
Groups whose word problem is a Petri net
language

Gabriela Aslı Rino Nesin and Richard M. Thomas

Department of Computer Science, University of Leicester, Leicester LE1 7RH, U.K.

Abstract. There has been considerable interest in exploring the con-
nections between the word problem of a finitely generated group as a
formal language and the algebraic structure of the group. However there
are few complete characterizations which tell us precisely which groups
have their word problem in a specified class of languages. We investigate
which finitely generated groups have their word problem a language ac-
cepted by a Petri net and give a complete classification, showing that a
group has such a word problem if and only if it is virtually abelian.

Key words: Finitely generated group, word problem, terminal Petri net
language.

1 Introduction

There has been considerable interest in exploring the connections between the
word problem of a finitely generated group as a formal language and the algebraic
structure of the group. Whilst the seminal work of Boone and Novikov in the
1950’s showed that a finitely presented group could have a word problem that
is not recursive, it was not really until the 1970’s that languages lower down the
Chomsky hierarchy were investigated. Anisimov showed in 1971 that a group
has a regular word problem if and only if it is finite [1]. Whilst this result is not
difficult to prove, asking such a question was an innovative idea and naturally
led to an investigation as to what happens with other classes of languages.

Muller and Schupp showed in [16] (modulo a subsequent result of Dun-
woody [4]) that a group has a context-free word problem if and only if it is
virtually free. Indeed, the word problem of such a group must be determinis-
tic context-free, and even an NTS language [2]. Apart from Dunwoody’s result,
this characterization uses other deep group theoretical results (such as Stallings’
classification of groups with more than one end).

Within the class of context-free languages there are essentially not many
other possibilities if we assume certain natural conditions on the class of lan-
guages. Herbst [7] showed that, if F is a cone (i.e. a class of languages closed
under homomorphism, inverse homomorphism and intersection with regular lan-
guages) which is a subset of the context-free languages, then the class of groups
whose word problem lies in F is either the class of groups with a regular word
problem, the class of groups with a one-counter word problem or the class of
groups with a context-free word problem. (The one-counter languages are those

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/188258124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Gabriela Aslı Rino Nesin and Richard M. Thomas

languages accepted by a pushdown automaton where we have a single stack
symbol apart from a bottom marker.) Herbst also classified the groups with a
one-counter word problem as being the virtually cyclic groups. This work was
extended in [9] where it was shown that a group has a word problem which is a
finite intersection of one-counter languages if and only if it is virtually abelian.

Whilst other classes of languages have been investigated there are very few
complete characterizations. We investigate groups whose word problem is a ter-
minal Petri net language and establish the following:

Theorem 1. A finitely generated group G has word problem a Petri net lan-
guage if and only if G is virtually abelian.

Whilst this gives a correspondence between an important family of languages
and a natural class of groups, there are many variations on Petri net languages
which could potentially give rise to different classes of groups. Many of these
modifications are so powerful that the class of languages is found to be equal
to the class of recursively enumerable languages but there are other interesting
possibilities, such as the class obtained by allowing λ-transitions in the Petri net,
and it would be interesting to investigate the corresponding classes of groups.

The structure of this paper is as follows. We recall some basic definitions
and facts about Petri nets and group theory in Sections 2 and 4 respectively.
In Section 3 we comment on the equivalence of various definitions for Petri net
languages. Given this background material, showing that a finitely generated
virtually abelian group has a word problem which is a Petri net language is
fairly straightforward, and we do this in Section 5. The proof of the converse is
rather more involved and we provide that in Section 6. We finish in Section 7 by
commenting how this class of groups relates to certain other classes which have
arisen in considering word problems.

2 Petri nets

In this section we set out our conventions and notation for Petri nets and recall
some properties of the class of languages they accept.

A labelled Petri net is a tuple P = (S, T,W,m0, Σ, l) where:

(i) S is a finite set, called the set of places; we will assume that an order is
imposed on S and so it will be displayed as a tuple.

