distribution with a reasonably
simple distribution function fm(n), similar to the one given by Expression (49). In
[76], the quasi-discrete model was generalised to address both these problems. A
realistic composition of Diesel fuels, schematically shown in Fig. 1, was used in the
analysis presented in [76].

Fig. 1 Distribution functions of various hydrocarbons versus the numbers of carbon atoms in
molecules in a representative sample of Diesel fuel. Reprinted from Fluid Phase Equilibria, Volume
356, Gun’ko et al., A quantum chemical study of the processes during the evaporation of real-life
Diesel fuel droplets, Pages 146-156, Copyright Elsevier (2013).

The results presented in Fig. 1 were simplified, taking into account that the prop-
erties of n-alkanes and iso-alkanes are rather close. Observing that the contributions
of tricycloalkanes, diaromatics and phenanthrenes to Diesel fuel are rather small
(less than about 1.6% for each of these components) allows us to ignore the depen-
dence of the properties of these components on the number of carbon atoms and
replace these three groups with three components, tricycloalkane, diaromatic and
phenanthrene, with arbitrarily chosen carbon numbers. The molar fraction of tricy-
cloalkanes was estimated to be 1.5647%, while the molar fractions of diaromatics
and phenanthrenes were estimated to be 1.2240% and 0.6577%, respectively. Trans-
port and thermodynamic properties of the components are summarised in Appen-
dices 1-7 of [76]. In the new model, the focus is shifted from the analysis of the dis-
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tribution function to the direct analysis of molar fractions of the components. These
are described by the matrix Xnm, where n refers to the number of carbon atoms, and
m refers to the groups (e.g. alkanes) or individual components (tricycloalkane, di-
aromatic and phenanthrene). The link between the values of m and the components
is shown in Table 1.

Table 1 The relation between parameter m and groups (m = 1-6) and components (m = 7-9).
Reprinted from Fuel, Volume 154, Sazhin et al., A multi-dimensional quasi-discrete model for the
analysis of Diesel fuel droplet heating and evaporation, Pages 238-266, Copyright Elsevier (2014).

For each m the values of n jm of quasi-components were introduced. As in the case
of the original quasi-discrete model, nim are not integers in the general case. Due to
the additional dimensions introduced by the subscript m, the new model is called
the Multi-dimensional Quasi-discrete Model (MDQDM). The maximal number of
these quasi-components/components, providing the most accurate approximation of
Diesel fuel, was taken to be equal to the actual number of components (98 in the case
considered in [76]). In this case, the new model reduces to the conventional Discrete
Component Model (DCM). The quasi-components in the MDQDM are treated in the
same way as the quasi-components in the conventional quasi-discrete model. Also,
the temperature gradient and quasi-components’ diffusion inside droplets are taken
into account as in the quasi-discrete model.

In [76] the MDQDM was applied to the analysis of heating and evaporation of a
droplet with initial radius Rd0 = 10 µm in air with density, temperature and pressure
equal to ρa = 11.9kg/m3, Ta = 880K, pa = 30bar, respectively. All transport and
thermodynamic properties for Diesel fuel and its components are given in [76].2

The plots of the droplet surface temperatures Ts and radii Rd versus time for a
wide range of approximations of Diesel fuel are shown in Figs. 2 and 3.

As can be seen from Figs. 2 and 3, the approximation of 98 actual compo-
nents by a single quasi-component leads to a noticeable under-estimation of the

2 The results of most recent experimental and theoretical studies of Diesel fuel viscosity are pre-
sented in [77, 78]
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Fig. 2 The plots of the droplet surface temperatures Ts versus time for ten approximations of
Diesel fuel composition: 98 components (indicated as (98)); 23, 21, 17, 15, 12, 9 and 7 quasi-
components/components (numbers near the curves); the contributions of all groups are approxi-
mated by single quasi-components, to which the contribution of tricycloalkane is added, leading
to 7 quasi-components/components (indicated as (S7)); the contribution of all 98 components is
taken into account as that of a single component (indicated as (S)); the contributions of only 20
alkane components are taken into account and these are treated as a single component, with the
average value of the carbon number (C14.763H31.526; indicated as (SA)). Only the final stage of
droplet heating and evaporation is shown. Reprinted from Fuel, Volume 154, Sazhin et al., A multi-
dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation,
Pages 238-266, Copyright Elsevier (2014).

