
Abstract  

Objectives: The elderly population are at an increasingly significant health risk to heat-

related illnesses and mortality when compared with younger people in the same 

conditions. This is due to an increased frequency and severity of heatwaves, attributed 

to climate change, and reduced ability of elderly individuals to dissipate excess heat.  

Consequently, the majority of excess deaths and emergency visits during heatwaves 

occur in people aged over 65 years. The aim of this investigation was to assess the 

physiological and perceptual responses of elderly people during exercise sessions 

equating to activities of daily living in UK summer climatic conditions.  

Study design: Mixed methods, randomised research design. 

Methods: Twenty-eight participants (17 males; 10 females; 1 transgender female) 

were randomly assigned into three experimental groups; 15°C, 25°C or 35°C, 50% 

relative humidity. Participants completed one preliminary and three experimental trials 

within their assigned environment. The data from the preliminary incremental 

recumbent cycling test was used to calculate individual exercise intensities equating 

to 2, 4 and 6 metabolic equivalents (METs) for the subsequent trials. During 

experimental trials participants completed 30-min of seated rest and 30-min of cycling. 

Results: No change was observed in thermal comfort ([TC] just uncomfortable in both 

trials) and only modest changes in RPE (14 ± 2 vs 15 ± 2) at 6 METs in 25°C compared 

to 35°C. In contrast, thermal strain markers did significantly increase (P < 0.05) across 

the same conditions, including change in rectal temperature (ΔTre) during exercise 

(0.27 ± 0.17°C vs 0.64 ± 0.18°C) and peak skin temperature ([Tskin] 32.94 ± 1.15°C vs 

36.11 ± 0.44°C).  

Conclusion: When completing exercise that equates to activities of daily living, elderly 

people could have a decreased perceptual awareness of the environment, even 

though physiological markers of thermal strain are elevated. Consequently, the elderly 

could be less likely to implement behavioural thermoregulation interventions (i.e. seek 

shade and/or remove excess layers) due to a decreased awareness of an increasingly 

thermally challenging environment.  
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1. Introduction  1 

It has been predicted that climate change will increase the risk of heat-related 2 

morbidity and mortality of elderly people (>65 yrs) in the UK 1. There are ~2000 heat-3 

related deaths per year in the UK with a predicted 5-fold increase by 2080, equating 4 

to ~12,700 preventable deaths1. Furthermore, extreme heatwaves such as the 2003 5 

European heatwave resulted in ~70,000 deaths2,3, the majority being elderly4. Elderly 6 

people also comprise the majority of the emergency and general practitioner (G.P) 7 

visits during heatwaves for heat-related illnesses5,6. In response to the extreme 8 

weather events, advice and governmental policy have been issued to the general 9 

public and health services, with the aim to decrease heat illness risk7,8. The information 10 

provided encourages people to; increase fluid intake, seek shade, take cool showers 11 

and reduce physical activity7,8. Metabolic heat production (Ḣprod) is decreased with 12 

decreased physical activity, consequently less excess heat dissipation is required to 13 

maintain a thermal equilibrium9. However, advising less physical activity is a conflicting 14 

health message that can have serious health consequences. The UK Government 15 

recognises the benefits of exercise and have several health campaigns to encourage 16 

greater exercise participation including; One You10, Change4Life11 and Couch to 5K12. 17 

These campaigns highlight the benefits of regular exercise which include; reducing the 18 

risk of diseases such as type 2 diabetes, heart disease, several types of cancer and 19 

stroke, reducing the incidence of obesity and improving mental health. A more 20 

cohesive message of safe and effective exercise during periods of hot weather for the 21 

elderly will improve health messages across environmental and physical health 22 

services.  23 

Current research into heat, exercise and elderly health has focused on comparing 24 

physiological responses to younger adults13-18. It is well established that elderly people 25 

have an attenuated ability to dissipate heat through their reduced; cutaneous blood 26 

flow, physical fitness and sweat gland output, resulting in a decrease in sweat rate5.  27 

