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Abstract

A new model for heating and evaporation of a multi-component liquid film, based on the analytical

solutions to the heat transfer and species diffusion equations inside the film, is suggested. The Dirichlet

boundary condition is used at the wall and the Robin boundary condition is used at the film surface for

the heat transfer equation. For the species diffusion equations, the Neumann boundary conditions are

used at the wall, and Robin boundary conditions are used at the film surface. The convective heat transfer

coefficient is assumed to be constant and the convective mass transfer coefficient is inferred from the Chilton-

Colburn analogy. The model is validated using the previously published experimental data for heating and

evaporation of a film composed of mixtures of isooctane/3-methylpentane (3MP). Also, it is applied to the

analysis of heating and evaporation of a film composed of a 50%/50% mixture of heptane and hexadecane

in Diesel engine-like conditions.
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Nomenclature

c specific heat capacity

cµ constant equal to 0.09

D diffusion coefficient

fn parameter introduced in (4)

h convection heat transfer coefficient

h0 hδ0/kl

k thermal conductivity

L specific heat of evaporation

Le Lewes number
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M molar mass

ṁf evaporation mass flux

N total number of evaporating species

Nu Nusselt number

p pressure or parameter introduced in Equation (20)

Pr Prandtl number

q heat flux

qn parameter introduced in Equation (4)

qY n parameter introduced in Equation (27)

Ru universal gas constant

Re Reynolds number

Sc Schmidt number

t time

T temperature

u parameter defined by Equation (14)

u∗ friction velocity

vn eigenfunction defined by Equation (23)

x distance from the wall

X x/δ0 or molar fraction

y distance from the surface of the film

Y mass fraction

Greek symbols

δ film thickness

εi parameter defined by (13)

Θ function introduced in (19)

κ thermal diffusivity

κδ0 kl/(clρlδ
2
0)

λn eigenvalues

µ dynamic viscosity

ν kinematic viscosity

ρ density

2



Subscripts

a ambient

eff effective

e evaporation

f film

g gas

i species

in inner

l liquid phase

m mass transfer

out outer

p constant pressure

s surface of the film

T turbulent

v vapour phase

w wall

0 value at the beginning of a time step or initial value

1. Introduction

The importance of modelling liquid film heating and evaporation in various engineering applications is

well known [1]. Recently, most of the attention has been focused on the application of these models to the

analysis of the processes in internal combustion engines (see [2] and the references therein).

The formation of liquid films in engine combustion systems is known to lead to detrimental processes,

including the formation of smoke-inducing piston fuel films in spark-ignited engines [3], and the initiation of

fuel films on the surface of Diesel injectors [4]. The accumulation of deposits inside and on the surface of fuel

injector nozzles is associated with reduced engine performance and lifetime. This reduction in performance

is known to manifest in a variety of ways including increased acoustic and pollutant emissions [5, 6, 7].

The deposits can also reduce the hydraulic diameter of the nozzle orifices, resulting in a reduction in the

quantity of injected fuel and reduced repeatability of injection [7, 8, 9], all of which cause a reduction in

engine power [10]. The deposits can also increase cavitation, which can then lead to further coking of the

nozzle [11]. Injector needle sticking can occur and eventually lead to injector failure [12, 13]. Accurate

mathematical modelling of the heating and evaporation of multi-component liquid films can help us to
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improve our understanding of the formation and decomposition processes of fuel films, and lead to the

development of more efficient prevention and control strategies.

The modelling of heating and evaporation of liquid films has been considered in a number of papers some

of which are reviewed in [2]. The simplest model of these processes is based on the assumption that the

liquid is well mixed and the thermal diffusion inside it can be considered infinitely fast (zero-dimensional

model). In [14] the temperature gradients inside the liquid film were taken into account, but based on a

rather simplistic assumption that the temperature distribution can be approximated by the piecewise linear

function (linear temperature model). The model based on the assumption of a more complex polynomial

distribution of temperature inside the liquid film is known as the quasi-dimensional model [2]. Finally

the model based on the rigorous solution to the heat conduction equation inside the liquid film and the

assumption that temperature gradients in the direction perpendicular to the wall are much larger than

those along the wall is known as the one-dimensional model [2]. Our analysis is focused on the latter model,

as the most general one.

In contrast to most previously suggested models of the phenomenon, we will take into account the

presence of multiple components in the liquid film, which is typical for automotive fuels. Both thermal

and species diffusion inside the liquid film will be taken into account. As in the case of the analysis of

multi-component droplet heating and evaporation (see [15]), the model is based on the analytical solutions

to the heat transfer and species diffusion equations. The film will be assumed to be thin which will allow us

to use the one-dimensional model in which both temperature and liquid species mass fractions depend only

on the distance from the wall.