(ii) T is a finite set disjoint from S, called the set of transitions.
(iii) W : (S × T) ∪ (T × S) → N is the weight function, assigning a multiplicity

to pairs of places and transitions. If W (x, y) = n then we will write x
n−→ y.

If W (x, y) = 0 then we say there is no arrow from x to y.
(iv) m0 ∈ NS assigns to each place a natural number and is called the initial

marking.
(v) Σ is a finite set called the alphabet and the labelling function l : T → Σ

assigns a label to each transition.

Groups whose word problem is a Petri net language 3

The function l can be extended to a function T ∗ → Σ∗ in the natural way (where
we define λl to be λ). Note that l does not have to be bijective (if it were we
would have a “free Petri net”) but we do assume that l is a (total) function.

As usual we represent a labelled Petri net by a labelled directed graph, where
the places are represented by circles, transitions by rectangles (we will denote
transitions by their labels for simplicity), the weight function by arrows and
arrow multiplicities by numbers on the arrows (with no arrow drawn if the
multiplicity is zero and no number if the multiplicity is one). Markings (i.e.
elements of NS) are represented by tokens or natural numbers in each place.

Now we describe the execution semantics of Petri nets. Let m ∈ NS be a
marking and t ∈ T be a transition. We say that t is enabled at m if, for all places
s ∈ S, we have W (s, t) 6 m(s); we denote this by m[t〉. If t is enabled at m, we
can fire t to get a new marking m′ ∈ NS , defined by

m′(s) = m(s) +W (t, s)−W (s, t)

for all s ∈ S, and we write m[t〉m′ noting that asserting this automatically
implies that m[t〉 must hold. We generalize this to sequences w of transitions
(i.e. to elements w of T ∗) and define m[w〉m′ in the obvious way.

We will need the notion of a labelled Petri net accepting a language; there
are various possibilities and we consider the “terminal language” of a Petri net.
To do this we extend the definition of a labelled Petri net P = (S, T,W,m0, Σ, l)
to include a finite set of terminal markings M ⊂ NS and write

P = (S, T,W,m0,M,Σ, l)

The (terminal) language L(P) recognized by P is the set

{l(w) : m0[w〉m some m ∈M,w ∈ T ∗}

We say that a language L ⊆ Σ∗ is a Petri net language (PNL for short) if there
is a labelled Petri net whose terminal language is L and let PNL denote the
class of all Petri net languages.

The class PNL has several nice closure properties (see references such as [12]),
some of which we note here for future reference:

Proposition 2. (i) PNL contains all regular languages.
(ii) PNL is closed under union.

(iii) PNL is closed under intersection.
(iv) PNL is closed under inverse GSM mappings (and, in particular, under in-

verse homomorphisms).

Note that some authors define Petri net languages in a slightly different way:
for example, they only allow one final marking, or disallow a final marking equal
to the initial one. Several clever constructions (see pages 8-21 in [6]) show that
these definitions are equivalent, up to the inclusion of the empty word λ in the
language. We will survey some of these approaches in the next section.

4 Gabriela Aslı Rino Nesin and Richard M. Thomas

3 Equivalence of the various definitions

In this section we will give various different definitions of Petri net languages
and note their equivalence. Although we are not sure that all of what we note
here has been explicitly proved in previous papers it does appear that these
equivalences are all already known.

Our definition of a PNL is the same as that given by Jantzen in [12]. We
will keep our terminology of labelled Petri net and PNL as above. The following
definition is used by Petersen to define CSS (computation sequence sets) in [18]:

Definition 3. A P-Petri net N is a 5-tuple (P, T,Σ, S, F) where P is a finite
set of places, T is a finite set of transitions disjoint from P , Σ is the input
alphabet (or the set of labels), S ∈ P is a designated start place, F ⊆ P is a
designated set of final places, and each transition t ∈ T is a triple consisting of
a label in Σ, a multiset (bag) I of input places, and a bag O of output places.