More recent research has advanced our understanding of when elderly people store 28 

greater amounts of heat compared to younger adults, therefore placing them at a 29 

greater risk of heat illness. Stapleton and colleagues found that when exercising at a 30 

fixed rate Ḣprod in a 40°C environment, older people began to store greater amounts 31 

of heat compared to younger individuals, from 400W Ḣprod (~ 47% V̇O2peak) in older 32 



men and from 325W Ḣprod  (~ 50% V̇O2peak)  in older women17-18. However, the exercise 33 

intensities employed in these previous studies are at a set Ḣprod16-18 and do not 34 

replicate activities of daily living for the elderly. Furthermore, the extreme 35 

environments > 35°C and < 20 % relative humidity (RH) used in the aforementioned 36 

research do not simulate current UK summer environments. The average summer 37 

temperature for the UK is ~15°C and the average hottest temperature experienced 38 

across the UK was 34.4°C, with 38.5°C being the hottest ever recorded temperature19. 39 

The RH in the UK is variable, during average summers RH ranges from ~60-80%20 40 

however, during periods of hot weather RH is between 20-60%21-22. Consequently, the 41 

physiological and perceptual responses to activities of daily living of elderly people in 42 

UK summer environments remains unclear.   43 

Metabolic equivalents (METs) are an easy way to quantify energy expenditure of 44 

activities of daily living23 and is commonly used as an estimate of energy expenditure 45 

in elderly participants24. One MET, commonly referred to as resting metabolic rate 46 

(RMR), is the utilisation of 3.5ml O2 kg-1min-1 for a 70 kg individual and consequently 47 

2 METs require 7.0ml O2 kg-1min-1 to complete. Activities equivalent to 2 METs include; 48 

washing the dishes and cooking, 4 MET activities include; gardening and painting and 49 

6 MET activities include walking and dancing23.   50 

The elderly population could benefit from advice on how to maintain healthy and active 51 

lifestyles during periods of hot weather, in order to gain the health benefits of exercise 52 

whilst avoiding the risks of heat illness. Therefore, the aim of this study was to 53 

investigate the physiological and perceptual response of elderly people during 54 

exercise that equated to various activities of daily living in environmental temperatures 55 

associated with UK summer conditions. It was hypothesised that physiological and 56 

perceptual responses would increase with exercise intensity and environmental 57 

temperature. 58 

2. Methods  59 

2.1. Ethical approval  60 

The experimental protocol was approved by the University of Brighton’s ethics 61 

committee and conducted in accordance with the revised Declaration of Helsinki25. 62 

Prior to testing, participants provided their written consent and a medical questionnaire 63 



in which participants were excluded if they had a prior or were currently being treated 64 

for; cardiovascular or respiratory illnesses, or they were taking medication that affected 65 

thermoregulation. Additionally, the participants’ G.P’s were informed of their patient’s 66 

participation and gave their written consent for their patient to participate.  67 

2.2. Participants 68 

28 (17 males; 10 females; 1 transgender female) habitually active participants 69 

volunteered for the study and were divided into three experimental groups.  70 

Participants were matched, between groups for; stature, body mass, body fat 71 

percentage and age (Table 1). 72 

2.3. Preliminary testing   73 

During the preliminary testing, anthropometric and baseline data were collected, 74 

followed by a graded exercise test (GXT). Stature (Detecto, USA) and body mass 75 

(0.01kg) (Adam GFK 150, Adam Equipment Inc., USA) were recorded. The percent 76 

body fat was determined from 4 skin folds26 and the equations of Siri27. On completion, 77 

a 10-min supine 12 lead ECG analysis was completed by a qualified technician to 78 

detect abnormalities in heart activity. Resting blood pressure was measured post ECG 79 

to ensure participants were not hypertensive. If a heart abnormality was detected or 80 

the participant was hypertensive then they could not complete exercise testing and 81 

were referred to their physician. No participants were excluded from the study based 82 

on these criterion. 83 

The GXT were performed on a recumbent cycle ergometer (Cardiostrong, BC50, 84 

Germany) within the main trial environment (15°C, 25°C or 35°C, 50% RH [TISS, 85 

Hampshire, UK]). The purpose of the GXT was to determine the participants’ power 86 

output at 2, 4 and 6 METs.  GXT consisted of seven continuous, 3-min, incremental 87 

