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Abstract 

The influence of prenatal alcohol exposure on the serotoninergic system in the brain has been well 

studied, however its influence on the serotoninergic system in the gastrointestinal system remains 

unknown. The objective of the study was to use a mouse model of prenatal alcohol exposure to 

investigate the effects on serotonin and its metabolites and precursors in colonic tissue. This study 

used treatment of mouse breeding harems with 5% ethanol with saccharin via drinking water 

throughout pregnancy and compared the results with a saccharin control group.    Tryptophan, 

serotonin (5-HT) and 5- hydroxyindoleacetic acid (5-HIAA) concentrations were measured in the 

longitudinal muscle myenteric plexus (LMMP) and mucosa of intestinal tissue by high-performance 

liquid chromatography (HPLC). Decreased 5-HT concentrations in mucosa and LMMP (females only) 

were observed in prenatally exposed mice compared to controls. Increases in mucosal and LMMP 

tryptophan concentration were only observed in prenatally exposed female mice. In conclusion, 

prenatal alcohol exposure causes a decrease in conversion of tryptophan to 5-HT in both muscle and 

mucosa although the effect is more pronounced in females.  The observed sex difference may be 

related to changes associated with the estrous cycle. 

Keywords: prenatal alcohol exposure, gastrointestinal, serotonin, tryptophan, colon, myenteric 

plexus 

Abbreviations: 

5-HT – serotonin

5-HIAA- 5- hydroxyindoleacetic acid

HPLC- high-performance liquid chromatograph 

LMMP – longitudinal muscle myenteric plexus 
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1. Introduction 

 

In 1973 Jones et al. described the characteristics of Fetal Alcohol Syndrome (Jones, 2011).  It 

is now recognized that prenatal alcohol exposure causes a wide range of neurobehavioral deficits, 

encompassed by the term fetal alcohol spectrum disorders (Hoyme et al., 2016). Fetal alcohol 

syndrome is considered the most severe form of these disorders and is characterised by growth 

retardation, such as low birth weight, lack of weight gain over time, disproportional low weight to 

height and a characteristic pattern of facial anomalies, such as short palpebral fissures, thin 

vermillion border and flattened philtrum.  There are also specific neurological signs such as impaired 

fine motor skills, neurosensory hearing loss and cognitive impairment (Kodituwakku, 2010; 

Mukherjee et al., 2006; Willford et al., 2004). 

The effect of prenatal alcohol exposure on the serotonergic system in the brain has been 

studied specifically.  Tajuddin et al. described a decrease in serotonin (5-HT) and its metabolite 5- 

hydroxyindoleacetic acid (5-HIAA) in the cerebrocortex of the offspring of ethanol-fed rats (Tajuddin 

and Druse, 1988). It has also been demonstrated that there is a remarkable deficit of 5- HT1 receptors 

in both motor and somatosensory cortex of rats prenatally exposed to alcohol (Clausing et al., 1996) 

and that serotonin uptake is decreased in the motor cortex (Tajuddin and Druse, 1988). The 

serotonergic system of the gastrointestinal tract is based on analogous mechanisms to the 

serotonergic system of the brain (De Ponti, 2004) however the effects of prenatal alcohol exposure 

have not been studied.  

Clinical evidence suggests that prenatal alcohol exposure results in long-lasting effects on the 

gastrointestinal tract.   In a Finnish cross-sectional study the morbidity of gastrointestinal system 

among individuals with FASD was as high as 26% (Autti-Ramo et al., 2006). Werts et al. reported 

constipation being a common problem among children prenatally exposed to alcohol (Werts et al., 

2014) while Kvigne et al. emphasized the high prevalence of feeding problems and diarrhoea (Kvigne 

et al., 2009).  There is also evidence that individuals with fetal alcohol spectrum disorders experience 

gastrointestinal motility disorders presenting as chronic pseudoobstruction syndrome (Uc et al., 

1997). However limited studies have explored the mechanisms behind these functional changes in 

gastrointestinal motility. 

