
1 

Secure Tropos Framework for Software 

Product Lines Requirements Engineering  

Daniel Mellado
1
, Haralambos Mouratidis

2
 and Eduardo Fernández-Medina

3 

1 
Spanish Tax Agency, Large Taxpayers Department, IT Auditing Unit. 

Paseo de la Castellana 106, 28046 Madrid (Spain).  

damefe@esdebian.org 

2 
School of Architecture, Computing and Engineering, University of East London. 

4-6 University Way, Docklands; E16 2RD, London (U.K.). 

haris@uel.ac.uk 

3
GSyA Research Group, University of Castilla-La Mancha, Information Systems 

and Technologies Department. 
Paseo de la Universidad 4, 13071 Ciudad Real (Spain). 

Eduardo.FdezMedina@uclm.es 

Abstract 

Security and requirements engineering are two of the most important factors of success in the 

development of a software product line (SPL) due to the complexity and extensive nature of them, 

given that a weakness in security can cause problems throughout the products of a product line. 

Goal-driven security requirements engineering approaches, such as Secure Tropos, have been 

proposed in the literature as a suitable paradigm for elicitation of security requirements and their 

analysis on both a social and a technical dimension. Nevertheless, on one hand, goal-driven 

security requirements engineering methodologies are not appropriately tailored to the specific 

demands of SPL, while on the other hand specific proposals of SPL engineering have traditionally 

ignored security requirements. This paper presents work that fills this gap by proposing 

“SecureTropos-SPL” framework, an extension to Secure Tropos to support SPL security 

requirements engineering which is based on security goals and driven by security risks. 

Keywords: Security requirements, product lines, requirements engineering, security requirement 

engineering, Secure Tropos. 

1. Introduction 

Information systems undoubtedly play an important role in today’s society and 

more and more are at the heart of critical infrastructures. It is widely accepted in 

the security research literature [14], that security is of particular importance to 

such information systems and that is essential for security to be considered from 

the early stages of software development for an effective management of security 

issues. Although security is traditionally considered a technical issue; security is, 

in fact, a two-dimensional problem, which involves technical as well as social 

challenges [18]. 

At the same time, in recent years, many public and private organizations are 

making the strategic decision to adopt a software product line (SPL) approach to 

the production of software-intensive systems [13]. Since SPL strategy has proven 

successful at reducing both time-to-market and development costs [4, 6] and 

obtaining both high-quality information systems and higher productivity [13]. The 

SPL development paradigm is based on increasing the reuse of all types of 

artefacts, thanks to the combination of coarse-grained components with a top-



2 

down systematic approach in which software components are integrated into a 

high-level structure. 

Proper analysis and understanding of security requirements are important 

because they help us to discover any security or requirement defects or mistakes 

in the early stages of development, in fact the long-standing credo of requirements 

engineering reads: ‘‘If you don’t know what you want, it’s hard to do it right’’ [7]. 

In SPL development it is even more important given that a weakness in security 

owing to a mistake in a security requirement can cause problems throughout the 

products of a product line. Therefore, the elicitation of security requirements for 

SPL is a challenging task, mainly due to the varying security properties required 

in different products, for the diversity of market segments, and the constraint of 

simultaneously maintaining the cost-effective principle of the SPL paradigm. 

Nevertheless, there is lack of approaches in the security requirements literature 

[14], which would support the elicitation and analysis of both social and technical 

security requirements from the early stages of the SPL development process. On 

one hand current SPL approaches which include partial support for security 

requirements engineering do not manage both dimensions of security (social and 

technical dimension); on the other hand, proposals that manage both the technical 

and the social dimensions of security (such as Secure Tropos) are not tailored 

enough to support the SPL development paradigm. 

In this paper, we propose SecureTropos-SPL, an extension of some stages of 

Secure Tropos [17] methodology to fill this gap. Our work initially aligns SPL 

concepts to Secure Tropos concepts, and secondly it redefines the Secure Tropos 

process, so that we proposed a risk-driven goal-based process to manage security 

requirements variability at both Early Requirements and Late Requirements stages 

of Secure Tropos in SPL development. Finally, it is proposed the extension of 

Secure Tropos metamodel and language to support security risks and SPL 

concepts such as ‘variability’ and its modeling, that is SPL modeling with Secure 

Tropos, in order to manage at the same time both the technical and the social 

dimensions of SPL security and also taking into account the security risks. 

This paper is structured as follows. Section 2 describes the background 

information about Secure Tropos and SPL needed for a better understanding of 

the proposal. In Section 3 it is sum up the related work. Section 4 outlines the core 

elements of SecureTropos-SPL, our proposed extensions to Secure Tropos, while 

Section 5 illustrates with the aid of an example the applicability of these 

extensions to Secure Tropos. Finally, Section 6 discusses contributions and future 

work.  

2. Secure Tropos and Software Product Lines 

Requirements Engineering Basics 

2.1. Overview of Secure Tropos 

Secure Tropos [17] is a security-oriented extension of the widely known 

requirements engineering methodology Tropos [5]. It introduces a number of 

security-related concepts to the Tropos methodology. Tropos (and as a result 

Secure Tropos) methodology is mainly based on four stages:  



3 

• Early requirements analysis aimed at defining and understanding a 

problem by studying its existing organizational setting.  

• Late requirements analysis conceived to define the system-to-be in the 

context of its operational environment. 

• Architectural design, that deals with the definition of the system global 

architecture in terms of subsystems; and the 

• Detailed design phase, aimed at specifying each architectural 

component in further detail, in terms of inputs, outputs, control and 

other relevant information. 

The main unique points of the methodology compared to other security 

oriented software engineering approaches are that  

• social issues of security are analyzed during the early requirements 

stage; 

• security is considered simultaneously with the other requirements of the 

system-to-be; and 

• the methodology supports not only requirements stages but also design 

stages. 