(15W) stages, from an initial power of 25W. Expired air was collected using open-88 

circuit spirometry for ~ 45s at the end of the 20-min habituation period to assess 89 

individual resting oxygen consumption and during the last minute of each exercise 90 

stage. Indirect calorimetry from resting gaseous analysis provided the participant’s 91 

individual RMR to calculate their 1 MET resting value and to subsequently calculate 92 

the power outputs required to achieve 2, 4 and 6 METs.  Individual 1 MET values were 93 

calculated due to the standardised 1 MET value of 3.5ml O2 kg-1min-1 over-estimating 94 

energy expenditure at rest for the elderly28. The 2, 4 and 6 MET equivalent activities 95 



remain the same, because the activity still requires 2, 4 or 6 times as much oxygen 96 

consumption from rest, to complete. Rectal temperature (Tre) was assessed 97 

throughout the test using a disposable rectal probe (Henley Reading, UK) inserted 10 98 

cm past the anal sphincter. 99 

 2.4. Experimental testing  100 

Main trials consisted of 30-min seated rest followed by 30-min of cycling exercise at 101 

randomly selected intensity of; 2, 4 or 6 METs within the participant’s assigned 102 

environmental condition. Participants’ trials were conducted at the same time of day 103 

and outside of the summer months (October-May); to control for circadian rhythm29 104 

and additional natural heat load30, respectively. Participants avoided strenuous activity 105 

and alcohol for 24 hours, caffeine for 12 hours and eating food for 2 hours prior to 106 

testing17. To ensure euhydration, participants were asked to consume 500ml of water 107 

2 hours prior to testing, euhydration was achieved with a urine specific gravity value ≤ 108 

1.020 and osmolality value ≤ 700 mOsm.kg-1 31. 109 

Participants were fitted with a heart rate monitor (HR) (Polar Electro, Kempele, 110 

Finland), Tre and skin temperature thermistors (Eltek Ltd, Cambridge, UK). Four skin 111 

thermistors were attached in accordance with Ramanathan32 for the assessment of 112 

mean skin temperature (Tskin).Core-to-skin gradient was calculated post exercise33.  113 

Whole body sweat rate (WBSR) was determined from a nude body mass (NBM) 114 

measurement pre-post exercise. 115 

Throughout testing, HR, Tre and Tskin were recorded every 5-min. Thermal sensation 116 

(TS)34, thermal comfort (TC) (modified Gagge et al.35; 1 = comfortable, 5 = very 117 

uncomfortable) and ratings of perceived exertion (RPE)36 were recorded at 10-min 118 

intervals. Gaseous analysis via Douglas bags was taken at minute 19 during rest and 119 

minutes  4, 14 and 24 during exercise, with a collection time of ~ 45s, to monitor and  120 

to calculate MET’s and Ḣprod37 (Servomex 4100 Xentra gas analyser, Crowborough, 121 

UK). Exercise was terminated if Tre ≥ 39.0°C, or the participant withdrew due to 122 

volitional exhaustion. Participants completed the experimental trial at a different MET 123 

intensity 7-9 days later.  124 

2.5. Statistical analyses  125 



All data are presented as mean ± standard deviation (SD) and were assessed for 126 

normality and sphericity prior to further statistical analyses. When the assumption of 127 

sphericity was violated the Greenhouse-Geisser adjustment was used. One-way 128 

Analysis of Variance (ANOVA) were used to ensure no statistical difference among 129 

groups for physical characteristics. Two way mixed methods ANOVAs 130 

(environment*exercise intensity) were performed on rest and end exercise data with a 131 

between subjects’ factor of environment (3 levels; 15°C, 25°C and 35°C) and a within 132 

subject factor of exercise intensity (3 levels: 2, 4 and 6 METs), with follow up 133 

Bonferroni-corrected post-hoc comparisons. Effect sizes were estimated using ηp2 134 

within statistical ANOVA analysis, to analyse the magnitude and trends of the 135 

intervention38. Effect sizes were categorised as; small (0.01), moderate (0.06), and 136 

large (0.14) for ηp2 39. Data were analysed using SPSS (Version 22, SPSS Inc., 137 