5-HT is a key signaling molecular within the colon, where it is located within the 

enterochromaffin (EC) cells present within the mucosal epithelium and neurons within the myenteric 

plexus. Numerous studies have shown that intestinal serotonin is a key pro-kinetic molecule that 

drives motility (Bertrand and Bertrand, 2010; Gershon, 2004; Mawe and Hoffman, 2013). The aim of 
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this study was to use a mouse model of prenatal alcohol exposure to investigate the effects on 5-HT 

and its metabolites and precursors in gut tissue. 

     2. Material and Methods 

2.1 Animal Husbandry 

All procedures were licensed under the UK Animals (Scientific Procedures) Act 1986 and EU 

directive 2010/63/EU and complied with the ARRIVE guidelines.  They were approved by the 

University of Brighton animal welfare and ethics review board.   C57BL/6J mice were maintained at 

19.0 ± 1 °C, 55 % humidity and fed on either a breeding diet (RM3 (E) 801002 chow, Special Diet 

Services) (breeding harems) or a maintenance diet (RM1 (E) 801002 chow, Special Diet Services) (off-

spring) ad libitum. The mice were maintained on a 12-hour light/ dark schedule, lights on 0700h (60 

Lux at cage level).  

 

2.2  Prenatal Alcohol exposure (PAE) 

Breeding harems were established with one male to 3-4 females. Following an adaptation of the 

maternal ethanol consumption model described by Kleiber et al. (Kleiber et al., 2011), the harems 

received fluid ad libitum under a two-bottle choice. The alcohol exposure groups had 24 hour access 

to both a bottle of 5% ethanol sweetened with 0.066% saccharin solution and a bottle of tap-water. 

In order to eliminate the influence of saccharine on the experiment results, the control group had 24 

hour access to a bottle of 0.066% saccharin solution and a bottle of tap-water. The volume of liquid 

consumed from each of the two bottles in each cage was recorded daily. It was assumed that the 

consumption was approximately equal between different mice within each cage in order to estimate 

individual alcohol consumption.  Offspring were weaned at 20 days and group-housed in same-sex, 

littermate cages with free access to food and tap-water.  The offspring have not been exposed to 

alcohol since weaning. Thus, ethanol exposure was from pre-conception, throughout gestation and 

throughout lactation. It must be remembered that there is evidence of a detrimental effect of 

ethanol on the fetus in the very early stages of pregnancy, but also in the last trimester in humans, 

which equates to the first few post-natal days in rodents. This animal model of PAE was previously 

described by  Allen et al.(Allan et al., 2003a)  

 

2.3  Blood alcohol concentration determination 

Blood alcohol concentration was determined by gas chromatography. Briefly, blood was 

collected by cardiac puncture post mortem from a small sample of male and female ex-breeders 

between 1100h and 1300h. Plasma samples were deproteinated with 10% trichloroacetic acid spiked 

with 1 % ethanol and centrifuged at 9400 g for 10 minutes. The supernatant was filtered before gas 
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chromatography analysis. Standards and samples, both with an internal standard (1% propan-1-ol), 

were analysed on a Perkin Elmer Clarus 500 gas chromatograph with a Zebron Phase (ZB-waxplus 

column), equipped with a flame ionization detector. The optimal operating conditions were as 

follows: oven temperature 35oC and flame ionisation detector temperature 150oC, with the injection 

temperature 250oC and the capillary temperature 250oC; hydrogen and air pressure were set at 

optimal conditions of 58psi and 60psi, respectively.  

 

2.4    Tissue sampling and analysis 

Colonic mucosa and LMMP tissue samples were harvested from the progeny of the breeding harems 

under alcohol exposed and control conditions at 3-6 months of age and stored at -80 Celsius. 