We start our analysis with the case of mono-component liquid films (Section 2). In Section 3 this analysis

is generalised to the case of multi-component liquid films. The solution algorithm is described in Section

4. The validation of the model against published experimental data and its application to the analysis of

specific cases of bi-component fuel film heating and evaporation in engine-like conditions is described in

Section 5. The main results of the paper are summarised in Section 6.

2. Heating and evaporation of a liquid film (mono-component liquid)

The analyses of the processes in liquid and gas phases, described within this model, are presented in the

following subsections.

2.1. Liquid phase

Assuming that the gradients of temperature in the film in the direction perpendicular to the wall are

much greater than those in the direction parallel to the wall, the heat conduction equation inside the film

can be simplified to:
∂T

∂t
= κl

∂2T

∂x2
, (1)
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where κl = kl/(clρl) is the liquid thermal diffusivity, kl, cl, and ρl are the liquid thermal conductivity, specific

heat capacity, and density, respectively, x is the distance from the wall.

Equation (1) is expected to describe the heat conduction process in this film except in the vicinity of its

edges. Also, in the case of thin films, the contribution of the convective term, ignored in Equation (1), is

expected to be very small.

Following [16], we assume that the liquid temperature at the wall is equal to the constant wall temper-

ature: T (x = 0, t) = Tw (Dirichlet boundary condition).

Yan et al. [17] specified heat flux rather than temperature at the wall (Neumann boundary condition).

This heat flux was estimated as qw = kw(Tout−Tin)/δw, where kw is the thermal conductivity of the wall, δw

is the wall thickness, Tout and Tin are wall temperatures at the outer and inner boundaries. This approach

to the estimation of the heat flux is applicable only in the case of steady state problems, which is not

compatible with the modelling of the transient process in the liquid film. The rigorous approach to this

problem would require a coupled solution for the liquid film and the wall similar to the one considered in

[15] for spherical layers. To the best of our knowledge, this approach to the problem of liquid film heating

and evaporation has not been investigated.

Following [16], the boundary condition at the surface of the liquid film (x = δ0) is presented as:

h(Teff − Ts) = kl
∂T

∂x

∣∣∣∣
x=δ0−0

, (2)

where

Teff = Tg +
ρlLδ̇0e
h

, (3)

the value of δ̇0e (the derivative of the film thickness with respect to time), controlled by film evaporation

(indicated by the additional subscript e), is taken from the previous time step, L is the specific heat of

evaporation, Tg and Ts are ambient gas and film surface temperatures, respectively. The value of δ̇0e is

estimated later (see Expression (9)).

Equation (2) is the energy balance equation at the surface of the film: heat transferred by convection

from ambient gas to the surface is spent on the evaporation of the film and its heating. This equation

describes the Robin boundary condition for Equation (1) at the surface of the film.

The above-mentioned boundary conditions are supplemented by the initial condition T (t = 0) = T0(x).

Traditionally, the heat transfer equation inside the film, along with related equations, in most cases has

been solved numerically (e.g. [18]). The authors of [16] derived an analytical solution to Equation (1) subject

to the above-mentioned boundary and initial conditions. A simplified and slightly corrected version of this

solution can be presented as follows, using notations different from those used in [16]:

T (X, t) = Tw +
Xh0

1 + h0
(Teff − Tw) +

∞∑
n=1

exp
[
−κδ0λ2

nt
]

[qn + fnh0(Teff − Tw)] sin(λnX), (4)
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where X = x/δ0, h0 = hδ0/kl, κδ0 = kl/
(
clρlδ

2
0

)
,

qn =
1

|| vn ||2

∫ 1

0

(T0(X)− Tw) sin(λnX)dX, fn =
1

|| vn ||2

∫ 1

0

f(X) sin(λnX)dX = − sinλn
|| vn ||2 λ2

n

,

f(X) = −X/(1+h0), || vn ||2= 1
2

(
1− sin 2λn

2λn

)
= 1

2

(
1 + h0

h2
0+λ2

n

)
, λn are non-trivial solutions to the equation

λ cosλ+ h0 sinλ = 0. (5)

Note that there is a typo in Expression (7) of [16]: the sign before fn in their formula should be a minus.

When deriving Equation (4) we considered that both h0 and Teff remain constant during the time step.

With these assumptions, the last term in Expression (7) of [16] should be zero.

Solution (4) is expected to be used at each time step in the numerical code. The values of temperature

predicted by this equation at the end of the previous time step are used as the initial values for the following

time step, with updated values of input parameters (e.g. thickness of the film and gas temperature).

Note that Solution (4) could be easily obtained from the corresponding solution for droplet heating and

evaporation presented back in 2004 in [19] (see Appendix A of [15]).