Chicago, Illinois, USA) with significance set at P < 0.05. An a priori power analysis 138 

indicated that the minimum total sample size required to detect a change in core 139 

temperature with a large effect size (ηp2 0.14) and with at least 95% statistical power, 140 

was 15 participants. 141 

3. Results  142 

3.1. Baseline measures and exercise intensity 143 

There were no observed differences between the environmental groups for participant 144 

characteristics (Table 1). Similarly, no within or between–participant differences were 145 

observed for baseline; Tre (P = 0.127, ƞp2 = 0.14), HR (P = 0.239, ƞp2 = 0.10) and Tskin 146 

(P = 0.294, ƞp2 = 0.09).  147 

By research design there were no observed differences for exercise condition between 148 

environmental conditions for METs (P = 0.860, ƞ2 = 0.004), or for Ḣprod (P = 0.240, ƞ2 = 149 

0.04) (Table 2). Furthermore, there was no observed differences for peak RPE (P = 150 

0.905, ƞp2 = 0.01) and peak HR (P = 0.165, ƞp2 = 0.07) for environmental condition. 151 

However, as expected, there were observed differences for peak RPE (P < 0.001, ƞp2 152 

= 0.72) and peak HR (P < 0.001, ƞp2 = 0.81) for exercise condition. Post-hoc analyses 153 

identified a difference (P < 0.001) between all exercise conditions for peak RPE (Table 154 

2) and peak HR (Table 3).  155 



Table 1: Mean ± SD participant characteristics.  156 

Group Age (yrs) Stature (m) NBM (kg) BSA (m2) Body fat (%) 

15°C 70 ± 3 1.66 ± 0.11 74.89 ± 14.68 1.83 ± 0.23 24  ± 4 

25°C 70 ± 2 1.72 ± 0.09 79.43 ± 17.46 1.91 ± 0.25      22 ± 3 

35°C 72 ± 5 1.70 ± 0.09 76.48 ± 12.34 1.88 ± 0.19 23  ± 4 

Abbreviations: NBM = nude body mass; BSA = body surface area.  

 157 

3.2. Perceptual response  158 

This section reports the statistical analyses of the perceptual responses to the exercise 159 

and environmental conditions. Table 2 presents the mean ± SD of the peak perceptual 160 

data. It also displays the absolute difference across exercise conditions within 161 

environmental conditions. 162 

There were observed difference for peak TS (P < 0.001, ƞp2 = 0.64) and peak TC (P < 163 

0.001, ƞp2=0.35) for exercise condition (Figure 1). Furthermore, there were observed 164 

difference for peak TS (P < 0.001, ƞp2 = 0.69) for environmental condition (Figure 1). 165 

Interestingly, there was no observed differences for peak TC (P = 0.095, ƞp2 = 0.17) 166 

for environmental conditions. Furthermore, TC at 6 METs, 25°C compared to 35°C 167 

remained exactly the same, TC = 3 (just uncomfortable). Post-hoc analyses identified 168 

differences between all exercise intensities for peak TS and peak TC (Figure 1 and 169 

Table 2). Additionally, peak TS demonstrated a difference between environmental 170 

conditions (Figure 1). There was no observed interaction between environmental and 171 

exercise conditions for peak TS (P = 0.150, ƞp2 = 0.13). 172 



 173 

Figure 1: Mean ± SD for TC (bar chart) and TS (circles) across environmental 174 
conditions and exercise intensity. *denotes a significant difference (P < 0.05) in TS 175 
and TC across exercise intensities. † denotes a significant difference (P < 0.05) in 176 
TS across environmental conditions.   177 
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Table 2: Mean ± SD of the exercise intensity and peak perceptual data. It also displays the absolute difference across exercise 
conditions within environmental conditions. *denotes a significant difference (P < 0.05) between the exercise conditions. 