This is almost the same as our definition except for the designated start and
final places. The labelling implies that there can be more than one transition with
the same label, and the multiplicity of a place in a bag is just the multiplicity of
its arrow to or from the transition in our original definition. Enabled transitions
and so on are defined in the same way. We then have:

Definition 4. The Computation Sequence Set of a P-Petri net is the set of all
sequences of labels of transitions leading from the start marking (one token in
the start place, none anywhere else) to one of the final markings (one token in
one of the final places, none in any other place).

Let CSS denote the class of languages which are computation sequence sets of
a P-Petri net.

Hack’s definition of a labelled Petri net in [6] is the same as the one given here
(he actually splits the weight function into two separate forwards and backwards
incidence functions, but this is not an essential difference). He then has:

Definition 5. The set of H-terminal label sequences of a labelled Petri net N
for a final marking mf 6= m0 is the set labels of sequences of transitions leading
from m0 to mf .

Essentially, the difference between our definition and Hack’s is twofold: he
only allows one final marking, and this final marking cannot be equal to the
start marking. His motivation is that one then avoids having any H-terminal
languages containing λ, as if one keeps the unique final marking condition but
allows these languages to contain λ, then the class of H-terminal languages of
labelled Petri nets would no longer be closed under union (see page 8 in [6]).
Hack calls this class L0 and we shall adopt this terminology.

It is known (see pages 19-20 of [6]) that L0 and CSS are the same up to
inclusion of the empty word:

Theorem 6. For any language L, we have that L ∈ CSS ⇐⇒ L− {λ} ∈ L0

Groups whose word problem is a Petri net language 5

We also have that

Theorem 7. PNL = CSS

It is clear that CSS ⊆ PNL and the reverse inclusion is the interesting one.
To show it, one can use a “standardisation” of the Petri nets described in [6].
If we have a Petri net N then it can be transformed into a P -Petri net without
changing the terminal language.

4 Group theory

In this section we review the background material we need from group theory
and establish some general facts about groups whose word problem is a Petri
net language. For general information about group theory we refer the reader to
[13, 19].

Let A be a finite set and let A−1 be another set disjoint from, but in a one-to-
one correspondence with, A; we write a−1 for the element in A−1 corresponding
to the element a in A. Let Σ = A ∪ A−1. We say that A is a generating set for
a group G if we have a monoid homomorphism ϕ from Σ∗ onto G such that
(aϕ)−1 = a−1ϕ for all a ∈ A; we normally then identify an element x ∈ Σ
with the image xϕ ∈ G, so that A becomes a subset of G. A group with such
a finite generating set is said to be finitely generated. The groups considered in
this paper will all be finitely generated.

With this convention we define the word problem WA(G) of G with respect
to the generating set A to be {α ∈ Σ∗ : α =G 1G} where the notation α =G β
(where α, β ∈ Σ∗) denotes the fact that α and β represent the same element
of G (i.e. that αϕ = βϕ) and α =G g (where α ∈ Σ∗ and g ∈ G) denotes that
fact that α represents the element g of G (i.e. that αϕ = g).

With this definition the word problem WA(G) is a subset of Σ∗ and hence is
a language; so we can consider which groups have their word problem in a given
class of languages. This would seem to depend on the choice of A but, under
certain mild assumptions of F , this does not matter (see [8] for example):

Proposition 8. If a class of languages F is closed under inverse homomor-
phism and the word problem of a group G with respect to some finite generating
set lies in F then the word problem of G with respect to any finite generating set
lies in F .

Given Proposition 2 (iv), we may talk about the word problem of a finitely
generated group G being a PNL without reference to the choice of generating
set. If F is any class of languages closed under inverse homomorphism then we
will (mildly) abuse notation and write G ∈ F if the word problem of G lies in F .

As the class PNL is closed under inverse homomorphisms and intersection
with regular languages (the latter fact following from parts (i) and (iii) of Propo-
sition 2), we have the following immediate consequence of Lemma 2 of [10]:

Proposition 9. The class of finitely generated groups with word problem a PNL
is closed under taking finitely generated subgroups.