2.2. Gas phase

To complete the analysis of the previous section, two parameters, h and δ̇0e, need to be estimated. These

parameters could be inferred from the gas phase model or from experimental data.

Following [16] we assume that the fuel vapour at the film surface is always saturated and the analysis

of the evaporation process reduces to the analysis of vapour diffusion from the film surface to the ambient

gas. In the case of evaporating droplets it is typically assumed that vapour mass fraction at an infinitely

large distance from the droplet surface is zero [15]. In the case of an evaporating liquid film, however, this

assumption would lead to unphysical infinitely large evaporation rates and cannot be used in our model.1

Following [20, 2], we start the analysis of the evaporation process with an estimation of the convection

heat transfer coefficient h, taking into account the effects of turbulence. The latter could be determined

based on the wall function for turbulent gas (the k − ε model was used for turbulence modelling) using the

following formula [14, 20, 2]:

h =


ρgcpgu

∗T ln(T/Ts)
(2.1 ln y++2.5)(T−Ts)

y+ > y+
c

ρgcpgu
∗

Prgy+
y+ ≤ y+

c ,
(6)

where ρg and cpg are density and specific heat capacity of the ambient gas taken at the reference temperature

(the contribution of fuel vapour to these parameters is usually ignored), u∗ is the friction velocity defined

as u∗ = c0.25
µ

√
kT, cµ = 0.09, kT is the turbulent kinetic energy, y+

c = 11.05 is the criterion of the laminar

1This has been overlooked in the model described in [2] (see their Section 2.2).
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turbulent transition, Prg = µgcpg/kg is the laminar Prandtl number, µg and kg are gas dynamic viscosity and

thermal conductivity, respectively (as in the case of density and specific heat capacity, the effects of vapour

on these parameters are usually ignored), y+ = yc0.25
µ k0.5

T /νg, νg = µg/ρg is the gas kinematic viscosity, y

is the distance from the surface of the film to the first mesh node near this surface, Ts is the temperature

at the surface of the film, T is the temperature at this mesh node (to be calculated using any conventional

Computational Fluid Dynamics (CFD) code).

This approach to the estimation of h, however, seems rather awkward for practical applications. Alter-

natively, one might use one of the correlations for the gas phase Nusselt number (Nu). These correlations

predict that Nu is proportional to Re4/5 [21, 17, 20, 2] and are not expected to be valid at small Re, for

which they predict that h = 0. These approaches will not be used in our analysis and we will use the

experimentally observed values of h, including those observed in Diesel engine-like conditions.

The results of experimental investigations of h in Diesel engine-like conditions showed that this coefficient

can vary from about 500 W/(m2K) to 5500 W/(m2K) [22]. When testing our model in Diesel engine-like

conditions we assume, following [17], that h = 2000 W/(m2K).

Once the value of h has been estimated, the value of the mass transfer coefficient is estimated using the

Chilton-Colburn analogy as [23]:

hm =
h

ρgcpg
Le−2/3, (7)

where Le = Sc/Prg is the gas Lewis number, Sc = µg/ρgDg is the Schmidt number, Dg is gas diffusivity. In

the case of multi-component vapour, the diffusivities of all components are assumed to be the same, leading

to a common Sc.

The convection mass transfer coefficient inferred from Equation (7) allows us to estimate the evaporation

mass flux from the film surface as [21]:

ṁf = hm(ρvs − ρva), (8)

where ρvs and ρva are the vapour density at the surface of the film and in ambient gas, respectively. In our

analysis we assume that ρva = 0. The generalisation of the analysis to the case of non-zero ρva would have

been straightforward provided that the value of this parameter had been specified (e.g. from a coupled CFD

solution). This generalisation is beyond the scope of the current paper.

The value of δ̇0e is estimated as:

δ̇0e = −
∣∣∣∣ ṁf

ρ(T 0)

∣∣∣∣ , (9)

where T 0 is the average temperature in the film. This formula is used in Expression (3) for Teff .

Note that there is a typo in Equation (22) of [20] (the power of Le has the wrong sign; the corresponding

Equation (21) of [2] is correct). The mass transfer coefficient used in [20, 2] is normalised by gas density.
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3. Heating and evaporation of a liquid film (multi-component liquid)

All equations for heating mono-component films, derived in the previous section, remain valid for multi-

component films. In contrast to mono-component films, however, we need to take into account the effect of

mutual diffusion of species as in the case of heating and evaporation of multi-component droplets [15]. The

modelling of the diffusion of species in the liquid phase is discussed in Section 3.1. The implications of this

diffusion for the processes in the gas phase are discussed in Section 3.2.