  2 MET 4 MET 6 MET Δ2-4 MET Δ4-6 MET Δ2-6MET 

METs 15°C 2.56 ± 0.46 4.42 ± 0.37 5.52 ± 0.68    
25°C 2.52 ± 0.29 4.28 ± 0.61 5.92 ± 0.86    
35°C 2.21 ± 0.43 4.15 ± 0.50 5.73 ± 0.53    

Ḣprod (W) 15°C 162 ± 63 245 ± 65 280 ± 75    
25°C 138 ± 44 203 ± 51 261 ± 52    
35°C 129 ± 46 200 ± 35 263 ± 61    

Peak RPE 15°C 10 ± 2 13 ± 1 14 ± 2 2 ± 1 * 2 ± 2 * 4 ± 2 * 
25°C 10 ± 2 12 ± 2 14 ± 2 1 ± 2 * 3 ± 1 * 4 ± 2 * 
35°C 10 ± 3 12 ± 2 15 ± 2 2 ± 3 * 2 ± 2 * 5 ± 3 * 

Peak TS 15°C 3.5 ± 1.0 4.5 ± 0.5 5.0 ± 0.5 0.5 ± 1.0 * 0.5 ± 0.5 * 1.0 ± 1.0 * 
25°C 4.5 ± 0.5 5.0 ± 1.0 6.0 ± 1.0 0.5 ± 1.0 * 1.0 ± 0.5 * 1.5 ± 1.0 * 
35°C 5.5 ± 0.5 6.0 ± 0.5 6.5 ± 0.5 1.0 ± 0.5 * 0.0 ± 0.5 * 1.0 ± 0.5 * 

Peak TC 15°C 2 ± 1 2 ± 1 2 ± 1 0 ± 1 * 0 ± 1 * 1 ± 1 * 
25°C 2 ± 1 2 ± 1 3 ± 1 0 ± 1 * 1 ± 1 * 1 ± 1 * 
35°C 2 ± 1 3 ± 1 3 ± 1 1 ± 1 * 0 ± 1 * 1 ± 1 * 

Abbreviations: METs = metabolic equivalents; Ḣprod = metabolic heat production; HR = heart rate; RPE = rating of perceived exertion; 
TS = thermal sensation; TC =  thermal comfort 



 

 1 
3.3. Physiological responses  2 

This section reports the statistical analyses of the physiological responses to the 3 

exercise and environmental conditions. Table 3 presents the mean ± SD of the 4 

physiological data; peak and change from post rest to end of exercise. It also displays 5 

the absolute difference across exercise conditions within environmental conditions.  6 

There were observed differences for change in exercise Tre (ΔTre) (P < 0.001, ƞp2 = 7 

0.70) and peak Tre (P < 0.001, ƞp2 = 0.65) for exercise condition (Table 3). Likewise, 8 

there were observed differences for ΔTre (P < 0.001, ƞp2 = 0.83), however, no 9 

differences for peak Tre (P = 0.201, ƞp2 = 0.13) for environmental condition. Post-hoc 10 

analyses identified a difference (P < 0.001) between all exercise conditions for ΔTre 11 

and peak Tre (Table 3). Additionally, between 15-35°C and 25-35°C for ΔTre (Figure 12 

1). There were no observed interactions for ΔTre (P = 0.141, ƞp2 = 0.14) between 13 

exercise and environmental conditions. 14 

There were observed differences for ΔTskin (P = 0.006, ƞp2 = 0.19) and peak Tskin (P < 15 

0.001, ƞp2 = 0.33) for exercise condition (Table 3). Likewise, observed differences for 16 

ΔTskin (P = 0.01, ƞp2 = 0.45) and peak Tskin (P < 0.001, ƞp2 = 0.94) for environmental 17 

condition. Post-hoc analyses identified a difference between 2-6 METs for ΔTskin and 18 

a difference, between 2-4 METs and 2-6 METs for peak Tskin (Table 3). Furthermore, 19 

there were differences present between environmental conditions for peak Tskin and 20 

ΔTskin between 15-35°C and 25-35°C (Figure 2). There were no observed interactions 21 

for ΔTskin (P = 0.244, ƞp2 = 0.02), nor peak Tskin (P = 0.244, ƞp2 = 0.10) between 22 

exercise and environmental condition. 23 



 

 24 

Figure 2: Mean ± SD for ΔTre (bar chart) and ΔTskin (circles), across environmental and 25 
exercise conditions. *denotes a significant difference (P < 0.05) in ΔTre and ΔTskin 26 
between 15-35°C. † denotes a significant difference (P < 0.05) ΔTre and ΔTskin between 27 
25-35°C. # denotes a significant difference (P < 0.01) in ΔTre across all conditions. § 28 
denotes a significant difference (P < 0.05) in ΔTskin between 2-6 METs.  29 