To measure levels of tryptophan, 5-HT and 5-HIAA, tissue samples were placed in 0.1M perchloric 

acid. The mixture was then centrifuged at 13,200 g at 4 C for 10 min and the resultant supernatant 

was analyzed using HPLC. HPLC apparatus consisted of a Jasco HPLC pump (Model: PU-980) and 

Rheodyne manual injector equipped with a 20 µl loop. A Kinetic ODS 2.6 mm 100 mm x 2.1 mm i.d. 

analytical column with an in-line guard column (Phenomenex, Macclesfield, UK) was employed. The 

HPLC system was run at a flow rate of 100 mL min-1. CHI630B potentiostat (CH Instruments, Austin, 

TX, USA) was used to control the detector voltage and record the current. A 3-mm glassy carbon 

electrode (flow cell, BAS) served as the working electrode and was used with a Ag|AgCl reference 

electrode and a stainless steel block as the auxiliary electrode. Amperometric recordings were 

carried out, where the working electrode was set at a potential of +950 mV vs. Ag|AgCl reference 

electrode. Control and data collection/processing were handled through the CHI630B software. The 

stock buffer for the mobile phase was comprised of the following: 0.1 M sodium acetate, 0.1 M citric 

acid and 27 mM disodium ethylene-diamine-tetra-acetate (EDTA). This was then buffered to pH 3.0. 

The mobile phase was prepared with the stock buffer mixed with methanol in the ratio of 8 : 2 (v/v) 

and degassed after mixing.   

2.5 Data Analysis 

The peak areas for the responses for 5-HT, 5-HIAA and tryptophan were measured from the 

chromatograms and converted to concentration using calibration plots as previously shown (Parmar 

et al., 2011). The concentration of tryptophan, 5-HT and 5-HIAA in colonic LMMP and mucosa from 

male and female offspring were analysed using 2-way analysis of variance followed by Tukey post-

hoc analysis.  P values less than 0.05 were deemed to indicate significant differences. 

3. Results 

3.1  Alcohol intake and blood alcohol levels 
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Seven breeding cages were monitored:  three control cages and four PAE cages.  Daily fluid 

consumption (per animal) was recorded over 10 weeks and plotted as a daily average over a weekly 

period and a measure of alcohol intake per weight of animal was calculated for female breeders; the 

average ethanol intake for the female breeders was 8.9±0.4 g/kg/24hours. The total volume of fluid 

ingested was significantly lower in the alcohol group compared to control (p<0.0001, unpaired t-

tests). Only 3 of the 5 blood samples tested had measurable blood alcohol concentrations, with 

values of 1.885 mg/dL, 6.549 mg/dL and 4.793 mg/dL, giving a mean value (± s.e.m.) of 2.65± 1.31 

mg/dL. Progeny weight was determined prior to sacrifice: overall there was no difference in weight 

between control and PAE animals. Data from other publications using similar ethanol dosing 

schedules have measures blood alcohol concentrations at the following the period of maximum 

intake.  For example Brady et al. (Brady et al., 2012a)  and Allan et al. (Allan et al., 2003b) report peak 

blood alcohol concentrations of 80-120 mgl100ml using similar doses of alcohol.  Our quoted values 

were taken at the time of lowest expected blood alcohol concentration and are given to illustrate 

that there is constant low-dose exposure on the fetus.   

3.2 Mucosa 

Tissues were harvested from 4 male and 4 female mice of the saccharine control group and 4 male 

and 3 females of the prenatal alcohol exposure group (??) 

Synthesis of 5-HT 

The highest mean concentration of tryptophan in mucosa was observed in the group of female mice 

exposed to alcohol (67.78 μmol/l +6.74) followed by females from the saccharine group 

(35.99 μmol/l +11.09), males exposed to alcohol (31.25 μmol/l +16.86) and males from the 

saccharine group (25.45 μmol/l +16.00). There was a statistically significant difference in mean 

mucosal tryptophan concentration between females from alcohol and control group (p<0.05) and 

males and females within the alcohol exposed group (p<0.05) [Figure 1A]. 

A difference in 5-HT/tryptophan ratio was observed in both sexes. The mean ratios in alcohol 

exposed group and saccharine group were 0.0018 (+0.0015) vs. 0.078 (+0.046), respectively in 

females (p<0.001) and 0.0017 (+ 0,0008) vs. 0.12 (+ 0,048) in males, respectively (p<0.01) [Figure 1D]. 

Levels of 5-HT 

Among the female mice there was a significant (p=<0.05) decrease in mean mucosal 5-HT 

concentration in the ethanol-exposed group in comparison to control group (0.13 μmol/l + 0.10  vs. 