In this paper we will extend Secure Tropos in order to to manage security 

requirements variability at both Early Requirements and Late Requirements stages 

of Secure Tropos in SPL development 

2.2. Software Product Lines Requirements Engineerin g Basics 

A software product line (SPL) is a set of software-intensive systems sharing a 

common, managed set of features [10] which satisfy the specific needs of a 

particular market segment or mission and which is developed from a common set 

of core assets in a prescribed way [6]. Exploiting commonalities between different 

systems is at the heart of Software Product Line Engineering. These 

commonalities and differences are described by using the core concept in 

Software Product Line Engineering: variability. Variability describes the 

variations in both functional and non-functional features in the product line. 

Features are either a commonality or a variation. Variability management is the 

activity in product line development that aims to model a product line as a whole 

and to customize or change specific product line members. Its importance 

signifies that it can actually be seen as the key feature that distinguishes product 

line development from other approaches to software development [23]. In 

common language use the term variability refers to the ability or the tendency to 

change, but in this case this change does not occur by chance but is brought about 

deliberately. For example: an electric bulb can be lit or unlit, or a software 

application can support different languages. Variability in SPL is therefore 

variability that is modelled to enable the development of customised applications 

by reusing predefined, adjustable artefacts. The variability of a SPL thus 

distinguishes different applications of the product line. In contrast to variability, 

the commonality in SPL denotes features that are part of each application in 

exactly the same form. This means that it is often possible to decide whether a 

feature is a variable of the SPL or whether it is common to all software product 

applications, and thus adds to the commonality. 



4 

The software product line engineering paradigm differentiates two processes: 

domain engineering and application engineering [21]. Domain engineering is the 

process of SPL engineering in which commonality and variability of the product 

line are defined and carried out. According to [21] the domain requirements 

engineering sub-process encompasses all activities for eliciting and documenting 

the common and variable requirements of the product line. Application 

engineering is the process of SPL engineering in which the applications of the 

product line are built by reusing domain artefacts and exploiting product line 

variability. Product line requirements define the products and their common and 

variable features in the product line. Requirements that are common to the entire 

family, which constitute the product line requirements and an important core 

asset, should be managed separately from requirements that are particular to a 

subset of the products (or to a single product), which must also be managed. The 

SPL scope binds the products included in the product line: product line 

requirements refine the scope by more precisely defining the characteristics of the 

products in the product line. Both concepts are closely coupled and evolve 

together [6]. 

3. Related Work 

Several attempts have also recently been made to define SPL architectures for 

security, such as the approach of Faegri et al. [8] and the approach of Arciniegas 

et al. [1], although their work is focused on tackling security management in SPL 

engineering, their approach is applicable to the latest stages of the development 

process rather than security requirements, because are more orientated towards the 

software solution than to security requirements elicitation and definition or 

include only a few security requirements tasks, but without managing all the 

security requirements artefacts (assets, threats, etc.). The Security Requirements 

Engineering Process for Software Product Lines (SREPPLine) [15] has been 

recently proposed to support security requirements analysis for SPL. However, 

SREPPLine fails to consider both the social and technical dimensions of security 

and it also does not support the parallel modelling of security requirements and 

the rest of the security elements and their variability with a homogeneous 

modelling language, as our approach does. 

The most relevant “generic” security requirements related proposals were 

systematically reviewed in [14] (Secure Tropos included). Thanks to this review 

that we have already done, it can be observed that these proposals are neither 

sufficiently specific nor are they tailored to the SPL development paradigm, 

principally because they do not deal with security requirements variability, which 

is an essential aspect. Moreover, they do not provide a methodological tailored 

approach for SPL engineering, that is, they do not have specific activities nor 

language to manage the security variability needed by the SPL development 

paradigm. Therefore, they are not appropriate enough to manage security 

requirements in SPL, as it was also explained in [15]. 

Having said this, each of these approaches makes highly important 

contributions to security requirements engineering in SPL. In addition, some of 

their features are used as the basis of our proposal. 

 



5 

4. SecureTropos-SPL: Secure Tropos Framework for 

Software Product Lines 

In this section, we present the major principles of our proposal. Firstly, we 

outline the core of our approach. Next we align SPL concepts to Secure Tropos 

concepts, and then it is redefined the Secure Tropos process at both Early 

Requirements and Late Requirements phases of Secure Tropos. Finally, it is 

proposed an extension of Secure Tropos language in order to deal with the 

variability needed for SPL engineering and to manage security risks elements. 

4.1. Overview of our approach 

Our approach ‘Secure Tropos – SPL’, as shown in Fig. 1, is based on Secure 

Tropos and therefore on Tropos methodology. We propose an extension to Secure 

Tropos to support SPL security requirements engineering based on security goals 

and driven by security risks. 

The aim of our approach is to minimize both knowledge of the necessary 

security and risks concepts and security expert participation during SPL product 

development, so that this approach provides support for the elicitation and 

analysis of both social and technical security requirements following security risks 

criterion from the early stages of the SPL development process. 

Consequently, we aligned concepts of Goal Driven SPL Engineering with 

Secure Tropos concepts. Furthermore, we have redefined Secure Tropos process 

by means of introducing new tasks which deal with the variability of the security 

requirements, as well as we have specified these new tasks and activities of the 

process using the OMG standard SPEM 2.0 [20]. As shown in Fig. 1, we have 

integrated the Domain and Application Requirements Engineering activities in 

both the Early and Late Requirements stages, as well as we suggested a new task 

‘Variability Analysis’ which is carried out during Domain Requirements 

Engineering Activity in order to manage the variability of SPL, so that the 

common and variable security goals are identified and modelled. We have also 

proposed two new tasks: ‘Variability Instantiation’ and ‘Sec-deltas Analysis’, 

which are performed in Application Requirements Engineering Activity and in 

these tasks the set of domain security goals are instantiated as well as it is 

analyzed and modelled the security specific requirements of the application. 

Moreover, we introduced security risk related tasks based on security 

requirements management approaches (such as Magerit [12], methodology 

officially recognised by NATO at the 9th NATO cyberdefense workshop in 2008 

and by OECD [19]) with the aim of introducing risk criterion in the security 

requirements elicitation, so that our approach not only consider both the social 

and technical dimensions of security it also does take into account the security 

risk in SPL engineering. Moreover, our final aim is also to align the work with 

relevant “industrial” standards or guidelines (as for example Magerit, …) and 

methods to drive the use of the work in industry. 