3.1. Liquid phase

Assuming that the gradients of species mass fractions in the film in the direction perpendicular to the wall

are much greater than those in the direction parallel to the wall (cf. similar assumption about temperature

gradients in Section 2.1), the species diffusion equation inside the film can be simplified to:

∂Yl,i

∂t
= Dl

∂2Yl,i

∂x2
, (10)

where Dl is the liquid diffusion coefficient (assumed to be the same for all species (cf. similar assumption

made for the analysis of multi-component droplet heating and evaporation [15])), x is the distance from the

wall.

Equation (10) will be solved subject to the following boundary conditions at the outer surface of the film

and at the wall:

Dl
∂Yl,i

∂x

∣∣∣∣
x=δ0−0

= |δ̇0e|
(
Yl,i|x=δ0

− εi
)
, (11)

∂Yl,i

∂x

∣∣∣∣
x=0

= 0, (12)

where
∣∣∣δ̇0e∣∣∣ = |ṁf/ρl| = hm

∑i=N
i=1 ρvsi/ρl is the evaporation flux from the surface of the film, ρvsi are

densities of the ith vapour species at the outer surface of the film, ρl is the density of the mixture of liquid

species, N is the total number of evaporating species,

εi =
Yvs,i∑i=N
i=1 Yvs,i

=
ρvs,i∑i=N
i=1 ρvs,i

, (13)

Yvs,i and ρvs,i are the mass fraction and vapour density of the ith vapour species at the outer surface of

the film, respectively. The initial condition for Equation (10) is Yl,i(t = 0) = Yl0,i. Note that in our sign

convention ṁf is positive, while δ̇0e is negative.

The physical meaning of Equation (11) is the same as that used for the analysis of heating and evaporation

of multi-component droplets (cf. Equation (5.9) in [15]). Equation (12) is the mathematical expression of

the fact that species cannot diffuse through the wall.

To simplify our analysis further, we assume that εi = const. This assumption can be supported by

the fact that Equation (10) will be solved over a relatively short time step. The main parameter which

8



could influence the values of εi is the rate of change of temperature during the time step. This change

in temperature is expected to be greatest during the heating up period of the film when its evaporation

is expected to be at the weakest. During the strongest evaporation at high temperatures, this change in

temperature is expected to be relatively small.

Introducing a new variable:

u = Yl,i − εi, (14)

Equation (10) and boundary conditions (11) and (12) can be rewritten as:

∂u

∂t
= Dl

∂2u

∂x2
, (15)

∂u

∂x
−

∣∣∣δ̇0e∣∣∣
Dl

u

∣∣∣∣∣∣
x=δ0−0

= 0, (16)

∂u

∂x

∣∣∣∣
x=0

= 0. (17)

The initial condition for Equation (15) is presented as:

u(t = 0) = Yl0,i(x)− εi = u0(x), (18)

where the additional subscript 0 indicates initial values.

One can see a similarity between Equations (15)-(18) and Equations (H.7)-(H.9) in [15] derived for the

analysis of species diffusion in multi-component droplets, except that for the droplets it was assumed that u

at the centre of the droplet is zero (Dirichlet boundary condition) which is different from the corresponding

boundary condition for the film (Equation (17), Neumann boundary condition). Hence, we need to find a

new solution to Equation (15) rather than to adapt the one described in Appendix H of [15] to our problem.

As in Appendix H of [15] we look for the solution to (15) in the form:

u ≡ u(t, x) =

∞∑
n=0

Θn(t)vn(x), (19)

where vn(x) is the full set of non-trivial solutions to the equation:

∂2v

∂x2
+ pv = 0, (20)

subject to the boundary conditions:
∂v

∂x

∣∣∣∣
x=0

= 0 (21)∂v

∂x
−

∣∣∣δ̇0e∣∣∣
Dl

v

∣∣∣∣∣∣
x=δ0

= 0. (22)

Equation (20) with boundary conditions (21) and (22) is the well known Sturm-Liouville problem. Our first

task is to find eigenvalues p for this problem. The case p = 0 leads to the trivial solution v = 0 (cf. Appendix
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H of [15]). The cases p < 0 and p > 0 are considered in Appendix 1. The following set of eigenfunctions

was obtained (see Equations (43) and (48)):

vn(x) =

 cosh
(
λ0

x
δ0

)
n = 0

cos
(
λn

x
δ0

)
n ≥ 1,

(23)

where λn (n ≥ 0) are the solutions to the following equations (see (42) and (47)):

cothλ0 =
λ0Dl∣∣∣δ̇0e∣∣∣ δ0 , cotλn = − λnDl∣∣∣δ̇0e∣∣∣ δ0 (n ≥ 1).

Having substituted (19) into (15) we obtain:

∞∑
n=0

Θ
′

n(t)vn(x) = Dl

∞∑
n=0

Θn(t)v
′′

n(x), (24)

where

Θ
′

n(t) =
dΘn(t)

dt
, v

′′

n(x) =
d2vn(x)

dx2
.