3.06 μmol/l + 1.99). The same effect was observed in male mice, the mean 5-HT concentration in the 
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exposed group  (0.044 μmol/l + 0.01) was more than 100-times lower than in the control group (3.15 

μmol/l + 2.29) [Figure 1B]. 

Turnover of 5-HT 

There was no significant difference in mean 5-HIAA concentration in the mucosa between alcohol 

exposed and control group or between male and female mice in both groups [Figure 1C]. 

In both sexes there was a significant difference in 5-HIAA/5-HT ratio. In males the mean 5-HIAA/5-HT 

ratio was 25.2 (+7.32)  in the alcohol group and 0.525 (+ 0.37)  in the control group, p<0.001 while in 

females the ratios were 31.27 (+13.28) and 0.97 (+0.87), respectively (p<0.05) [Figure 1E]. 

3.3 LMMP 

Synthesis of 5-HT 

The difference in tryptophan concentration in muscle tissue between the alcohol exposed and the 

saccharin group was only observed in females (81.26 μmol/l +19.15 vs. 37.48 μmol/l +16.66 

respectively p<0.05). The concentrations in males were: 41.86 μmol/l +20.99 and 14.1 μmol/l +8.02, 

respectively [Figure 2A]. 

A 5-HT/Tryptophan ratio was significantly lower in alcohol exposed groups in both sexes. In females 

the ratios were 0.0003 +0.0002 and 0.042  +0.02, respectively (p<0.01). In males the ratios were 

0.0003 + 0,0002 and 0.054 +0.02, respectively (p<0.05) [Figure 2D]. 

Levels of 5-HT 

Similarly, the difference in 5-HT concentration in muscle between alcohol and control group was 

noted only in females (0.02 μmol/l +0,0 vs. 1.3 μmol/l +0.72, respectively, p<0.05). The 

concentrations observed in males were: 0.01 μmol/l +0.01 and 0.05 + 0.02, respectively [Figure 2B] 

Turnover of 5-HT 

There was no difference in 5-HIAA concentration in muscle between sexes or exposure groups. 

[Figure 2C] 

The 5-HIAA/5-HT ratio was significantly higher in exposed females than in control females (37.96 

+23.22 vs. 0.81 +0.39, respectively, p<0.001). Interestingly, there was also a difference between 

alcohol exposed females and alcohol exposed males (37.96 +23.22 vs. >50.86 + 22.36 respectively, 

p<0.05) [Figure 2E]. 

4. Discussion 
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The dose of alcohol used in the current study is lower than that used in many prenatal alcohol 

exposure models.  The average ethanol intake per breeding female was approximately 9g/kg/day.  

Taking into account the different apparent volumes of distribution for ethanol (total body water) in 

female humans and mice (0.63 l/kg v. 0.8 l/kg) and the greater rate of ethanol elimination in mice 

(Cederbaum, 2012), the ethanol intake in the current study equates to a human daily ethanol intake 

of approximately 8g, the equivalent of less than one bottle of table wine. Similar daily consumptions 

in mice have been reported as resulting in blood alcohol concentrations averaging 80 to 120 

mg/100ml (Allan et al., 2003b; Brady et al., 2012b). Our results identified concentrations significantly 

lower than these, which could be explained by rodents drinking primarily during the dark phase 

(which in the current would be 1900-0700h) compared to blood sampling some 5 hours later.  Allan 

et al.  (Allan et al., 2003b) monitored blood alcohol concentrations of B6SJL/F1 mice over a 24 hour 

period (with lights on 0700-1900) and found that administration of 14 g/kg/day of ethanol, resulted 

in peak blood alcohol concentrations of 140 mg/100ml at approximately 0100h and minimum 

concentrations of 50 mg/100ml between 0900-1200h. Our blood collection was conducted at the 

time of lowest blood alcohol and it revealed very variable blood alcohol concentrations, although a 

mean of approximately 0.265 mg/100ml clearly indicates that our 9g/kg/day average-model results 

in lower-dose exposure to alcohol than the 14/g/kg/day.  

This is the first study to evaluate the influence of low-dose prenatal alcohol exposure on the 

serotoninergic system in colonic tissue 

We observed a decrease in 5-HT in the mucosa among prenatally exposed male and female mice 

together with an increased concentration of tryptophan in the mucosa of the females.  In the LMMP, 

we observed a significant decrease in 5-HT in females but not in males albeit the trend was similar. 