6 Gabriela Aslı Rino Nesin and Richard M. Thomas

We also have the following:

Proposition 10. If G and H are finitely generated groups with word problems
in PNL then the word problem of the direct product G×H is also in PNL.

Proof. If P1 and P2 are Petri nets recognising the word problems of G and H
with respect to finite generating sets A and B respectively (where A ∩ B = ∅)
then the disjoint union of P1 and P2 recognizes the word problem of G×H. ut

Of fundamental importance in what follows will be the so-called Heisenberg
group, which is the group of matrices

1 a c
0 1 b
0 0 1

 : a, b, c ∈ Z

under multiplication. This is an example of a “nilpotent group”. One way of
defining this concept is to let Z(G) denote the centre of a group G (i.e. the set
of elements in G that commute with all the elements of G) and then define a
series of normal subgroups Z1(G) 6 Z2(G) 6 . . . of G by:

Z1(G) := Z(G), Zi+1(G)/Zi(G) := Z(G/Zi(G)) for i > 1.

We say that G is nilpotent if Zi(G) = G for some i ∈ N.
A generalization of this is to say that a group G is virtually nilpotent if G has

a nilpotent subgroup H of finite index in G (where the index of a subgroup H is
the number of distinct right cosets of the form Hg for g ∈ G). In general, if ℘ is
any property of groups, then we say that G is virtually ℘ if G has a subgroup
of finite index with the property ℘. It is a standard result that, if H has finite
index in G, then H is finitely generated if and only if G is finitely generated.
The following fact (see [10] for example) will be important here:

Proposition 11. A finitely generated torsion-free virtually nilpotent group that
does not contain the Heisenberg group is virtually abelian.

The term “torsion-free” means that the group does not contain any non-trivial
elements of finite order.

The notion of finite index will particularly relevant in this paper. Given that
PNL is closed under union with regular sets and inverse GSM mappings by
Proposition 2, we have the following immediate consequence of Lemma 5 in [10]:

Proposition 12. If H is a finitely generated group with word problem in PNL
and G is a group containing H as a finite index subgroup, then the word problem
of G is also in PNL.

Returning to generating sets, we say that a group G with finite generating
set A has polynomial growth if there is a polynomial p(x) such that the number
of distinct elements of G represented by words in (A∪A−1)∗ of length at most n
is bounded above by p(n).

Groups whose word problem is a Petri net language 7

5 Virtually abelian implies PNL word problem

In this section we prove one direction of Theorem 1, showing that a finitely
generated virtually abelian group G has its word problem in PNL. We start
with the case where G is abelian:

Proposition 13. The word problem of a finitely generated abelian group is al-
ways a PNL.

Proof. Let G be a finitely generated abelian group. According to the structure
theorem for finitely generated abelian groups, G is expressible as a direct product

Zr × Z/a1Z . . .× Z/amZ

where r > 0, m > 0 and ai = pni
i for some prime pi and some natural number

ni > 1. As noted in the introduction, the word problem of a finite group such as
Z/aZ is regular, and hence a PNL. The word problem of Z with respect to some
generating set {a} is a PNL as shown in Figure 1.

a a−1

a−1 a

Fig. 1. A labelled Petri net recognizing the word problem of Z. The empty marking is
both initial and terminal, and there are no other terminal markings.

The result now follows from Proposition 10. ut

Propositions 12 and 13 immediately give:

Corollary 14. Any finitely generated virtually abelian group has word problem
in PNL.

6 PNL word problem implies virtually abelian

Now we consider the converse to Corollary 14 which (together with Corollary 14)
will establish Theorem 1. First we prove the following:

Proposition 15. A finitely generated group with PNL word problem has poly-
nomial growth.

Proof. Let G be a group generated by by a finite set A, let Σ = A ∪ A−1, and
assume that the word problem WA(G) of G is recognized by a Petri net P =
(S, T,W,m0,M,Σ, l) with initial marking m0 and set of terminal markings M .