In Fig. 1 we have outlined the main components of our proposed framework as 

a high level abstraction diagram of components. In the left side of the figure, it is 

depicted how our framework fits in the SPL development paradigm and in the 

requirements engineering methodology Tropos [5]. In the top of the figure, we 

have sum up the key languages, tools or techniques that our framework is based 



6 

on, such as SPEM 2.0 to specify the process, SecTroModellingTool to model 

according Secure Tropos specification, and security risk assessment approaches 

(as Magerit, CRAMM or Octave, etc.). In the bottom of the figure, it is shown the 

extension of Secure Tropos metamodel and language as it is explained next as a 

subsection, so that we have added new entities and relationships to support 

variability and risk elements in two sub-parts of the Secure Tropos modetamodel 

related to the Security Enhanced Actor Model (SEAM) and Security Enhanced 

Goal Model (SEGM). Finally, in the centre of the figure, we represent the core 

activities of the process proposed in our framework. 



7 

 
 

4.2. Aligning Secure Tropos with SPL concepts 

One of the first challenges we faced, was the alignment between Secure Tropos 

concepts and SPL concepts. Firstly, we had to introduce the concept of variability 

Fig. 1 Secure Tropos - SPL overview 



8 

in Secure Tropos, due to the fact that variability management is at the heart of the 

SPL paradigm.  

Secure Tropos is a goal driven security requirements engineering methodology, 

in which a goal represents actors’ strategic interests and a secure goal represents 

the strategic interests of an actor with respect to security. Secure goals are mainly 

introduced to achieve possible security constraints that are imposed to an actor or 

exist in the system. An actor is defined as an entity that has strategic goal. In 

Secure Tropos security constraints define the system’s security requirements; they 

are security conditions imposed to an actor that restricts achievement of an actor’s 

goals, execution of plans or availability of resources. In addition, Secure Tropos 

defines secure dependencies. A secure dependency introduces security 

constraint(s) that must be fulfilled for the dependency to be satisfied. 

In SPL engineering (but above all in goal driven SPL engineering), since a goal 

could provide the rationale for variations in domain requirements [11], we used it 

as a discriminator that enables us to identify common and variant goals and hence 

secure goals in Secure Tropos. Thus, the common (default option), optional and/or 

alternative goals in SPL can be modeled in Secure Tropos by means of a 

Variability Dependency relationship (a new relationship of Secure Tropos 

explained in next subsection 4.3 and shown in [16]). 

Moreover, in Secure Tropos, the precise definition of how a secure goal can be 

achieved is given by a secure plan, which is defined as a particular way for 

satisfying a secure goal. Usually, a secure plan or goal needs a secure resource, 

which is an informational entity that is needed for the achievement of a secure 

goal or the fulfilment of a secure plan. Therefore, these entities of Secure Tropos 

(security constraint, secure plan, secure resource) could be part of variants of a 

SPL because they are related to goals and secure goals which are variations of a 

SPL, so that they are modeled by means of a variability dependency relationship 

between them and an actor, by means of the ‘Variation’ entity (a new entity of 

Secure Tropos explained in next subsection 4.3 and shown in[16]). 

We have also had to partially adapt the concept of actor of Secure Tropos, so 

that a SPL is a special type of a general actor and so as to during Application 

Engineering in SPL the different products/applications instantiated from the SPL 

are modeled as actors that reuse from the SPL-actor the domain common 

requirements, but also each application of the SPL will model their security 

specific requirements (security requirements are security related restrictions to the 

functionalities of the system) or each application will model the sec-deltas [15]. 

Sec-deltas occur when stakeholder security requirements cannot be completely 

satisfied by security domain requirements artefacts. 

A second challenge was to integrate the two main activities related to 

requirements engineering in SPL engineering with Secure Tropos process (which 

is more detailed in next subsection 4.4). According to the definitions of these 

activities (previously explained in Section 2), and taking into account the 

development stages of Secure Tropos, we have integrated the Domain and 

Application Requirements Engineering activities in both the Early and Late 

requirements stages, although in Application Requirements Engineering activity 

during the Early Requirements stage it will only be done the inheritance of the 

common requirements of the SPL. That is, for the development of a SPL during 

the Domain Requirements Engineering activity we will carry out Early and Late 

requirements stages analyses, initially by defining and understanding the SPL 



9 

settings and then by defining the SPL-to-be in the context of its operational 

environment (modeling common, alternative and optional entities). While for the 

instantiation of the products/applications of the SPL during the Application 

Requirements Engineering activity we will inherit the early requirements from the 

SPL. Thus, during Application Engineering it will only be needed to carry out the 

Late Requirements Engineering stage of Secure Tropos, because is in this stage 

when each instantiated product/application from the SPL is defined, in the context 

of its operational environment, and when sec-deltas will be modeled.  

Therefore, through the above discussed alignments and adaptations of concepts 

as well as the extensions of part of the Secure Tropos metamodel related to. 

Security Enhanced Actor Diagram (SEAD) and Security Enhanced Goal Diagram 

(SEGD) (explained in more detail in following subsection 4.3), we are able to 

capture and model security, with Secure Tropos, the security requirements of a 

SPL along with the variability of their related entities. 

4.3. Secure Tropos Metamodel and Language Extension  

Most existing variability management approaches in SPL, such as, for 

example: [2, 22, 24] are focused on addressing functional requirements variability 

and they do not manage the technical and the social dimensions of security of 

SPL. Hence, in this work with the aim of filling this gap, we are interested in two 

sub-parts of the Secure Tropos metamodel related to the Security Enhanced Actor 

Model (SEAM) and Security Enhanced Goal Model (SEGM), so that we have 

extended these parts of the metamodel in order to provide support to the 

variability management (which is the core of SPL engineering) in Secure Tropos 

metamodel as well as to the security risk assessment from the early stages of SPL 

development. 

The SEAM defines a set of actors along with their secure dependencies and 

any security constraints that might be imposed to these actors. The SEGM assists 

to analyse the security issues of a particular Actor by understanding the 

implications that Security Constraints, identified in SEAM, have in that particular 

actor. 