 30 

Likewise, core-to-skin gradient demonstrated a difference (P < 0.001, ƞp2 = 0.96) for 31 
environmental condition (Table 3). There was no difference observed (P = 0.165, ƞp2 32 
= 0.07) between exercise conditions (Table 3). Post-hoc analyses identified a 33 
difference (P < 0.001) between all environmental conditions (Figure 3).  34 

#
§ 

 



 

 35 

 Figure 3:  Mean ± SD of end exercise core-to-skin gradient, across environmental 36 
conditions and exercise intensity. * denotes a significant difference (P < 0.001) for 37 
environmental condition. 38 

 39 

There were observed differences in WBSR for exercise (P = 0.001, ƞp2 = 0.29) and 40 

environmental conditions (P = 0.02, ƞp2 = 0.40). Post-hoc analyses identified a 41 

difference between 2-6 METs and 4-6 METs (Table 3). Furthermore, there was a 42 

difference between 15-35°C. There was no interaction observed (P = 0.143, ƞp2 = 0.13) 43 

for WBSR between environmental and exercise conditions. 44 



 

Table 3: Mean ± SD of the physiological data; peak and change from post rest to end of exercise. It also displays the absolute 45 
difference across exercise conditions within environmental conditions. *denotes a significant difference (P < 0.05) between the 46 
exercise conditions. 47 

  2 MET 4 MET 6 MET Δ2-4 MET Δ4-6 MET Δ2-6 MET 

Peak Tre 
(°C) 

15°C 36.98 ± 0.29 37.28 ± 0.26 37.43 ± 0.29 0.30 ± 0.18 * 0.15 ± 0.27 * 0.45 ± 0.36 * 
25°C 37.02 ± 0.24 37.30 ± 0.40 37.63 ± 0.20 0.28 ± 0.31 * 0.33 ± 0.33 * 0.61 ± 0.28 * 
35°C 37.28 ± 0.30 37.41 ± 0.36 37.70 ± 0.41 0.12 ± 0.25 * 0.30 ± 0.21 * 0.42 ± 0.22 * 

Δ Tre post 
rest to end 
exercise 

(°C) 

15°C -0.19 ± 0.09 0.04 ± 0.12 0.23 ± 0.14 0.23 ± 0.09 * 0.19 ± 0.15 * 0.42 ± 0.18 * 
25°C -0.12 ± 0.08 0.14 ± 0.11 0.27 ± 0.17 0.26 ± 0.10 * 0.13 ± 0.15 * 0.39 ± 0.16 * 
35°C 0.13 ± 0.13 0.33 ± 0.13 0.64 ± 0.18 0.20 ± 0.13 * 0.31 ± 0.12 * 0.51 ± 0.21 * 

Peak Tskin 
(°C) 

15°C 27.86 ± 1.21 28.44 ± 1.23 29.06 ± 1.37 0.58 ± 0.66 * 0.61 ± 1.19 * 1.20 ± 1.23 * 
25°C 32.03 ± 1.06 32.39 ± 1.01 32.94 ± 1.15 0.37 ± 0.81 * 0.55 ± 1.04 * 0.91 ± 0.85 * 
35°C 35.81 ± 0.45 35.99 ± 0.38 36.11 ± 0.44 0.17 ± 0.55 * 0.13 ± 0.44 * 0.30 ± 0.63 * 

ΔTskin post 
rest to end 
exercise 

(°C) 

15°C 0.06 ± 0.24 0.38 ± 0.60 0.59 ± 0.74 0.32 ± 0.64 0.21 ± 1.00 0.53 ± 0.75 * 
25°C 0.44 ± 0.35 0.50 ± 0.65 0.90 ± 0.77 0.06 ± 0.76 0.40 ± 0.80 0.47 ± 0.77 * 
35°C 0.83 ± 0.28 1.15 ± 0.38 1.27 ± 0.73 0.32 ± 0.41 0.12 ± 0.71 0.43 ± 0.76 * 

Skin to 
core 

gradient   
(°C)  