We call markings which are reachable from m0 in P and which allow the
possibility of reaching a terminal marking acceptable markings. Note that, given

8 Gabriela Aslı Rino Nesin and Richard M. Thomas

an acceptable marking m, any two sequences of transitions reaching m from m0

must represent the same element of G. This is because, if m0[t1 . . . tn〉m and
m0[t′1 . . . t

′
k〉m and if m is acceptable, then there is a sequence of transitions w

from m to some terminal marking m′. But then

m0[t1 . . . tn〉m[w〉m′ and m0[t′1 . . . t
′
k〉m[w〉m′,

and hence both sequences of transitions label elements of WA(G), i.e.

(t1 . . . tnw)l =G 1G =G (t′1 . . . t
′
kw)l,

from which we get that (t1 . . . tn)l =G (t′1 . . . t
′
k)l.

So we have a natural mapping θ from the set of acceptable markings to G.
As P recognizes the word problem of G, for each group element g there must
be an acceptable marking m with mθ = g, otherwise no word ww−1, where w
represents g, can be accepted by P . So the mapping θ is surjective.

In order to show polynomial growth, we want to show that there is a poly-
nomial p(n) such that the number of elements of G represented by a sequence
of generators of length n is at most p(n). Since the mapping θ is surjective it is
therefore sufficient to bound the number of acceptable markings reachable by a
sequence of transitions of length n by such a polynomial p(n).

If a sequence t1 . . . tn reaches an acceptable marking and if tσ(1) . . . tσ(n) does
as well for some permutation σ of {1, 2, . . . , n}, then the two sequences reach
the same marking1; this follows directly from the effect on a marking of firing
a transition. In counting the number of acceptable markings, one can therefore
ignore the order in which the transitions fire: the only important thing is their
multiplicities. If T = {u1, u2, . . . , uk} then there are at most as many acceptable
markings induced by sequences of n transitions as there are possible values for
µ(u1), . . . , µ(uk) ∈ N such that µ(u1) + . . .+µ(uk) = n, where µ(ui) denotes the
multiplicity of ui in the transition sequence. It is now clear that the number of
acceptable markings is bounded above by the polynomial (n+ 1)k, as there are
at most n+ 1 choices for each of the µ(ti). ut

Using Gromov’s wonderful theorem [5] about groups with polynomial growth
we immediately deduce the following:

Corollary 16. A finitely generated group whose word problem is a PNL is vir-
tually nilpotent.

We now want to show that a finitely generated group whose word problem is
a PNL is virtually abelian. As we will show later, it is enough to show that the
Heisenberg group’s word problem is not a PNL. To show this, we use Lambert’s
Pumping Lemma, a consequence of the decidability of the reachability problem
for Petri nets. We state here a corollary to it (see Theorem 5.1 in [14]):

1 Recall here that the ti are actual transitions, not labels of transitions (i.e. generators);
therefore this argument does not imply that G is abelian as, for example, being able
to swap labels a and b in one such sequence does not mean that we would necessarily
be able to do so in all such sequences.

Groups whose word problem is a Petri net language 9

Theorem 17. Let P = (S, T,W,m0, Σ, l) be a labelled Petri net and mf a final
marking. Let a ∈ Σ. Defining

L(a) := {|l(u)|a : m0[u〉mf}

we have that L(a) is infinite if and only if it contains an arithmetic sequence
with a non-zero ratio.

Note that the use of only one final marking does not pose a problem, because
of Theorems 6 and 7. Our result will follow from Theorem 18 below.

Theorem 18. Let Σ = {a, b, A,B,C}. Then L = {aibjAiBjCij : i, j ∈ N} is
not a Petri net language.

Proof. Assume that L is a Petri net language. If so, then we can intersect it with
the language K = {anbnAnBnCk : n, k ∈ N} to get {anbnAnBnCn2

: n ∈ N}.
K is a Petri net language, recognisable by the Petri net

a b A B

a b A B C

Fig. 2. A labelled Petri net recognizing K. The initial marking is a token in the bottom
left place, and the terminal marking is a token in the bottom right place.