Since the expansion in a series with respect to vn (Fourier series) is unique, Equation (24) is satisfied

only when it is satisfied for each term in this expansion. Remembering that

v
′′

0 =

(
λ0

δ0

)2

v0 and v
′′

n = −
(
λn
δ0

)2

vn (n ≥ 1),

this implies that:

Θ
′

0(t) = Dl

(
λ0

δ0

)2

Θ0(t), (25)

Θ
′

n(t) = −Dl

(
λn
δ0

)2

Θn(t), n ≥ 1. (26)

To find initial conditions for (25) and (26) we recall that u(t = 0) = u0(x) (see (18)). Expansion of u0(x)

in the Fourier series with respect to vn gives:

u0(x) =

∞∑
n=0

qY nvn(x), (27)

where

qY n =
1

||vn||2

∫ δ0

0

u0(x)vn(x)dx.

Comparing (24) and (27) one can see that the initial conditions for (25) and (26) can be presented as:

Θn(t = 0) = qn, n ≥ 0. (28)

This leads us to the following solutions to Equations (25) and (26):

Θ0(t) = qY 0 exp

[
Dl

(
λ0

δ0

)2

t

]
, (29)
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Θn(t) = qY n exp

[
−Dl

(
λn
δ0

)2

t

]
, (30)

where n ≥ 1.

Having substituted (29) and (30) into (19), and remembering (23), we obtain:

u = qY 0 exp

[
Dl

(
λ0

δ0

)2

t

]
cosh

(
λ0

x

δ0

)
+

∞∑
n=1

qY n exp

[
−Dl

(
λn
δ0

)2

t

]
cos

(
λn

x

δ0

)
. (31)

Remembering the definition of u (see (14)), the final expression for Yl,i(t, x), satisfying boundary condi-

tions (11), (12) and the corresponding initial condition, can be presented as:

Yl,i(t, x) = qY 0 exp

[
Dl

(
λ0

δ0

)2

t

]
cosh

(
λ0

x

δ0

)
+

∞∑
n=1

qY n exp

[
−Dl

(
λn
δ0

)2

t

]
cos

(
λn

x

δ0

)
+ εi. (32)

Growth of Yl,i(t, x) with time is always restricted by the physical condition 0 ≤ Yl,i(t, x) ≤ 1 (cf. Equation

(5.18) of [15], describing species diffusion in multi-component droplets; the latter equation was verified

against results based on the rigorous numerical solution of the species diffusion equation [24]). Equation

(32) is valid only for short time steps when δ̇0e and all other input parameters are assumed constant.

3.2. Gas phase

Once the mass fractions of the liquid components at the surface of the film have been found, the partial

pressures of vapour components at the film surface can be inferred from Raoult’s law (the activity coefficient

is assumed equal to 1):

pvs,i = Xls,ip
∗
v,i, (33)

where Xls,i is the molar fraction of the ith species in the liquid near the film surface, p∗v,i is the partial

vapour pressure of the ith species in the case when Xl,i = 1.

The values of Xls,i and Yls,i are linked by the following equation:

Xls,i =

Yls,i

Mi∑
i

(
Yls,i

Mi

) , (34)

where Mi is the molar mass of species i. Equation (34) follows from the definition of the mass fraction:

Yls,i =
Xls,iMi∑
iXls,iMi

. (35)

The values of p∗v,i depend on gas temperatures in the immediate vicinity of the film surface and can be

obtained using the Antoine equation. The relations relevant to Diesel fuel components are summarised in

[25].

Once the values of pvs,i have been found, the values of vapour density at the surface of the film ρvs,i can

be estimated from the ideal gas law as:

ρvs,i =
pvs,iMi

RuTs
, (36)
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where Ru is the universal gas constant, Ts is the film surface temperature.

Formula (36) allows us to find εi using the definition of this parameter (see Expression (13)).

Assuming that the convection mass transfer coefficient, inferred from Equation (7), is the same for all

species and the contribution of fuel vapour in the ambient gas can be ignored, the evaporation flux of species

from the film surface can be estimated as (cf. Formula (8)):

ṁfi = hmρvs,i. (37)

Using Expression (37) and taking into account the effect of thermal swelling, the change of film thickness

during the time step ∆t can be estimated as:

∆δ0 = −∆t
|ṁfi|
ρ(T 0)

+

[
ρ(T 0)

ρ(T 1)
− 1

]
δ0, (38)

where ρ(T 0) is liquid density at the average temperature of the film calculated at the beginning of the time

step, ρ(T 1) is the same density but calculated at the end of the time step. Note that Expression (38) predicts

that the change in film thickness due to swelling is proportional to ρ(T 0)/ρ(T 1) (cf. the change in droplet

radius due to swelling which is proportional to
(
ρ(T 0)/ρ(T 1)

)1/3
). The film thickness at the end of the time

step is estimated as:

δ1 = δ0 + ∆δ0. (39)

All liquid transport and thermodynamic properties were calculated at liquid film average temperatures

and compositions. The contribution of vapour to air transport and thermodynamic properties was ignored.