15°C 8.83 ± 1.08 8.50 ± 0.82 8.02 ± 0.90 -0.34 ± 0.73 -0.48 ± 1.22 -0.82 ± 1.33 
25°C 5.00 ± 1.01 4.91 ± 1.00 4.69 ± 1.01 -0.09 ± 0.98 -0.22 ± 1.06 -0.31 ± 0.81 
35°C 1.47 ± 0.50 1.42 ± 0.47 1.59 ± 0.55 -0.05 ± 0.53 0.17 ± 0.53 0.12 ± 0.63 

WBSR             
(L.h-1) 

15°C 0.21 ± 0.14 0.20 ± 0.14 0.34 ± 0.22 -0.01 ± 0.15 0.14 ± 0.25* 0.13 ± 0.23* 
25°C 0.41 ± 0.36 0.30 ± 0.16 0.71 ± 0.55 -0.12 ± 0.35 0.41 ± 0.56* 0.30 ± 0.64* 
35°C 0.41 ± 0.37 0.64 ± 0.26 0.85 ± 0.31 0.23 ± 0.30 0.21 ± 0.21* 0.44 ± 0.36* 

Peak HR 
beats min-1 

15°C 84 ± 12 104 ± 14 116 ± 22 20 ± 12 * 12 ±10 * 32 ± 16 * 
25°C 77 ± 12 93 ± 14 110 ± 18 15 ± 8 * 17 ± 9 * 32 ± 14 * 
35°C 80 ± 9 104 ± 19 118 ± 23 23 ± 13 * 15 ± 6 * 38 ± 18 * 

Abbreviations: Tre = rectal temperature;  Δ =change; Tskin = skin temperature; WBSR = whole body sweat rate; HR = heart rate 
48 



 

4. Discussion  49 

This study is the first to investigate the physiological and perceptual response of 50 

elderly people during exercise equating to various activities of daily living in simulated 51 

UK summer environments. The main findings within the physiological and perceptual 52 

data was an increase in Tre, Tskin, WBSR and TS with exercise intensity and 53 

environmental condition, whilst HR, TC and RPE increased with only exercise 54 

intensity. The novel finding within this data is that a driver of thermoregulatory 55 

behaviour, TC, did not become more uncomfortable when exercising at 6 MET’s (i.e 56 

walking/dancing) in 35°C compared to 25°C.  57 

The present study found that there was no statistical difference between 58 

environmental conditions for TC despite there being a significant difference for core-59 

to-skin gradient, ΔTskin and ΔTre. Interestingly, Tskin is a modulator of TC which is a 60 

driver of thermoregulatory behaviour40-41 and Tre is a marker of heat illness42-43. In our 61 

study, thermal strain markers are increasing, but peak TC remains at just 62 

uncomfortable (3) between 6 METs, 35°C and 6 METs, 25°C.  It is well known that an 63 

individual will only implement behavioural, heat alleviating strategies when they feel 64 

uncomfortable within the environment40. The potential implications of an attenuated 65 

response to environmental discomfort is an increased risk of heat illness due to a 66 

continued increase in thermal strain markers (i.e Tre and Tskin). Heat illnesses occurs 67 

along a continuum, therefore minor heat illnesses (i.e heat rash) can develop into a 68 

severe heat illness (i.e heat stroke), if left untreated43. Consequently, if an elderly 69 

person does not feel uncomfortable enough to minimise heat illness risk, there is the 70 

potential for them to develop heat stroke without knowing, which is partly diagnosed 71 

from a core temperature > 40°C44. In addition to no changes in TC, RPE, which is a 72 

modulator of thermoregulatory behaviour during exercise41, had a minimal increase 73 

from 25°C, 6 METs (14 ± 2) to (15 ± 2) at 35°C, 6 METs.  74 

Previously, Larose and colleagues demonstrated that older (55 – 70 yrs), compared 75 

to younger adults (20 – 30yrs) report  identical perceptions of heat for a similar RPE 76 

despite having greater body heat storage (292 ± 28 kJ vs 158 ± 21 kJ, respectively)45. 77 

This suggests the elderly may display a decreased perception of heat and 78 

consequently delayed or modified behavioural thermoregulatory responses compared 79 

to younger counterparts increasing the risk of heat illness. The current work supports 80 