Since Petri nets are closed under intersection, we have that L ∩ K ∈ PNL as
well. By Theorem 17, L(C) = {n2 : n ∈ N} would then contain an arithmetical
sequence, a contradiction. ut

We can now deduce the required result about the Heisenberg group:

Corollary 19. The word problem of the Heisenberg group H is not a PNL.

Proof. If a, b and c respectively denote the matrices1 1 0
0 1 0
0 0 1

 ,

1 0 0
0 1 1
0 0 1

 and

1 0 1
0 1 0
0 0 1

then a, b and c generate H and every relation in H can be deduced from the
relations

ac = ca, bc = cb and a−1b−1ab = c;

see [13] for example. Let W denote the word problem of H with respect to
{a, b, c}. To ease clutter, we let A represent a−1, B represent b−1 and C represent
c−1. We claim that the language L from Theorem 18 is just W ∩ a∗b∗A∗B∗C∗.
To see this, we note that ab =G bac. So we get

aibj =G ai−1abbj−1 =G ai−1bacbj−1 =G ai−1babj−1c =G ai−1babbj−2c
=G ai−1b2abj−2c2 =G . . . =G ai−1bjacj =G . . .
=G bjaicij .

10 Gabriela Aslı Rino Nesin and Richard M. Thomas

Now:

aibjAkBlCm =G 1 ⇐⇒ bjaicijAkBlCm =G 1 ⇐⇒ bjaiAkBlcijCm =G 1
⇐⇒ i = k, j = l and ij = m

which is what we wanted to establish.
Since the class PNL is closed under intersection with regular languages, we

have that W /∈ PNL. ut

Our result now follows:

Proposition 20. If a finitely generated group G has a PNL word problem, then
G is virtually abelian.

Proof. We know already that G is virtually nilpotent by Corollary 16. Assume
that G is not virtually abelian; then G has a nilpotent but not virtually abelian
subgroup K of finite index in G. In turn, it is known (see 5.4.15 (i) of [19]
for example) that K must have a torsion-free subgroup L of finite index, and L
must then be nilpotent but not virtually abelian. By Proposition 11 we have that
H 6 L 6 K 6 G where H is the Heisenberg group. So H is a finitely generated
subgroup of G. Since G has a PNL word problem, so does H by Proposition 9,
contradicting Corollary 19. ut

Taken together with Corollary 14, this completes the proof of Theorem 1.

7 Relation to other classes of languages

In this section, we put our results into some context, comparing the class of
groups with word problem in PNL with those in some other classes of languages.
We let OC denote the class of one-counter languages, CF the class of context-free
languages and coCF the class of co-context-free languages (i.e. languages that
are complements of context-free languages).

We mentioned in the introduction that the groups whose word problem is a
one-counter or context-free language have been classified. These families of lan-
guages are both incomparable with PNL. Let D

′∗
1 denote the one-sided Dyck

language on one set of parentheses, which is both a one-counter language and a
PNL. (In fact, OC is the smallest full AFL containing D

′∗
1 and PNL is the small-

est intersection-closed semi-AFL containing D
′∗
1 . See the remark after Proposi-

tion 1 in [3] for the first fact and Theorem 1 in [11] for the second). Define

L := (D
′∗
1 a)∗D

′∗
1

where a is an arbitrary extra letter. Since OC is closed under concatenation and
Kleene star, we have that L ∈ OC. However, Hack shows in Theorem 9.8 of [6]
that L /∈ PNL (in fact, not even if one allows the Petri net to have empty or
“invisible” transitions). So OC is not contained in PNL. However, when we turn
to word problems of groups, the situation changes:

Groups whose word problem is a Petri net language 11

Proposition 21. If G ∈ OC then G ∈ PNL.