The extension to SEAM is shown in Fig.  2. We have added the ‘Variability 

Dependency’ relationship, which inherits from ‘Dependency’ and from which 

‘Secure Dependency’ inherits, so that variability of Dependum entities could be 

modelled. Furthermore, through the attribute ‘Depender’ or ‘Dependee’, 

developers can specify the “owner” of the variant. Secure Dependency 

relationships are ‘Common’ variants by default. Hence, through this new 

‘Variability Dependency’ relationship it is possible to state variability 

dependencies between all the entities supported by Tropos (i.e. goals, plans, 

actors, resources, and security constraints) and specify if they are ‘common’ 

(default), ‘optional’ or ‘alternative’ variability relationships. Nevertheless, the 

variability of the entities will start from the identification and specification of the 

goals variability, as it is the core of the variability because our framework is a 

goal-driven one. 

Furthermore, we have inserted the ‘Asset value’ as an attribute of the ‘Security 

Constraint’, ‘Plan’, ‘Goal’ and ‘Resource’ elements in order to record the value 



10 

of the business and system / SPL assets
1
 following a standardized scale from 0 to 

10 in accordance with the Magerit [12] risk assessment methodology and agreed 

with the stakeholders. Through this new attribute ‘Asset value’ in the ‘Secure’ 

elements it is possible that each asset has a ‘value’ according to his related goal 

and/or secure goal. We based our asset analysis on the definition of an asset as 

anything that has value to the organization [9], that is, these assets are the 

resources in the information systems of the SPL, or these which are related to 

them which are necessary for the organization to operate correctly and to achieve 

its goals (both tangible or intangible). Thus, as we had identified that in Secure 

Tropos the entities: plan, resource, goal and actor; are used to model both 

business and systems/SPL assets. There could also be different standardized 

categories of assets (such as the environment, information systems, services, 

components and information or data) to make easier and more systematic the 

assets valuation. Dependencies between assets could also exist, so that valuations 

are propagated through the dependency tree of assets and therefore only the higher 

assets in the dependency tree have to be explicitly valued, the other assets would 

have the ‘accumulated value’ (which is defined as the highest value among it and 

any ones above). For example, assume that the actor “company ECMA” has a 

goal “provide payment by credit card service” which is an asset, and constrained 

by the Security Constraint “Keep data confidentiality”, so that it is also related to 

the softgoal “confidentiality”, and the Security Constraint is assigned an ‘asset 

value’ of 7. This asset depends on the secure resource “web-server-SSL” (which 

is also an asset), due to the relations of the meta-model that implies the “web-

server-SSL” ‘asset value’ will be at least 7 (the accumulated value) according to 

the risk assessment methodology we followed (Magerit [12]).  

 

 

Fig.  2 Extension to SEAM (‘SEAM-SPL’) 

                                                 

1
 Asset: Anything that has value to the organization (ISO/IEC 13335)  



11 

In order to manage the variability of the SPL and the instantiated applications 

from the SPL at the level of a particular Actor, we extended the SEGM of Secure 

Tropos. The extension shown in Fig.  3 consists of adding an entity named 

‘Variation’ which could have as value: ‘common’, ‘optional’ or ‘alternative’, and 

which is related to the entities Goal, Security Constraint, Plan and Resource by 

means of a relationship ‘is part of’ and which an Actor could have several 

Variation. It represents the variation object and defines a concrete type of 

variation (‘‘how does it vary?”). 

The starting points of the variability modeling according to our proposed 

process in next section are the goals and next secure goals, because if the 

variability and traceability links are carefully established, they allow us to decide 

what security goals are needed to maintain the security aligned with the goals of 

the SPL or product/application and what the optimal set of security constrains of a 

determined priority according to the security risks is in the context of the different 

scenarios of the SPL that provides the rationale for the selection. This therefore 

supposes a rise in the abstraction level of the variations or variants selection 

process, and the selection is made in the requirements level rather than in the 

design level. 

Finally, with the aim of providing a security risk criterion during the security 

requirements engineering in SPL engineering at the level of a particular Actor, we 

have also added a new entity: ‘Threat’, which has as attributes (according to the 

Magerit [12]): ‘Degradation’, ‘Likelihood’, ‘Impact’ and ‘Risk’. We use the 

definition of threat as a potential cause of an unwanted incident, which may result 

in harm to a system or organization [9]. Hence, the assets are exposed to threats 

which may prevent the security goals from being achieved. In a SPL, not all 

threats affect all assets nor all their security goals, so those which are common 

and optional have to be identified. To calculate the ‘impact’ of each threat on the 

assets, the asset values of each security constraint along with the ‘degradation’ 

caused by the threat on the assets (which must be estimated by the security risk 

expert within a range from 0 to 100%) are taken into account (Impact = 

round(accumulated value x degradation)). The impact and the ‘likelihood’ of 

occurrence or rate of occurrence of the threat (which must be also estimated by 

the security risk expert) are taken into account in order to calculate the ‘risk’ 

according to a defined formula in Magerit (ℜ(Vi, Fj) = Vi+j-n)) [‘R’ is risk, ‘V’ is asset 

value, ‘F’ is likelihood]. The risk
2
 is then classified in a range of 0 to 5 (according 

to the Magerit [12] scale). So that any estimation of impact and risk are 

“potential” if no ‘secure plans’ are deployed. 

 

                                                 

2
 Risk is an estimate of the degree of exposure to threat to one or more assets causing damage or prejudice to the organization 



12 

 
Fig.  3 Extension to SEGM (‘SEGM-SPL’) 

 

4.4. Secure Tropos Process Extension 

‘Secure Tropos – SPL’ process is an iterative and incremental process, which is 

an add-in of activities and tasks that can be incorporated into and tailored to an 

organization’s SPL development process model to provide it with a security 

requirements engineering approach. It can therefore be termed as a scalable 

process since not all the tasks and steps are required, and developers could create 

their own lightweight process by selecting a subset of the steps in each task. We 

have defined the key tasks that must be part of each SPL activity, signifying that 

the order in which the steps are performed depends on the particular process that 

is established in an organization. The activities and their tasks can thus be 

combined with existing development methods. 