There were increased tryptophan levels in female mice only. The decreased 5-HT synthesis in both 

mucosa and muscle could result from decreased tryptophan hydroxylase and/or amino acid 

decarboxylase function and result in further tryptophan accumulation. If this decrease is due to 

tryptophan hydroxylase, this would suggest that both tryptophan hydroxylase 1 and 2 are both 

altered due to prenatal exposure to alcohol. This finding is in contrast with previous reports which 

demonstrated a decrease only in tryptophan hydroxylase 1, in the brain. Moreover, in our study we 

observed no decrease in 5-HIAA, which suggests that serotonin transporter SERT  in the intestinal 

tissue is not affected by prenatal alcohol exposure, while in previous reports (Zafar et al., 2000) the 

function of SERT was decreased in the brain. This finding might be explained by the  differences in 

development and maturation of serotoninergic system in the brain and in the intestinal tissue 

(Gershon & Erde, 1981).  
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That the observed decrease in 5-HT concentration in mucosa is not a result of increased monoamine 

oxidase activity is demonstrated by the fact that there is no increase in 5-HIAA concentrations nor an 

increase in 5-HIAA/5-HT ratios.  

In muscle the same trend was observed, although the difference in 5-HT concentration between 

male mice prenatally exposed to alcohol and male controls is not statistically significant. However the 

tryptophan accumulation is observed in both sexes. 

Again the decreased gastrointestinal muscle 5-HT is probably due to decreased tryptophan 

hydroxylase activity rather than increased release and metabolism of 5-HT.  The results therefore 

indicate that prenatal alcohol exposure results in decreased synthesis of 5-HT in gastrointestinal 

muscle and mucosa at 3-6 months of age (young adult), several months after the last exposure to 

alcohol. 

Previous work by Clausing et al. (Clausing et al., 1996)  indicated a sex difference in the effects of 

prenatal alcohol exposure with a decrease in striatal 5HT and 5HIAA seen in females only.  On the 

other hand, Asghari et al. (Asghari et al., 2011) reported differences in tryptophan hydroxylase 1 

activity in the brain throughout estrous cycle and López-Contreras et al. reported sex differences in 

dihydroxyphenylalanine decarboxylase activity in the intestine between the sexes (López-Contreras 

et al., 2008).  There is also evidence for sex differences in serotonergic gastrointestinal system among 

humans.  Viramontes et al.(Viramontes et al., 2001) documented different responsiveness to 5-HT3 

antagonist (alosetron) among females and males. Houghton et al. studied 5-HT concentration in 

platelet-depleted plasma of both IBS and healthy male and females (Houghton et al., 2009). The 

authors documented the influence of oestrous cycle on 5-HT levels.  Due to ethical reasons, direct 

measurement of mucosal and muscle 5-HT and its metabolites have not been performed on humans. 

The sex difference observed in the current study may therefore reflect a sex difference consequent 

to variations in female reproductive hormones.     

In conclusion, clinical evidence suggests that children with fetal alcohol spectrum disorders (FASD) 

are more likely to suffer from disorders associated with decreased gut motility such as constipation 

or pseudoobstruction syndrome.  The results of the current study in a mouse model of FASD 

indicates that low-dose prenatal alcohol exposure results in decreased conversion of tryptophan to 

5-HT, and therefore reduced tissues storage of 5-HT.  Such transmitter depletion might be expected 

to be associated with decreased gut motility.  Strategies to overcome the 5-HT deficit, such as 

monoamine oxidase inhibitors, may therefore be of use in the treatment of these children.   

Funding sources: 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

This research did not receive any specific grant from funding agencies in the public, commercial, or 

not-for-profit sectors. 

Declaration of interest: 

The authors report no conflict of interest. 