Proof. A group with one-counter word problem is virtually cyclic by [7] and
hence virtually abelian; the result follows from Corollary 14. ut

Of course, since OC is not contained in PNL, finite intersections of one-
counter languages are not necessarily in PNL. However, this situation also
changes when we restrict ourselves to word problems.

As we mentioned in the introduction, it was shown in [9] that a group has a
word problem that is the intersection of finitely many one-counter languages if
and only if it is virtually abelian. Therefore we immediately have:

Corollary 22. G ∈ PNL if and only if G ∈
⋂
finOC.

We mention in passing that, not only is
⋂
finOC not a subset of PNL, but

PNL is not a subset of
⋂
finOC either:

Proposition 23. L = {anbm : 1 6 m 6 2n, 1 6 n} is in PNL but not
⋂
finOC.

Proof. It is known that L ∈ PNL; see [11]. Assume that L ∈
⋂
finOC, say

L = L1 ∩ . . . ∩ Ln

where the Li are one-counter languages. Let K be the regular language a∗b∗.
Since L ⊆ K, we have L = (L1 ∩K) ∩ . . . ∩ (Ln ∩K) and so, without loss

of generality, we can assume that Li ⊆ K for all i (as the intersection of a
one-counter language and a regular language is one-counter). Since the Parikh
mapping Φ : Σ∗ → N2 defined by w 7→ (|w|a, |w|b) is bijective on K, we have

LΦ = L1Φ ∩ . . . ∩ LnΦ.

By Parikh’s Theorem (see Theorem 2 in [17]) we know that any context-free
language, and hence any one-counter language, has a semilinear Parikh image.
Since the Li are all one-counter, LiΦ is semilinear for all i. Since any intersection
of semilinear sets is semilinear, L would have a semilinear Parikh image. However
L does not have a semilinear Parikh image [11], a contradiction. ut

We finish with a comment relating groups with a word problem in PNL to
those with a word problem in coCF . The latter is a very interesting class of
groups (see [10, 15] for example) but we do not yet have a classification as to
which groups lie in this class. However, we can say the following:

Proposition 24. Let G be a finitely generated group. If G ∈ PNL then G ∈
coCF . Furthermore, this inclusion is proper.

Proof. By Proposition 6 in [10], all virtually abelian groups are in coCF , and so
the inclusion follows from Proposition 20.

To see the properness of the inclusion, consider the free group on two gener-
ators. This group is not virtually abelian, and so is clearly not in PNL, but it
is in coCF (see [10] for example). ut

12 Gabriela Aslı Rino Nesin and Richard M. Thomas

Acknowledgements

Some of the research for this paper was done whilst the authors were visiting
the Nesin Mathematics Village in Turkey; the authors would like to thank the
Village both for the financial support that enabled them to work there and
for the wonderful research environment it provided that stimulated the results
presented here. The second author also would like to thank Hilary Craig for all
her help and encouragement.

References

1. Anisimov, A.V.: Group languages. Cybernetics and Systems Analysis 7 (1971)
594–601

2. Autebert, J.M., Boasson, L., Sénizergues, G.: Groups and NTS languages. Journal
of Computer and System Sciences 35 (1987) 243–267

3. Boasson, L.: An iteration theorem for one-counter languages. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing. STOC ’71, New
York, NY, USA, ACM (1971) 116–120

4. Dunwoody, M.J.: The accessibility of finitely presented groups. Inventiones Math-
ematicae 81 (1985) 449–457

5. Gromov, M.: Groups of polynomial growth and expanding maps. Publications
Mathematiques de l’Institut des Hautes Etudes Scientifiques 53 (1981) 53–78

6. Hack, M.: Petri net languages. Computation Structures Group Memo 124, Project
MAC, M.I.T. (1975)

7. Herbst, T.: On a subclass of context-free groups. RAIRO - Theoretical Informatics
and Applications 25 (1991) 255–272

8. Herbst, T., Thomas, R.M.: Group presentations, formal languages and characteri-
zations of one-counter groups. Theoretical Computer Science 112 (1993) 187–213