We have specified these new tasks and activities of the process using the OMG 

standard SPEM 2.0 [20]. SPEM is a process meta-model which is used to describe 

a concrete software development process or a family of related software 

development process. The SPEM specification is structured as a UML profile, and 

provides a complete MOF-based meta-model. This meta-process modelling is a 

type of metamodelling used in software engineering to support the effort of 

creating flexible process models. The purpose of using process models, and in this 

case SPEM, is to document and communicate the ‘Secure Tropos – SPL’ process, 

to enhance its reuse and to facilitate its integration into other processes and 

frameworks. Thus, by using SPEM in the ‘Secure Tropos – SPL’ specification we 

promote the increment of process engineers’ productivity and the quality of the 



13 

global models they produce as a result of the integration of ‘Secure Tropos – SPL’ 

into the process map of their organization or company. 

In accordance with SPEM, SREPPLine is described by using the structure 

shown in Fig. 4. Each activity specifies: WorkProduct as both input and output 

respectively; the roles that perform or participate in this RoleUse activity; the 

collection of Steps defined for a Task Use that represents all the work that should 

be carried out to achieve the overall development goal of the Activity; and the 

Guidance that specifies the practices, techniques or standards to consider when 

performing the Task Use. 

 

 
Fig. 4 'Secure Tropos - SPL' structure using SPEM 2.0 

 

As shown in Fig. 1 and in Fig. 5, ‘Secure Tropos – SPL’ is composed of two 

activities: the Secure Tropos Domain Requirements Engineering (STDReq) 

activity (A1) and the Secure Tropos Application Requirements Engineering 

(STAReq) activity (A2). 

 



14 

STDReq
(Secure Tropos Domain Requirements Engineering)

STAReq
(Secure Tropos Application Requirements Engineering)

Security 

Analysis of 

SPL 

Environment

Security Analysis of 

System/Application 

Environment

Security 

Analysis of 

SPL 

(Early Requirements 

Analysis)

(Early Requirements 

Analysis)

(Late Requirements 

Analysis)

Security Analysis of 

System/Application 

(Late Requirements 

Analysis)

Security Risks

Scoping

SPL Security 

Constrains 

Analysis

SPL Stakeholders 

Scoping

SPL Secure 

Entities Analysis

SPL Security Risk 

Analysis

SPL Variants 

Analysis

SPL Variants

Security 

Constrains 

Analysis

SPL Variants

Secure Entities 

Analysis

Sec-Deltas Analysis

Variability 

Exploitation and 

Instantiation

System/Application 

Security Constrains 

Analysis

System/Application 

Secure Entities 

Analysis

System/Application 

Security Risk Analysis

Actor 

Diagram

Goal 

Diagram

Security-Enhanced 

Actor Diagram

Security-Enhanced 

Goal Diagram

Security-Enhanced 

Actor Diagram

Security-Enhanced 

Actor Diagram

Security-Enhanced 

Goal Diagram

Security-Enhanced 

Actor Diagram

Security-Enhanced 

Goal Diagram

Security-Enhanced 

Goal Diagram

Security-Enhanced 

Goal Diagram

Security-Enhanced 

Goal Diagram

Security-Enhanced 

Actor Diagram

Security-Enhanced 

Actor Diagram

Security-Enhanced 

Goal Diagram

Security-Enhanced 

Goal Diagram

Security-Enhanced 

Goal Diagram

 

Fig. 5 ‘Secure Tropos – SPL’ process overview 

 

4.4.1. Secure Tropos Domain Requirements Engineerin g – 

(STDReq) 

The main aim of this activity is the development of common and variable 

security requirements and related security artefacts of the SPL. The details of this 

activity are shown in Table 1. 

 



15 

Table 1  STDReq activity specified with SPEM (OMG) 

TaskUse: A1.1 - Security Analysis of Software Product Line 

Environment

ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}

RoleUse: Business domain experts {kind: in}

RoleUse: Security requirements engineer {kind: in}

RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Stakeholder needs

WorkProductUse: Existing products of the domain

WorkProductUse: Business goals

WorkProductUse: Goal model (Tropos)

WorkProductUse: Organisation security policy

WorkProductUse: Law and regulations

WorkProductUse: Requests for additional / altered security 

constrains

WorkDefinitionParameter {kind: out}

WorkProductUse: List of common goals of the SPL {state: initial}

WorkProductUse: Security Enhanced Actor Diagram of the SPL –

‘SEAM-SPL’ {state: initial}

WorkProductUse: Security Enhanced Goal Diagram of the SPL –

‘SEGM-SPL’ {state: initial}

WorkProductUse: Table with the Security Risks of the SPL {state: 

initial}

Steps 

Step: A1.1.1 SPL stakeholders scoping

Step: A1.1.1.1 Identify common actors of the SPL

Step: A1.1.1.2 Analyze the requests for additional / 

altered common goals

Step: A1.1.2 SPL security constrains analysis

Step: A1.1.2.1 Identify common goals

Step: A1.1.2.2 Identify security constrains

Step: A1.1.2.3 Security constraint modelling

Step: A1.1.3 SPL secure entities analysis

Step: A1.1.3.1 Identify security considerations imposed by 

the environment of the SPL

Step: A1.1.3.2 SPL secure entities and secure capability 

modelling

Step: A1.1.4 Security risk scoping

Step: A1.1.4.1 Common assets valuation

Step: A1.1.4.2 Common threats identification and 

calculation of degradation, likelihood and 

impact of each threat

Step: A1.1.4.3 Common risks assessment

Step: A1.1.4.4 Perform a security balance analysis of

the SPL

Step: A1.1.5 Inspect ‘SEAM-SPL’ and ‘SEGM-SPL’ models

Guidance

Guidance {kind: Practice}: Questionnaire

Guidance {kind: Practice}: Interviews

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Application goals matrix

Guidance {kind: Practice}: Security constraint modelling (Secure 

Tropos)

Guidance {kind: Practice}: Secure entities modelling (Secure 

Tropos)

Guidance {kind: Practice}: Secure capability modelling (Secure 

Tropos)