These properties were calculated at the reference temperature (Tref = (2/3)Ts + (1/3)Ta, where Ts is the

temperature at the surface of the film, Ta is the temperature in the ambient gas). Partial pressures of vapour

components and specific heats of their evaporation were calculated at film surface temperatures.

4. Solution algorithm

These are the main steps of the numerical algorithm:

1. Assume the initial distribution of temperature and mass fractions of species across the liquid film,

or use the distributions obtained at the previous time step (in our case all initial distributions are assumed

homogeneous).

2. Calculate species partial pressures and molar fractions in the gas phase using Equation (33).

3. Calculate the values of species evaporation rates (εi) using Equation (13).

4. Calculate the values of liquid thermal conductivity and other properties for the mixture of species if

the liquid is multi-component.

5. Calculate the distribution of temperature inside the film based on Equation (4), using 40 terms in the

series.
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6. Calculate the distribution of species inside the film based on Equation (32), using 200 terms in the

series.

7. Calculate the change in film thickness using Equation (38); recalculate the film thickness at the end

of the time step using Equation (39).

8. In the case of dimensional x, recalculate the distributions of temperature and species for the new film

thickness (e.g. T (x) = T (x δ1/δ0) = T (x̃), where δ0,1 are film thicknesses at the beginning and the end of

the time step, x̃ is the new x used at the second time step). In the case of dimensionless x/δ0, used in our

analysis, no recalculation is required.

9. Return to Step 1 and repeat the calculations for the next time step.

5. Results

5.1. Validation of the model

The model was validated against the experimental data presented in [26] for the evaporation of a film

composed of mixtures of isooctane/3-methylpentane (3MP). The results of the comparison between the

model predictions and experimental data for three cases, pure isooctane, pure 3MP, and a 50%/50% mixture

of isooctane and 3MP, are shown in Fig. 1. The same input parameters as in [26] (Tg = Tw = 302.25 K,

T0(x) = 293.15 K, δ0 = 602.72 µm) and h = 14 W/(m2 K) were used in our calculations. The value of

h was used as a fitting parameter and was close to the one used in [2] where it was assumed that h = 10

W/(m2K).

Figure 1: Time evolution of the normalised film thickness. Circles, triangles and squares show the values found in [26]; solid

and dashed curves show the corresponding predictions of the model. Three cases were considered: pure isooctane, pure 3MP,

and a 50%/50% mixture of isooctane and 3MP.
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As can be seen from Fig. 1, the results predicted by the new model are reasonably close to the experi-

mental data for all three cases. This gives us confidence to apply the model to the analysis of other films

including those observed for conditions relevant to combustion systems.

The results of the comparison between the model predictions and experimental data for time evolution

of the average mass fraction of 3MP in the 50%/50% mixture of isooctane and 3MP are shown in Fig. 2. As

can be seen from this figure, the agreement between the model predictions and experimental data is good at

the initial stage of film heating and evaporation, but at a later stage (after approximately 40 s) the model

and experimental data predict different trends. The loss of linearity of the experimental plot shown in Fig.

2 was attributed by the authors of [26] to the violation of Raoult’s law (see Equation (33)). Since our model

was based on the assumption that this law is valid, it cannot be used for these times. We anticipate that

taking into account the contribution of the activity coefficients to the value of the partial pressures of the

vapour components would improve the agreement between the predictions of the model and experimental

data at these times.

Figure 2: Time evolution of the average mass fraction of 3MP in the case of evaporation of a 3MP and isooctane mixture film.

Solid curve shows the prediction of the model, while dots show experimental data.

In the next section our analysis is focused on the 50%/50% mixture of heptane (C7H16) and hexadecane

(C16H34) which is relevant for automotive applications.

5.2. Heating and evaporation of a 50%/50% heptane and hexadecane film

The following input parameters, relevant to Diesel injection conditions, were used in our calculations:

ambient gas temperature, Tg = 900 K, ambient gas pressure, pg = 60 bar, wall temperature, Tw = 500
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K, initial film temperature, T0 = 363 K, initial film thickness, δ0 = 20µm. It was assumed that h =

2000 W/(m2K).

The liquid and vapour densities and thermal conductivity were taken from [27]; heat capacity was taken

from [25]; saturation vapour pressure was taken from [28, 29]; latent heat of evaporation was taken from

[29]; the diffusion coefficient was taken from [27]; liquid diffusivity was taken from [25].