 

References: 

Allan, A.M., Chynoweth, J., Tyler, L.A., Caldwell, K.K., 2003a. A Mouse Model of Prenatal Ethanol 

Exposure Using a Voluntary Drinking Paradigm. Alcohol. Clin. Exp. Res. 27, 2009–2016. 

doi:10.1097/01.ALC.0000100940.95053.72 

Allan, A.M., Chynoweth, J., Tyler, L.A., Caldwell, K.K., 2003b. A Mouse Model of Prenatal Ethanol 

Exposure Using a Voluntary Drinking Paradigm. Alcohol. Clin. Exp. Res. 27, 2009–2016. 

doi:10.1097/01.ALC.0000100940.95053.72 

Asghari, R., Lung, M.S.Y., Pilowsky, P.M., Connor, M., 2011. Sex differences in the expression of 

serotonin-synthesizing enzymes in mouse trigeminal ganglia. Neuroscience 199, 429–437. 

doi:10.1016/j.neuroscience.2011.10.036 

Autti-Ramo, I., Fagerlund, A., Ervalahti, N., Loimu, L., Korkman, M., Hoyme, H.E., 2006. Fetal alcohol 

spectrum disorders in Finland: clinical delineation of 77 older children and adolescents. Am. J. 

Med. Genet. A 140, 137–143. doi:10.1002/ajmg.a.31037 

Bertrand, P.P., Bertrand, R.L., 2010. Serotonin release and uptake in the gastrointestinal tract. Auton. 

Neurosci. 153, 47–57. doi:10.1016/j.autneu.2009.08.002 

Brady, M.L., Allan, A.M., Caldwell, K.K., 2012a. A limited access mouse model of prenatal alcohol 

exposure that produces long-lasting deficits in hippocampal-dependent learning and memory. 

Alcohol. Clin. Exp. Res. 36, 457–66. doi:10.1111/j.1530-0277.2011.01644.x 

Brady, M.L., Allan, A.M., Caldwell, K.K., 2012b. A limited access mouse model of prenatal alcohol 

exposure that produces long-lasting deficits in hippocampal-dependent learning and memory. 

Alcohol. Clin. Exp. Res. 36, 457–66. doi:10.1111/j.1530-0277.2011.01644.x 

Cederbaum, A.I., 2012. Alcohol metabolism. Clin. Liver Dis. 16, 667–85. doi:10.1016/j.cld.2012.08.002 

Clausing, P., Ali, S.F., Taylor, L.D., Newport, G.D., Rybak, S., Paule, M.G., 1996. Central and peripheral 

neurochemical alterations and immune effects of prenatal ethanol exposure in rats. Int. J. Dev. 

Neurosci. 14, 461–9. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

De Ponti, F., 2004. Pharmacology of serotonin: what a clinician should know. Gut 53, 1520–1535. 

doi:10.1136/gut.2003.035568 

Gershon, M.D., 2004. Review article: serotonin receptors and transporters -- roles in normal and 

abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. 20 Suppl 7, 3–14. 

doi:10.1111/j.1365-2036.2004.02180.x 

Gershon, M.D., Erde, S.M., 1981. The Nervous System of the Gut. Gastroenterology 80, 1571–94. 

Houghton, L.A., Brown, H., Atkinson, W., Morris, J., Fell, C., Whorwell, P.J., Lockhart, S., Keevil, B., 

2009. 5-hydroxytryptamine signalling in irritable bowel syndrome with diarrhoea: effects of 

gender and menstrual status. Aliment. Pharmacol. Ther. 30, 919–929. doi:10.1111/j.1365-

2036.2009.04121.x 

Hoyme, H.E., Kalberg, W.O., Elliott, A.J., Blankenship, J., Buckley, D., Marais, A.-S., Manning, M.A., 

Robinson, L.K., Adam, M.P., Abdul-Rahman, O., Jewett, T., Coles, C.D., Chambers, C., Jones, K.L., 

Adnams, C.M., Shah, P.E., Riley, E.P., Charness, M.E., Warren, K.R., May, P.A., 2016. Updated 

Clinical Guidelines for Diagnosing Fetal Alcohol Spectrum Disorders. Pediatrics 138. 

doi:10.1542/peds.2015-4256 

Jones, K.L., 2011. The effects of alcohol on fetal development. Birth Defects Res. C. Embryo Today 93, 