Guidance {kind: Checklist}: Organization policy, laws and standards

Activity {kind = Phase}: Domain Requirements Engineering

Process: Secure Tropos – SPL

Activity {kind = Iteration}: Secure Tropos Domain 

Requirements Engineering (STDReq) – (A1)

TaskUse: A1.2 - Security Analysis of Software Product Line 

ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}

RoleUse: Business domain experts {kind: in}

RoleUse: Security requirements engineer {kind: in}

RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Stakeholder needs of each variant

WorkProductUse: ‘SEAM-SPL’

WorkProductUse: ‘SEGM-SPL’

WorkProductUse: Organisation security policy for each variant

WorkProductUse: Law and regulations for each variant

WorkProductUse: Requests for variant goals & security goals

WorkDefinitionParameter {kind: out}

WorkProductUse: Security Enhanced Actor Diagram of the SPL 

– ‘SEAM-SPL’ {state: initial}

WorkProductUse: Security Enhanced Goal Diagram of the SPL 

– ‘SEGM-SPL’ {state: initial}

WorkProductUse: Table with the Security Risks of all the 

variants of the SPL {state: initial}

Steps 

Step: A1.1.1 SPL variants analysis

Step: A1.1.1.1 Identify and model actors which are variants 

Step: A1.1.1.2 Analyze the requests for variant goals & 

security goals

Step: A1.1.2 SPL variants security constrains analysis

Step: A1.1.2.1 Identify and model variant goals

Step: A1.1.2.2 Identify variant security constrains for each goal

Step: A1.1.2.3 Security constraint variability modelling

Step: A1.1.3 SPL variants secure entities analysis

Step: A1.1.3.1 Identify security considerations imposed by 

each variant of the SPL

Step: A1.1.3.2 SPL secure entities variability and secure 

capability modelling

Step: A1.1.4 SPL Security risk scoping

Step: A1.1.4.1 Variant assets valuation

Step: A1.1.4.2 Variant threats identification and 

calculation of degradation, likelihood and 

impact of each threat

Step: A1.1.4.3 SPL risks assessment (common & variant 

elements)

Step: A1.1.4.4 Perform a security balance analysis of 

all the variants of the SPL

Step: A1.1.5 Inspect ‘SEAM-SPL’ and ‘SEGM-SPL’ models

Guidance

Guidance {kind: Practice}: Questionnaire

Guidance {kind: Practice}: Interviews

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Application goals matrix

Guidance {kind: Practice}: Security constraint modelling (Secure Tropos)

Guidance {kind: Practice}: Secure entities modelling (Secure Tropos)

Guidance {kind: Practice}: Secure capability modelling (Secure Tropos)

Guidance {kind: Checklist}: Organization policy, laws and standards

Activity {kind = Phase}: Domain Requirements Engineering

Process: Secure Tropos – SPL

Activity {kind = Iteration}: Secure Tropos Domain 

Requirements Engineering (STDReq) – (A1)

 
 



16 

4.4.2. Secure Tropos Application Requirements Engin eering – 

(STAReq) 

The main aim of this activity is the elicitation and documentation of the 

security requirements and their related security artefacts in the SPL application 

and reusing the security domain artefacts and requirements as far as possible. The 

details of this activity are depicted in Table 2. 

 
Table 2 STAReq activity specified with SPEM (OMG) 

TaskUse: A2.1 - Security Analysis of System / Application 

Environment

ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}

RoleUse: Expert users {kind: in}

RoleUse: Security requirements engineer {kind: in}

RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Stakeholders of the application needs

WorkProductUse: Security Enhanced Actor Diagram of the SPL –

‘SEAM-SPL’

WorkProductUse: Security Enhanced Goal Diagram of the SPL –

‘SEGM-SPL’

WorkProductUse: Application specific environment, policies and 

regulations

WorkDefinitionParameter {kind: out}

WorkProductUse: List of common goals of the SPL {state: initial}

WorkProductUse: Security Enhanced Actor Diagram of the 

Application – ‘SEAM-SPL’ {state: initial}

WorkProductUse: Security Enhanced Goal Diagram of the 

Application – ‘SEGM-SPL’ {state: initial}

WorkProductUse: Application’s stakeholder goals that do not 

correspond to domain goals {state: initial}

Steps 

Step: A2.1.1 Variability exploitation and instantation

Step: A2.1.1.1 Define security goals of the application

Step: A2.1.1.2 Communicate the relevant variants to the 

stakeholders of the application

Step: A2.1.1.3 Inherit common variants and analyze 

alternative and optional variants 

Step: A2.1.1.4 Select the appropriate variants and model 

the chosen variants: security constraint 

modelling, secure entities modelling and 

secure capability modelling

Step: A2.1.1.4 Collect the application’s stakeholder goals 

that do not correspond to domain goals

Guidance

Guidance {kind: Practice}: Interviews

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Security constraint modelling (Secure 

Tropos)

Guidance {kind: Practice}: Secure entities modelling (Secure 

Tropos)

Guidance {kind: Practice}: Secure capability modelling (Secure 

Tropos)

Guidance {kind: Checklist}:  Application specific policy, laws and 

standards

Activity {kind = Phase}: Domain Requirements Engineering

Process: Secure Tropos – SPL

Activity {kind = Iteration}: Secure Tropos Domain 

Requirements Engineering (STDReq) – (A2)

TaskUse: A2.2 - Security Analysis of System / Application

ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}

RoleUse: Business domain experts {kind: in}

RoleUse: Security requirements engineer {kind: in}

RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Stakeholder needs of each variant