Fig. 3 The same as Fig. 2 but for the droplet radii Rd . Reprinted from Fuel, Volume 154, Sazhin
et al., A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and
evaporation, Pages 238-266, Copyright Elsevier (2014).
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droplet surface temperature, and an under-estimation of the evaporation time by
about 17%. The approximation of Diesel fuel by a single alkane quasi-component
(C14.763H31.526) (plots SA) leads to under-prediction of the evaporation time by
about 37% which is not acceptable even for qualitative analysis of the process. The
plots S and S7 (ignoring the contribution of diaromatic and phenanthrene) for sur-
face temperatures and radii are almost indistinguishable. Also, plots 9 and 7 (ignor-
ing the contribution of diaromatics and phenanthrenes) are rather close. The same
applies to plots 23 and 21 (ignoring the contribution of diaromatics and phenan-
threnes). This means that the contribution of diaromatics and phenanthrenes can
be safely ignored in the approximation of Diesel fuel when modelling the heating
and evaporation of fuel droplets in realistic Diesel engine-like conditions. Both for
droplet surface temperatures and radii, the accuracy of approximations improves as
the number of quasi-components/components (QC/Cs) increases. In the case of 15
QC/Cs the droplet evaporation time can be estimated with an error of about 2.5%.
In the case of 21 QC/Cs, this error reduces to about 1.5%. This error is comparable
with that for the approximation of Diesel fuel with 40 QC/Cs. Thus when balanc-
ing simplicity with accuracy of the model we can recommend the approximation of
Diesel fuel with 21 QC/Cs if errors less than about 2% can be tolerated. This num-
ber of QC/Cs can be reduced to 15 if errors less than about 3% can be tolerated. The
latter model requires about 6 times less CPU time compared with the model taking
into account the contributions of all 98 components.

The application of the MDQDM to gasoline fuel droplets and a mixture of
biodiesel/Diesel fuel droplets was considered in [79, 80].

The analysis of heating and evaporation of multi-component droplets thus far
described has focused primarily on the liquid phase. It has been assumed that all
vapour components in the gas phase behave as a single component. This assumption
was relaxed in a number of papers, some results of which are summarised below.

In the classical Stefan-Fuchs theory, Equation (15) for evaporation of mono-
component droplets was derived taking into account the conservation of vapour
mass flux at any point around a stationary droplet. In the case of multi-component
droplets we can impose a similar condition for all individual components in the gas
phase. Following [81], this condition can be presented as:

d
dR

(
R2ρtotalUYk −R2D(k,m)ρtotal

dYk

dR

)
= 0, (54)

where subscript k refers to ambient gas (k = 0) or fuel vapour species (k = 1, .....,n),
R ≥ Rd is the distance from the centre of the droplet in the gaseous phase, D(k,m) is
the mass diffusion coefficient for the species k in the mixture, Yk are mass fractions
of species k, U is the Stefan velocity estimated as

U =
∑n

k=1 ṁ(k)
d

4πR2ρtotal
, (55)
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ṁ(k)
d is the evaporation rate of species k (following [81] and in contrast to Equation

(15) we assume that ṁ(k)
d ≥ 0 during the evaporation process), ρtotal is the total

density of the mixture, including ambient gas.
The analysis of Equation (54) is difficult due to the fact that both ρtotal and D(k,m)

are unknown functions of R. Our further analysis is based on the assumption that
ρtotal and D(k,m) remain constant for all R (the assumption that ρtotal is constant was
made when deriving Equation (15)). The values of D(k,m) were estimated in the
reference conditions as (Blanc’s law):

D(k,m) =

(
n

∑
j=0; j ̸=k

Yj (ref)

D(k, j)

)−1

, (56)

where

Yj (ref) =
2Yj (s)+Yj (∞)

3
, (57)

Yj (s) and Yj (∞) are the mass fractions of species j at the surface of the droplets and
in ambient gas, respectively. Expression (57) allows us to consider ρtotal under the
reference conditions as well (ρtotal = ρref).