The plot of time evolution of the film thickness is shown in Fig. 3. As can be seen from this figure,

initially, the film thickness increases due to thermal swelling and then reduces rather rapidly, which can be

attributed to the heating of the surface of the film and evaporation of the most volatile component (C7H16).

Then the rate of decrease of this thickness reduces until the evaporation process is completed in just over

25 ms.

Figure 3: Time evolution of the thickness of the 50%/50% heptane and hexadecane film.

The timescale for the completion of the film evaporation shown in Fig. 3 is in agreement with our

experimental data presented in [4] for similar operating conditions. Our measurements were performed

using high-speed microscopy inside an optical Diesel engine, to observe the liquid films produced at the end

of injection around each nozzle orifice. From these observations we estimated that the microscopic liquid

films on the tip of the Diesel fuel injector were completely evaporated in approximately 20 ms. Hence the

modelled evaporation timescale appears to be consistent with the evaporation of thin fuel films under Diesel

engine-like operating conditions.

The plots of time evolution of mass fractions of C7H16 and C16H34 are shown in Fig. 4. As can be seen

from this figure, C7H16 totally evaporates in about 4 ms, which is consistent with the results shown in Fig.

3. After that we observe the evaporation of pure C16H34.
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Figure 4: Time evolution of average mass fractions of C7H16 and C16H34.

The plots of time evolution of the surface and average temperatures of the film are shown in Fig. 5. As

can be seen from this figure, initially both surface and average temperatures rapidly increase with time due

to film heating by both hot ambient gas and the hot wall. Once the average temperature of the film exceeds

500 K, the wall turns into a heat sink, and the increase in both surface and average temperatures slows

down. Eventually, they reach their maximal values and begin to decrease until both temperatures reach the

wall temperature (500 K) just before the film completely evaporates.

Figure 5: Time evolution of surface and average film temperatures.

6. Conclusions

A new model for heating and evaporation of a multi-component one-dimensional thin liquid film is

suggested. This model is based on the analytical solutions to the heat transfer and species diffusion equations
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inside the film. For the heat transfer equation, the Dirichlet boundary condition was used at the wall, and

the Robin boundary condition was used at the film surface. For the species diffusion equations, the Neumann

boundary conditions were used at the wall, and Robin boundary condition, supplemented by Raoult’s law,

was used at the film surface. The convective heat transfer coefficient is assumed to be constant and the

convective mass transfer coefficient is inferred from the Chilton-Colburn analogy. The effect of thermal

swelling is taken into account.

The model is validated using previously published experimental data referring to heating and evaporation

of a film composed of mixtures of isooctane/3-methylpentane (3MP). It is shown that the predicted time

evolutions of thicknesses of pure isooctane, pure 3MP, and a 50%/50% isooctane and 3MP films are close to

those observed experimentally. The initially observed decrease in the mass fraction of 3MP in the 50%/50%

mixture of isooctane and 3MP film is shown to be close to the one predicted by the model.

Also the model is applied to the analysis of heating and evaporation of a film composed of 50%/50%

mixture of n-heptane and n-hexadecane at operating conditions relevant to Diesel engines. It is shown that

initially the film thickness decreases rather rapidly until all n-heptane has evaporated. Following this, the

rate at which the film thickness decreases slows down. The film average and surface temperatures are shown

to increase rapidly at the initial stage of film heating and evaporation until these temperatures reach the

maximal values. Then both temperatures slowly decrease until they reach the wall temperature just before

the film completely evaporates. The predicted evaporation timescale was found to be consistent with our

previous measurements of thin fuel films under Diesel engine-like operating conditions.
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Appendix 1

The Sturm-Liouville problem for p < 0

Assuming that p = −λ2 < 0 we can write the general solution to Equation (20) as:

v(x) = A cosh

(
λ
x

δ0

)
+B sinh

(
λ
x

δ0

)
, (40)

where A and B are arbitrary constants.

The boundary condition at x = 0 (see (21)) implies that B = 0. The boundary condition at x = δ0 (see

(22)) leads to the following equation:

A

δ0

λ sinhλ−

∣∣∣δ̇0∣∣∣ δ0
Dl

coshλ

 = 0. (41)

A in this equation is not equal to zero as we do not consider the trivial solution v = 0. Hence, Equation

(41) can be re-written as:

cothλ =
λDl∣∣∣δ̇0∣∣∣ δ0 . (42)
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It is easy to show that Equation (42) has two solutions ±λ0 for all Dl

|δ̇0|δ0 . These solutions lead to Solutions

(40) (eigen functions) which differ only by the sign of A. Since the value of the coefficient A is determined

by the normalisation condition only (see below), the solution λ = −λ0 can be disregarded. Hence, we can

conclude that the solution to Equation (42) gives only one eigenvalue λ = λ0 > 0 and the corresponding

eigen function

v0(x) = cosh

(
λ0

x

δ0

)
, (43)

where the normalisation leading to A = 1 has been chosen.