WorkProductUse: ‘SEAM-SPL’ of the application 

WorkProductUse: ‘SEGM-SPL’ of the application 

WorkProductUse: Organisation security policy for each variant

WorkProductUse: Law and regulations for each variant

WorkProductUse: Requests for variant goals & security goals

WorkDefinitionParameter {kind: out}

WorkProductUse: Security Enhanced Actor Diagram of the 

application – ‘SEAM-SPL’ {state: initial}

WorkProductUse: Security Enhanced Goal Diagram of the 

application – ‘SEGM-SPL’ {state: initial}

WorkProductUse: Table with the Security Risks of  the 

application {state: initial}

Steps 

Step: A2.1.1 Sec-deltas analysis

Step: A1.1.1.1 Identify sec-deltas

Step: A2.1.2 System/application security constrains analysis

Step: A1.1.2.1 Application security constraint variability 

modelling

Step: A2.1.3 System/application secure entities analysis

Step: A1.1.3.1 Identify security considerations imposed by 

the needs of the application 

Step: A1.1.3.2 SPL Application secure entities variability and 

secure capability modelling

Step: A2.1.4 System/application security risk scoping

Step: A1.1.4.1 Application assets valuation

Step: A1.1.4.2 Application threats identification and 

calculation of degradation, likelihood and 

impact of each threat

Step: A1.1.4.3 Application risks assessment

Step: A1.1.4.4 Perform a security balance analysis of 

the application

Step: A2.1.5 Inspect ‘SEAM-SPL’ and ‘SEGM-SPL’ models of the 

application

Guidance

Guidance {kind: Practice}: Interviews

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Security constraint modelling (Secure Tropos)

Guidance {kind: Practice}: Secure entities modelling (Secure Tropos)

Guidance {kind: Practice}: Secure capability modelling (Secure Tropos)

Guidance {kind: Checklist}: Application specific policy, laws and 

standards

Activity {kind = Phase}: Application Requirements Engineering

Process: Secure Tropos – SPL

Activity {kind = Iteration}: Secure Tropos Application

Requirements Engineering (STAReq) – (A2)

 
 



17 

5. Example of application  

A simple and short example related to health and social care SPL is outlined in 

this section in order to describe and show throughout the example the applicability 

of our proposed extension of Secure Tropos for SPL engineering (named ‘Secure 

Tropos – SPL’).  

Details of the organization in which the case study presented herein was carried 

out will not be provided for reasons of confidentiality and the potential threat to 

its security as well as security technical details related to the project. Moreover, 

all the information regarding the information systems mentioned in this case study 

have been previously published in various public forums. 

We will apply our approach to specify the security requirements of a software 

product line of a CRM (Customer Relationship Management) system, which may 

have several different configurations for three different public institutions of the 

public social security system of Spain. Therefore, we will characterize the system, 

named eCRM, as a SPL whose members vary by system configuration yet retain 

the same core functionalities. Obviously, this case study has to be simplified and 

summed up to enable points of our approach to be easily illustrated in this paper. 

Graphically, as shown in Fig.  6, Fig.  7 and Fig.  8, in the SEAD (Security 

Enhanced Actor Diagram) and SEGD (Security Enhanced Goal Diagram) the 

‘Variability Dependencies’ are represented with ‘◄V’ over the dependency that 
joins the entities, so that the tip of the triangle indicates the “owner” of the 

variant, i.e. ‘Depender’ or ‘Dependee’. In addition, if an entity is a ‘Variation’, it 

is depicted with a ‘(V)’ within the representation of the entity. The Secure Tropos 
entities are represented in the figures as follow: an actor with a circle; a goal with 

rounded rectangle; a security constraint with an octagon; a plan with a hexagon; a 

resource with a rectangle; and a threat with a pentagon. 

 
Fig.  6 Part of the SEAD of eCRM (SPL) – (Late Requirements phase) 

 



18 

 
Fig.  7 Part of the SEAD of the instantiated applications of the eCRM (SPL) – (Late Requirements phase) 

Fig.  6 shows a SEAD at the Late Requirements phase, which identifies and 

analyses the actors of the SPL and its environment. It also models the SPL’s 

business goals, at business and service level, as well as it illustrates the analysis of 

the variability dependencies of these goals. This means that it supports the 

modeling of the variability of the goals, specifying the variant goals as common, 

optional or alternative. As shown in Fig.  7, the actor ‘eCRM (SPL)’ has strategic 

goals and intentions. In this example, the ‘eCRM (SPL)’ has a common service 

goal to citizens: “Provide general information about social security issues” and 

two optional service goals: “Provide the status of a citizen’s benefit” and/or 

“Manage the allocation account contribution to the Social Security”. In order to 

deal with the security issues, security constrains are introduced along with the 

variability dependencies. Security constrains, such as those shown in the model 

(“Keep data available”, “Keep financial data privacy” and “Keep benefit data 

privacy”), represent restrictions related to security that the SPL must have and 

instantiated products must respect. 

Fig.  7 illustrates a SEAD at the Late Requirements phase, which models the 

instantiation of applications from a SPL. In particular, the model represents two 

applications (eCRM-I and eCRM-II) instantiated from ‘eCRM (SPL)’, both of 

which inherit the common goals, constraints, plans and resources. Each 

application inherits the common business goals from the SPL and the stakeholders 

of each application choose the optional business goals by exploiting the variability 

of the eCRM(SPL). 

Furthermore, the SEGD shown in Fig.  8 allows a deeper understanding of how 

the SPL reason about goals to be fulfilled, plans to be performed and availability 

of resources. It completes the SEAD with the reasoning that each actor makes 

about its internal goals and constraints, plans and resources. It can be seen that 

each variant business goal, which is restricted by a constraint, has related secure 

goals, which satisfy the constraint by means of secure plans that need resources. 

Finally, through the entity ‘Variation’ of the SEGM it is possible to trace the 

entities which are part of an instantiated application from the SPL. Hence, by 

means of this entity of the SEGM we can identify that for the instantiated 

application eCRM-I, the secure variant entities that are part of it are: the resource 

‘Benefit database’; the secure goals ‘System privacy ensured’ and ‘User 



19 

authenticity ensured’; the secure plans related to these secure goals ‘Crypto 

protocol’ and ‘User authentication’. 

 

 

 

6. Conclusions and Future Work 

A large number of goal-oriented requirements engineering approaches have 

been proposed in the literature, which focus on eliciting security requirements. 

However, most of these approaches provide little help as how security 

requirements can be elicited and modelled in the context of SPL, at both the social 

and technical dimension, along with the fact that many standard requirements 

engineering practices must also be appropriately tailored to the specific demands 

of SPL [3].  