 

this contention by observing a potential behavioural thermoregulatory attenuation via 81 

a decrease in perceptual awareness. The elderly participants remained just 82 

uncomfortable (TC = 3) and only slightly warmer (6 vs. 6.5) at the same exercise 83 

intensity despite environmental temperature being increased by 10°C.  84 

It is noteworthy that scales that measure subjective variables (i.e TC, RPE and TS) 85 

have limitations that were controlled during testing. Firstly, the points on the scale can 86 

be interpreted differently between participants. To minimise inter-individual differences 87 

a set of standardised instructions was given to the participants to anchor the points on 88 

the scales for example; RPE ‘6 means no exertion at all and 20 means the most 89 

maximal exertion’46. Furthermore, it is also standard practice to familiarise participants 90 

with perceptual scales prior to testing47-49. In this study, all the perceptual scales were 91 

presented to the participants during a pre-experimental visit, to ensure scale 92 

understanding. 93 

An aim of the study was to contribute evidence in order to advise elderly people on 94 

how to maintain healthy and active lifestyles during periods of hot weather. The 95 

present study demonstrated a ΔTre of 0.64°C during exercise equating to walking and 96 

or dancing intensity (6 MET) in a 35°C 50% RH environment. This equated to an end 97 

exercise Tre of 37.70 ± 0.41°C, which is not considered hyperthermic. Furthermore, all 98 

other exercise and environmental conditions demonstrated lower end Tre and ΔTre 99 

compared to 6 MET 35°C trial (Table 3). Therefore, it can be concluded that it is safe 100 

for habitually active elderly to complete one 30-min bout of activity that equates to 101 

activities of daily living within UK summer environments. However, the caveat to this 102 

advice, is that the present research only assessed completing exercise over 30-min 103 

with a total environmental exposure time of 60-min. During a period of hot weather, 104 

exposure time would be considerably longer resulting in an accumulation of heat strain 105 

throughout the exposure time that would raise resting Tre and Tskin and increase an 106 

individual’s risk of developing a heat illness. This is demonstrated by Stapleton and 107 

colleagues, where intermittent exercise and recovery stages provoked a change in 108 

oesophageal temperature (ΔTes) of 0.68°C from the penultimate recovery stage (37.65 109 

± 0.29°C) to the end of the last exercise bout (38.33 ± 0.22°C), the change in ΔTes 110 

(0.68°C) is similar to the present study (ΔTre of 0.64°C)18. However, the overall ΔTes 111 

was 1.15°C with a total heat exposure time of 165-min18. Stapleton and colleagues 112 



 

highlights the accumulation of heat strain during repeated bouts of exercise that would 113 

likely to be experienced during periods of hot weather18.  114 

One limitation to the research is that the elderly participants were healthy and 115 

habitually active individuals. Frail elderly people and those transitioning from healthy 116 

to frail, are at an even greater risk of heat illness during periods of hot weather50. 117 

Consequently, the physiological and perceptual response could be exacerbated in an 118 

elderly population who could be classed as in transition or frail. Therefore, further 119 

research into the physiological and perceptual responses of elderly subpopulations to 120 

summer environments is warranted, for example people with cardiovascular diseases, 121 

type 2 diabetes, sedentary populations and people in care homes. Additionally, due to 122 

experimental design the participants clothing was controlled to athletic shorts and T-123 

shirt. Therefore, it remains unclear of the extent to which behavioural thermoregulation 124 

effects thermal physiology through elderly individuals’ conscious decision to remove 125 

or add layers of clothing when exercising within UK summer environments.  126 

5. Conclusion   127 

The current study demonstrates increasing thermal strain in the elderly when 128 

exercising at a somewhat-hard to hard intensity (i.e. RPE of 14-15 and exercise 129 

intensity equivalent to walking/dancing) in high ambient temperatures (35°C) without 130 

a concurrent perceptual recognition and therefore possible attenuated ability to detect 131 

thermal discomfort within the environment. Consequently, the elderly may be less 132 

likely to implement lifesaving behavioural thermoregulation interventions such as; 133 

seeking shade, decreasing metabolic rate and removing excess layers, as thermal 134 

comfort is the drive for thermoregulatory behaviour and therefore should use caution 135 

when exercising in hot ambient temperatures. 136 
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