This result is different from the one described in Appendix H of [15] for spherical droplets.

The direct calculation of the integrals leads to the following expression for the norm of v0:

||v0||2 =

∫ δd

0

v2
0(x)dx =

δ0
2

[
1 +

sinh(2λ0)

2λ0

]
. (44)

The Sturm-Liouville problem for p > 0

Assuming that p = λ2 > 0 we write the general solution to Equation (20) as:

v(x) = A cos

(
λ
x

δ0

)
+B sin

(
λ
x

δo

)
, (45)

where A and B are arbitrary constants.

The boundary condition at x = 0 (see (21)) implies that B = 0. The boundary condition at x = δ0 leads

to the following equation:

A

δ0

−λ sinλ−
δ0

∣∣∣δ̇0∣∣∣
Dl

cosλ

 = 0. (46)

A in this equation is not equal to zero as we do not consider the trivial solution v = 0. Hence, Equation

(46) can be re-written as:

cotλ = − λDl

δ0

∣∣∣δ̇0∣∣∣ . (47)

As in the case p < 0 we disregard the solutions to this equation corresponding to negative λ. A countable

set of positive solutions to this equation (positive eigenvalues) λn are arranged in ascending order:

0 < λ1 < λ2 < .... < λn

The corresponding eigen functions are presented as:

vn(x) = cos

(
λn

x

δ0

)
, (48)

where the normalisation leading to A = 1 is chosen as in the case p < 0.

The direct calculation of the integrals, taking into account Condition (47), leads to the following expres-

sion for the norm of vn for n ≥ 1:

||vn||2 =

∫ δ0

0

v2
n(x)dx =

δ0
2

[
1 +

sin(2λn)

2λn

]
. (49)
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The orthogonality of functions vn is proven in Appendix 2. We do not provide the proof of completeness

of this set of functions. This completeness implicitly follows from the agreement of the results inferred from

Expansion (19) with those inferred from direct numerical solution of the species diffusion equation.

Note that following [15] we refer to λn, rather than p, as eigenvalues of the Sturm-Liouville problem.

Appendix 2

Proof of Orthogonality of vn(x) for n ≥ 0

Let us first consider n ≥ 1 and calculate the integrals:

Inm ≡
∫ δ0

0

vn(x)vm(x)dx =

∫ δ0

0

cos

(
λn

x

δ0

)
cos

(
λm

x

δ0

)
dx = δ0

∫ 1

0

cos (λny) cos (λmy) dy.

The integral on the right hand side of this formula is calculated using a simplified version of Formula 2.533(5)

of [30] which leads us to:

Inm =
δ0
2

[
sin(λn + λm)

λn + λm
+

sin(λn − λm)

λn − λm

]
. (50)

For λn = λm, Expression (50) reduces to (49). In the case when λn 6= λm it can be rearranged as:

Inm =
δ0

λ2
n − λ2

m

[λn sinλn cosλm − λm sinλm cosλn] .

Remembering (47), this expression can be further rearranged as:

Inm =
δ̇0δ

2
0

Dl (λ2
n − λ2

m)
[cosλn cosλm − cosλm cosλn] = 0.

This completes the proof of orthogonality of vn(x) for n ≥ 1.

To prove the orthogonality of v0(x) and vn(x) for n ≥ 1 we calculate the following integral:

I0n =

∫ δ0

0

cosh

(
λ0

x

δ0

)
cos

(
λn

x

δ0

)
dx, (51)

where n ≥ 1.

Using integration by parts twice when calculating the integral on the right hand side of Equation (51)

we rearrange this equation as:

I0n =
δ0
λn

[
coshλ0 sinλn −

λ0

λn
sinhλ0 cosλn −

λ2
0

λnδ0
I0n

]
, (52)

where I0n on the right hand side of this equation is the same as in (51).

Equation (52) can be rearranged as:

I0n =

δd
λn

[
coshλ0 sinλn + λ0

λn
sinhλ0 cosλn

]
1 +

(
λ0

λn

)2 . (53)
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Remembering Equations (42) and (47), we can see that I0n defined by Equation (53) is equal to zero. This

implies that functions vn are orthogonal for n ≥ 0 and we can write:∫ δ0

0

vn(x)vm(x)dx = δnm||vn||2, (54)

where n ≥ 0 and m ≥ 0, ||vn||2 is defined by Expression (44) when n = 0 and Expression (49) when n ≥ 1.
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