This paper introduces the foundations of an approach that fills this gap by 

proposing SecureTropos-SPL, an extension to Secure Tropos to support SPL. The 

contribution of this work is that of: explaining how SPL concepts are aligned with 

Secure Tropos concepts; the presentation of a risk-driven goal-based process as a 

redefinition of the Secure Tropos process for SPL engineering; and an extension 

of Secure Tropos metamodel and language to support ‘variability’ modelling and 

‘risk’ elements. Hence, by means of this approach it is possible to elicitate and to 

analyze both social and technical security requirements from the early stages of 

the SPL development process based on security goals and following a security 

risk criterion. 

As future work, we plan to provide appropriate tool support to our approach. 

This will enable us to apply our work to large and complex case studies and 

explore its integration with relevant design-level proposals (such as UMLSec in 

[18]) to facilitate the secure design of SPL. 

Fig.  8 Part of the SEGD of eCRM(SPL) - (Late Requirements phase) 



20 

Acknowledgements 
This research is part of the following projects: MEDUSAS (IDI-20090557) and ORIGIN (IDI-2010043(1-5), 

financed by the Centre for Industrial Technological Development (CDTI) and the FEDER, MAGO-PEGASO 

(TIN2009-13718-C02-01) awarded by the Spanish Ministry for Science and Technology and SERENIDAD 

(PEII11-0327-7035) and SISTEMAS (PII2I09-0150-3135) financed by the Council of Education and Science 

of the Castilla-La Mancha Regional Government. 

References 

1. J.L. Arciniegas, J.C. Dueñas, J.L. Ruiz, R. Cerón, J. Bermejo, and M.A. Oltra, Architecture 

Reasoning for Supporting Product Line Evolution: An Example on Security, in Software Product 

Lines: Research Issues in Engineering and Management, T. Käkölä and J.C. Dueñas, Editors. 2006, 

Springer. 

2. J. Bayer, S. Gerard, O. Haugen, J. Mansell, B. Moller-Pedersen, J. Oldevik, P. Tessier, J.-P. Thibault, 

and T. Widen, Consolidated Product Line Variability Modeling, in Software Product Lines: Research 

Issues in Engineering and Management, T. Käkölä and J.C. Dueñas, Editors. 2005. p. 195-241. 

3. A. Birk and G. Heller, Challenges for requirements engineering and management in software product 

line development. International Conference on Requirements Engineering (REFSQ 2007), 2007: p. 

300-305. 

4. J. Bosh, Design & Use of Software Architectures. 2000: Pearson Education Limited. 

5. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini, Tropos: Agent-Oriented 

Software Development Methodology. 2004: Journal of Autonomous Agents and Multi-Agent System. 

p. 203-236. 

6. P. Clements and L. Northrop, Software Product Lines: Practices and Patterns. SEI Series in Software 

Engineering. 2002: Addison-Wesley. 

7. B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt, A comparison of security requirements 

engineering methods. Requirements Engineering, 2009. 15: p. 7-40. 

8. T.E. Faegri and S. Hallsteinsen, A Software Product Line Reference Architecture for Security, in 

Software Product Lines: Research Issues in Engineering and Management, T. Käkölä and J.C. 

Dueñas, Editors. 2006, Springer. 

9. ISO/IEC, ISO/IEC 13335  Information technology - Security techniques - Management of information 

and communications technology security. 2004. 

10. K. Kang, S. Cohen, J.A. Hess, W.E. Novak, and S.A. Peterson, Feature-Oriented Domain Analysis 

(FODA) Feasibility Study. 1990, Software Engineering Institute, Carnegie-Mellon University. 

11. J. Kim, M. Kim, and S. Park, Goal and scenario bases domain requirements analysis environment, in 

The Journal of Systems and Software. 2005. p. 926 - 938. 

12. M.A.P., Methodology for Information Systems Risk Analysis and Management (MAGERIT version 2). 

2005, (Ministry for Public Administration of Spain). 

13. J.D. McGregor, Testing a Software Product Line, in Testing Techniques in Software Engineering, P. 

Borba, et al., Editors. 2010, Springer. p. 104-140. 

14. D. Mellado, C. Blanco, L.E. Sanchez, and E. Fernández-Medina, A Systematic Review of Security 

Requirements Engineering. Computers Standards & Interfaces 2010. 32: p. 153-165. 

15. D. Mellado, E. Fernández-Medina, and M. Piattini, Security requirements engineering framework for 

software product lines. Information and Software Technology, 2010. 52: p. 1094-1117. 

16. D. Mellado and H. Mouratidis, Towards the Extension of Secure Tropos Language to Support 

Software Product Lines Development, in International Workshop on Security In Information Systems 

(WOSIS-2012). 2012. p. (accepted). 

17. H. Mouratidis, Secure Tropos: An Agent Oriented Software Engineering Methodology for the 

Development of Health and Social Care Information Systems. International Journal of Computer 

Science and Security, 2009. 3(3): p. 241-271. 

18. H. Mouratidis and J. Jürjens, From goal-driven security requirements engineering to secure design. 

International Journal of Intelligent Systems, 2010. 25(8): p. 813-840  

19. OECD, The promotion of a culture of security for information systems and networks in OECD 

countries, in DSTI/ICCP/REG(2005)1/FI<AL. 2005, Organisation for Economic Co-operation and 

Development. 

20. OMG, Software & Systems Process Engineering Meta-Model Specification v.2.0. 2008: 

http://www.omg.org/spec/SPEM. 

21. K. Pohl, G. Böckle, and F.v.d. Linden, Software Product Line Engineering. Foundations, Principles 

and Techniques. 2005, Berlin Heidelberg: Springer. 

22. K. Schmid and I. John, A Customizable Approach To Full-Life Cycle Variability Management, in 

Science of Computer Programming, Elsevier, 53. 2004. p. 259-284. 

23. K. Schmid, K. Krennrich, and M. Eisenbarth, Requirements Management for Product Lines: A 

Prototype. 2005, Fraunhofer IESE. 

24. M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COVAMOF: A Framework for Modeling 

Variability in Software Product Families. in Proc. of the Third Softw. Product Line Conf. (SPLC 

2004). 2004. Boston, MA, USA. 