Having introduced new variable ζ = Rd/R, the general analytical solution to
Equation (54) was obtained in the form [81]:

Yk = αk exp

[
−

ṁ(total)
d

4πρtotalRdD(k,m)
ζ

]
+ εk, (58)

where ṁ(total)
d = ∑n

k=1 ṁ(k)
d ,

εk =
ṁ(k)

d

∑n
k=1 ṁ(k)

d

(59)

is the evaporation rate of species k, αk are unknown constants.
Recalling that Yk(ζ = 0) = Yk∞, we find that αk = Yk∞ − εk. This relation for αk

allows us to rewrite Equation (58) for the droplet surface (ζ = 1) as:

Yks = (Yk∞ − εk)exp

[
−

ṁ(total)
d

4πρtotalRdD(k,m)

]
+ εk. (60)

Equation (58) was rearranged as [81]:

εk =

Yks −Yk∞ exp
[
− ṁ(total)

d
4πρtotalRdD(k,m)

]
1− exp

[
− ṁ(total)

d
4πρtotalRdD(k,m)

] , (61)
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n

∑
k=1

Yks −Yk∞(
1− exp

[
− ṁ(total)

d
4πρtotalRdD(k,m)

]) = 1 =
n

∑
k=1

Yk∞. (62)

Non-linear Equation (62) was used in [81] to calculate the total evaporation rate
ṁ(total)

d assuming that the values of all other parameters in this equation are known.

Once the value of ṁ(total)
d was obtained, the values of εk were calculated from Equa-

tion (61).
Equation (54) could be formulated in terms of molar rather than mass fluxes [82].

The latter equation could be solved under the assumption that the molar density of
the mixture does not depend on the distance from the droplet surface. The solution to
this equation would be rather similar to (61) and (62) and its explicit form was given
in [82]. These two equations and their solutions predict slightly different evaporation
rates since the conditions of constant total mass density and constant molar density
of the mixture are not equivalent.

To take into account the effects of multi-component droplet movement on droplet
heating and evaporation, in [81] (as well as in a number of other papers, e.g. [83])
it was assumed that there is no interaction between evaporating species. For each of
these species the Abramzon and Sirignano model [32] was applied. The validity of
this assumption is not at first evident, and this is the reason why, in many papers and
books, including [2], the effect of relative motion between species in the gas phase
has been ignored altogether.

The authors of [84, 85, 86, 82] drew attention to the fact that more accurate
description of multi-component diffusion, compared with Equation (54), should be
based on the Maxwell-Stefan equations. Ignoring the Soret effects, diffusion due to
pressure gradients and external forces, these equations can be presented as [87, 82]:

∇X (p) =
n

∑
k=0

1
CmDpk

(
X (p)N(k)−X (k)N(p)

)
, (63)

where X (k) is the molar fraction of the kth component, Cm is the molar density of the
mixture, Dpk = Dkp is the binary diffusion coefficient of the pth component into the
kth component, N(p) is the molar flux of the pth component, k = 0 refers to ambient
gas.

For a multi-component spherical droplet only the radial components of the
species molar fluxes can be retained. In this case, Eq. (63) was presented in a similar
format to that inferred from Eq. (54). This allowed the authors of [82] to present the
solution to (63) in a similar format to (61) and (62), but for molar fractions, assuming
that the total molar density does not depend on the distance from the droplet surface.
It was shown that the predictions based on Eq. (54) (Stefan-Fuchs equation) under-
estimate the total evaporation rate, especially at high ambient gas temperatures, for
various droplet compositions. The largest deviation of the absolute values of the
evaporation rate, predicted by the Stefan-Fuchs and Maxwell-Stefan equations, was
found when none of the species mass fractions was dominant.