9. Holt, D.F., Owens, M.D., Thomas, R.M.: Groups and semigroups with a one-
counter word problem. Journal of the Australian Mathematical Society 85 (2008)
197–209

10. Holt, D.F., Rees, S., Röver, C.E., Thomas, R.M.: Groups with context-free co-word
problem. Journal of the London Mathematical Society 71 (2005) 643–657

11. Jantzen, M.: On the hierarchy of Petri net languages. RAIRO - Theoretical
Informatics and Applications 13 (1979) 19–30

12. Jantzen, M.: Language theory of petri nets. In Brauer, W., Reisig, W., Rozenberg,
G., eds.: Petri Nets: Central Models and Their Properties. Volume 254 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (1987) 397–412

13. Johnson, D.L.: Presentations of Groups. 2nd edn. Cambridge University Press
(1997)

14. Lambert, J.: A structure to decide reachability in petri nets. Theoretical Computer
Science 99(1) (1992) 79 – 104

15. Lehnert, J., Schweitzer, P.: The co-word problem for the Higman-Thompson group
is context-free. Bulletin of the London Mathematical Society 39 (2007) 235–241

16. Muller, D., Schupp, P.: Groups, the theory of ends, and context-free languages.
Journal of Computer and System Sciences 26 (1983) 295–310

17. Parikh, R.J.: On context-free languages. Journal of the ACM 13 (1966) 570–581
18. Peterson, J.L.: Computation sequence sets. Journal of Computer and System

Sciences 13(1) (1976) 1 – 24
19. Robinson, D.: A Course in the Theory of Groups. 2nd edn. Springer (1995)

Groups whose word problem is a Petri net language 13

Appendix

We give here a proof of Theorem 7. As we commented in the paper, it is clear
that CSS ⊆ PNL and the reverse inclusion is the interesting one. So we need to
demonstrate that PNL ⊆ CSS. To do this we describe the standardisation that
will transform any labelled Petri net N = (S, T,W,m0,M.Σ, l) into a P -Petri
net.

1. The run place. Add a place named run with a loop to all transitions in the
original net N . This clearly does not change the language. The practicality
of this place is that it enables one to activate and deactivate N at will; no
transitions in N can fire unless there is a token in run.

2. The first transitions. (See page 12, section 2.2.2 in [6]) There were finitely
many transitions t1, . . . , tn enabled at the initial marking m0 of our labelled
Petri net N . For each of these ti we add a new transition t′i with the same
label as ti. This t′i will do two things: deposit the marking corresponding to
m0[ti〉 (thus imitating ti) and deposit a token in run, thus activating N .

3. The start place Now add a place named start with an arrow to each of the
t′i. It is easy to see the language is not changed. We now have a designated
start place and can take our new initial marking to be one token in the start
place and none anywhere else.

4. The stop transitions. These use the same principle as the first transitions -
for any final marking of our original Petri net N , there are finitely many
last transitions ti leading to them - in other words, there are finitely many ti
such that there is a marking mj where mj [ti〉m for m ∈M a final marking.
Again, add a new transition t′′ij for each of these. Each t′′ij will both take
away the token in the run place and empty the penultimate marking it is
associated to (so if mj had k tokens in place p, there will be an arrow labeled
k from p to t′′ij). Note that this only works if the last transition is not the
first transition (i.e. mj is not m0). In that special case, t′′ij has just a simple
arrow from the start place, bypassing run altogether.

5. The final places. For each t′′ij , add a new place pij , with a simple arrow from
t′′ij to pij . If the empty word is not in the language, taking these as the final
places and assuming each final marking to be a token in a single final place
and none anywhere else is enough. If λ is in the language recognized by N ,
simply designate the start place to be a final place as well.

The modifications above can be straightforwardly seen not to change the
terminal language of the net, and allow us to transform a labelled Petri net
(according to our definition) into one of Petersen’s P -Petri nets.