3–11. doi:10.1002/bdrc.20200 

Kleiber, M.L., Wright, E., Singh, S.M., 2011. Maternal voluntary drinking in C57BL/6J mice: Advancing 

a model for fetal alcohol spectrum disorders. Behav. Brain Res. 223, 376–387. 

doi:10.1016/j.bbr.2011.05.005 

Kodituwakku, P.W., 2010. A neurodevelopmental framework for the development of interventions 

for children with fetal alcohol spectrum disorders. Alcohol 44, 717–728. doi:S0741-

8329(09)00179-7 [pii]\r10.1016/j.alcohol.2009.10.009 

Kvigne, V.L., Leonardson, G.R., Borzelleca, J., Neff-Smith, M., Welty, T.K., 2009. Hospitalizations of 

children who have fetal alcohol syndrome or incomplete fetal alcohol syndrome. S. D. Med. 62, 

97, 99, 101–3. 

López-Contreras, A.J., Galindo, J.D., López-García, C., Castells, M.T., Cremades, A., Peñafiel, R., 2008. 

Opposite sexual dimorphism of 3,4-dihydroxyphenylalanine decarboxylase in the kidney and 

small intestine of mice. J. Endocrinol. 196, 615–24. doi:10.1677/JOE-07-0564 

Mawe, G.M., Hoffman, J.M., 2013. Serotonin signalling in the gut--functions, dysfunctions and 

therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–86. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

doi:10.1038/nrgastro.2013.105 

Mukherjee, R. a S., Hollins, S., Turk, J., 2006. Fetal alcohol spectrum disorders: an overview. J. R. Soc. 

Med. 99, 298–302. doi:10.1007/s11065-011-9166-x 

Parmar, L., Morgan, L.D., Patel, B.A., 2011. Intracellular and extracellular sampling to monitor the 

neurotransmission process using a chromatographic method. Anal. Methods 3, 2770. 

doi:10.1039/c1ay05520h 

Tajuddin, N., Druse, M.J., 1988. Chronic maternal ethanol consumption results in decreased 

serotonergic 5-HT1 sites in cerebral cortical regions from offspring. Alcohol 5, 465–470. 

doi:10.1016/0741-8329(88)90084-5 

Uc, A., Vasiliauskas, E., Piccoli, D.A., Flores, A.F., Di Lorenzo, C., Hyman, P.E., 1997. Chronic intestinal 

pseudoobstruction associated with fetal alcohol syndrome. Dig Dis Sci 42, 1163–1167. 

Viramontes, B.E., Camilleri, M., McKinzie, S., Pardi, D.S., Burton, D., Thomforde, G.M., 2001. Gender-

related differences in slowing colonic transit by a 5-HT3 antagonist in subjects with diarrhea-

predominant irritable bowel syndrome. Am. J. Gastroenterol. 96, 2671–6. doi:10.1111/j.1572-

0241.2001.04138.x 

Werts, R.L., Van Calcar, S.C., Wargowski, D.S., Smith, S.M., 2014. Inappropriate Feeding Behaviors 

and Dietary Intakes in Children with Fetal Alcohol Spectrum Disorder or Probable Prenatal 

Alcohol Exposure. Alcohol. Clin. Exp. Res. 38, 871–878. doi:10.1111/acer.12284 

Willford, J. a, Richardson, G. a, Leech, S.L., Day, N.L., 2004. Verbal and visuospatial learning and 

memory function in children with moderate prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 

28, 497–507. doi:10.1097/01.ALC.0000117868.97486.2D 

Zafar, H., Shelat, S.G., Redei, E., Tejani-Butt, S., 2000. Fetal alcohol exposure alters serotonin 

transporter sites in rat brain. Brain Res. 856, 184–92. 

 



 

Figure 1. Tryptophan, 5-HT, 5-HIAA concentration and 5-HT/Tryptophan and 5-HIAA/5-HT ratio in 

intestinal mucosa of mice prenatally exposed alcohol in comparison to control group.  
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Figure 2. Tryptophan, 5-HT, 5-HIAA concentration and 5-HT/Tryptophan and 5-HIAA/5-HT ratio in 

intestinal muscle of mice prenatally exposed alcohol in comparison to control group.  
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