Modelling of droplet heating and evaporation 21

A new quasi-dimensional multi-component heating and evaporation model for
multi-component fuel droplets was suggested in [88]. In contrast to the Discrete
Component Model, this model is based not on the rigorous solution to heat transfer
and species diffusion equations inside droplets, but on the polynomial (quadratic)
approximations of the temperature and mass fractions of species distributions inside
droplets.

5 Kinetic and molecular dynamics models

So far the modelling of droplet heating and evaporation processes has been based
on the hydrodynamic approximation. In this approximation, vapour at the droplet
surface is assumed to be saturated and the evaporation is modelled as the diffusion
of vapour from the droplet surface to the ambient gas [2]. The limitations of this
approximation have been well-known since the pioneering papers published more
than 100 years ago (see [89] and the references therein). In a number of studies,
summarised in [2], the heating and evaporation of n-dodecane (C12H26) (a crude
approximation for Diesel fuel) and a mixture of n-dodecane (approximating alka-
nes in Diesel fuel) and p-dipropylbenzene (approximating aromatics in Diesel fuel)
droplets was studied and a new model combining the kinetic and hydrodynamic ap-
proaches was developed.3 In the immediate vicinity of droplet surfaces (up to about
one hundred molecular mean free paths), the vapour and ambient gas dynamics were
studied based on the solution to the Boltzmann equation (kinetic region), while at
larger distances the analysis was based on the hydrodynamic equations (hydrody-
namic region). Mass, momentum and energy fluxes were conserved at the interface
between these regions and between the kinetic region and liquid. The modelling took
into account the contributions of up to three components in the kinetic region (up to
two components approximating Diesel fuel, and air approximated by nitrogen). The
above-mentioned three regions in the vicinity of the droplet surface are schemati-
cally shown in Fig. 4. In kinetic modelling inelastic collisions between molecules
were taken into account using a simplified model (see [2] for details).

The boundary conditions at the interfaces between the kinetic and hydrodynamic
regions were inferred based on the requirement of the conservation of heat and mass
fluxes at this interface. The hydrodynamic heat and mass fluxes were calculated
based on the simplifying assumptions that the temperature at the outer boundary of
the kinetic region is equal to the droplet surface temperature and vapour pressure
at this boundary is equal to the saturated vapour pressure at a temperature equal to
the droplet surface temperature. The requirement of the conservation of heat and
mass fluxes at this interface allowed us to find the corrected values of tempera-
ture and vapour density. The main problem with this approach is that the heat and
mass fluxes in the hydrodynamic region, calculated based on these corrected val-
ues of temperature and vapour density, are not equal to the heat and mass fluxes in

3 An approximation of Diesel fuel by a mixture of n-dodecane and m-xylene was considered in
[90], but the implications of this approximation for kinetic modelling have not been investigated.
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Fig. 4 Liquid, kinetic and hydrodynamic regions near the surface of the droplet. Ts is the droplet
surface temperature, ρs(nd,pd) are n-dodecane (nd) and p-dipropylbenzene (pd) vapour densities
in the immediate vicinity of the droplet surface, TRd and ρRd (nd,pd) are the temperature and n-
dodecane (nd) and p-dipropylbenzene (pd) vapour densities at the outer boundary of the kinetic
region. Reprinted from International Journal of Heat and Mass Transfer, Volume 93, Sazhin et al.,
A self-consistent kinetic model for droplet heating and evaporation, Pages 1206-1217, Copyright
Elsevier (2016).

the hydrodynamic region used to find these corrected values, in the general case.
This problem was resolved in [91], in which a new self-consistent kinetic model for
droplet heating and evaporation is described.

As mentioned earlier, the solution to the Boltzmann equation in the kinetic re-
gion requires formulation of the boundary condition at the liquid/gas interface. This
boundary condition is essentially controlled by the evaporation coefficient. An ap-
proximation of the results of molecular dynamics calculations of this coefficient,
using the United Atom Model (UAM), is given by the following equation:

βe(Ts) = 7×10−6 T 2
s −9.8×10−3 Ts +3.7215. (64)

where Ts is the droplet surface temperature.
One of the main limitations of the UAM, used for approximation (64), is that

in this model the interaction between individual molecules was described using the
force field (FF) methods, which simplify both inter- and inner-molecular interac-
tions by ignoring electrons per se. The applicability of this approach is far from
obvious, as the dynamics of individual molecules in the vicinity of droplet surfaces
are essentially quantum mechanical processes. The quantum mechanical (quantum-
chemical (QC)) models describing the processes at and in the vicinity of Diesel fuel
droplet surfaces are described in [92, 93, 94, 95, 96].

It was shown that the most efficient approach to taking into account quantum
chemical effects on the value of the evaporation coefficients could be based on the
transition state theory (TST) and quantum chemical DFT methods [94]. These were
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applied to several ensembles of n-dodecane conformers. There was similarity be-
tween the approach used in [94] and the one used previously (see [2]). In contrast
to the previous studies, however, in the analysis of [94] the TST was based on a QC
DFT approach taking into account the conformerisation of n-dodecane molecules
(considered to be representative of Diesel fuel). It was shown that the most accurate
expression for the condensation coefficient is the one averaged over the states of
various conformers transferred between two phases [94]:

βe =

1−

[
ρg

ρl
exp

⟨
∆Gg→l

⟩
RuT

]1/3
exp

−0.5

[ρg

ρl
exp

⟨
∆Gg→l

⟩
RuT

]1/3

−1

−1
 ,

(65)
where Ru is the universal gas constant, ρg(l) is the gas (liquid) density, ∆Gg→l is the
change in the Gibbs free energy during the condensation process. It was assumed
that the process under consideration is quasi-steady-state and the condensation co-
efficient is equal to the evaporation coefficient.

Fig. 5 The values of the evaporation coefficient β = βe, predicted by MD, FF (symbols 1-4, curves
5-8) and Formula (65) (curve 9), versus normalised temperature (T/Tc, where Tc is the critical
temperature). Symbols (1-4) refer to the models for structureless LJ fluids with various input pa-
rameters [97, 98], curves 5 and 7 refer to the results obtained based on the UAM reported in
[99, 100], respectively, curve 6 refers to the results of calculations based on the TST model re-
produced from [99], curve 8 is based on the results of calculations using the model described
by Mizuguchi et al. [98]. QC calculations were performed using DFT, ωB97X-D/cc-pVTZ and
SMD/ωB97X-D/cc-pVTZ. Reprinted from Fuel, Volume 165, Sazhin et al., Quantum-chemical
analysis of the processes at the surfaces of Diesel fuel droplets, Pages 405-412, Copyright Elsevier
(2016).
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The effects of both the conformerisation and cross-conformerisation (changes in
conformer state during transfer into another phase) of n-dodecane molecules (CDM
effects), which can contribute to the Gibbs free energies of evaporation and solva-
tion, were taken into account. Ninety-five stable conformers were selected based on
the changes in the Gibbs free energy.

A comparison between the results of calculations of βe based on Expression (65)
and those obtained previously is shown in Fig. 5. As can be seen from this figure,
taking into account the QC effects leads to marginal modification of the predicted
evaporation/condensation coefficients, except at temperatures close to the critical
temperature (where this modification turned out to be significant). Thus, although
the analysis of the QC effects takes into account many new effects ignored in the
conventional FF approach, the contribution of these effects to the values of the
evaporation/condensation coefficient turned out to be marginal, unless temperatures
close to the critical temperature were considered.
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