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 Structure and concentration dependent association of EO/PO copolymers with 

amphiphilic solutes 

 Self-assembly of methylprednisolone succinate (MPS) with EO/PO copolymers in 

aqueous solutions    

 In situ MPS nanoformulation with increased antiradical activity and cellular 

availability 

 Tandem mass spectrometry (MRM) analysis of MPS nanoformulation in biological 

samples   

                 

 

A B S T R A C T 

A new self-assembled formulation of methylprednisolone succinate (MPS) based on a 

carboxylated trifunctional block copolymer of ethylene oxide and propylene oxide (TBC-

COOH) was developed. TBC-COOH and MPS associated spontaneously at increased 

concentrations in aqueous solutions to form almost monodisperse mixed micelles (TBC-

COOH/MPS) with a hydrodynamic diameter of 19.6 nm, zeta potential of –27.8 mV and 

optimal weight ratio ~1:6.3. Conditions for the effective formation of TBC-COOH/MPS 

were elucidated by comparing copolymers and glucocorticoids with different structure. The 

micellar structure of TBC-COOH/MPS persisted upon dilution, temperature fluctuations 

and interaction with blood serum components. TBC-COOH increased antiradical activity of 

MPS and promoted its intrinsic cytotoxicity in vitro attributed to enhanced cellular 

availability of the mixed micelles. Intracellular transportation and hydrolysis of MPS were 

analyzed using optimized liquid chromatography tandem mass spectrometry with multiple 

reaction monitoring which showed increased level of both MPS and methylprednisolone in 

neuronal cells treated with the formulated glucocorticoid. Our results identify TBC-

COOH/MPS as an advanced in situ prepared nanoformulation and encourage its further 

investigation for a potential local glucocorticoid therapy. 

Keywords: methylprednisolone succinate; ethylene oxide and propylene oxide copolymers; 

nanoformulation; self-assembly; mixed micelles; cellular availability; mass spectrometry; 

local glucocorticoid therapy 
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1. Introduction 

Glucocorticoids are adrenal cortex derived, natural and semisynthetic steroid hormones 

with pleiotropic biological activities in mammals [1]. They include cortisol 

(hydrocortisone), a primary endogenous hormone, and a range of its synthetic derivatives, 

such as dexamethasone, prednisolone, methylprednisolone and their ethers. Glucocorticoids 

are one of the most frequently used therapeutics with versatile effects on metabolic 

processes, pronounced anti-inflammatory, immunomodulatory, anti-allergic and anti-edema 

properties [1]. 

Besides routine use of glucocorticoids to treat widespread diseases, including allergies, 

asthma, autoimmune and degenerative disorders [1], they are also considered as emergency 

drugs administered in severe clinical cases, such as sepsis and acute neuronal traumas [2,3]. 

Methylprednisolone infusion therapy has been intensively studied in order to alleviate the 

consequences of acute spinal cord injuries which result from glutamate neurotoxicity and 

inflammation [3,4]. The neuroprotective action of glucocorticoids administered after 

hypoxia or traumatic injury was established [4–6]. This therapeutic effect is, however, 

observed within a relatively narrow range of concentrations, and increased drug levels could 

promote tissue degeneration [7]. 

The high therapeutic potential of glucocorticoids is accompanied by their intrinsic side 

effects, including immunosuppression, hypertension, osteoporosis, metabolic disturbances 

as well as decreased sensitivity upon repetitive administration [1]. Development of 

pharmaceutical approaches for reduction of these adverse effects is of considerable 

biomedical interest. The common strategy relies on the systemic use of glucocorticoids 

encapsulated into liposomal or micellar nanocarriers designed for increasing solubility and 

pharmacokinetic profile of the drugs [6,8]. Localized delivery of glucocorticoids to target 

tissues could provide substantial advantages over systemic administration. The advantages 

are related to improved safety and sustained therapeutic dose level. Localized therapy 

should be based on an effective delivery system, incorporating medical devices, carriers 

and/or penetration enhancers. The delivery systems are mainly designed to increase local 

bioavailability of a drug and promote its sustained release in the target tissues. 

To date, various (bio)materials and strategies have been proposed for local delivery of 

glucocorticoids to pulmonary [9–11], ocular [12–15], inner ear [16], and neural [17] tissues. 

ACCEPTED M
ANUSCRIP

T



4 

 

Stable unilamellar vesicles composed of polysorbate 20, cholesterol and beclomethasone 

dipropionate were prepared by means of solvent evaporation and hydration methods. The 

resultant liposome-like vesicles were tested as a spray formulation to treat asthma and 

chronic obstructive pulmonary disease. The formulation penetrated with greater efficiency 

across the mucous layer, and exhibited increased cellular uptake and anti-inflammatory 

activity on human lung fibroblasts in vitro [9,10]. 

Ocular formulations of glucocorticoids developed to date include a covalent conjugate of 

polyamidoamine dendrimer with fluocinolone acetonide for intravitreal injection upon age-

related macular degeneration [12]; a drop formulation of polymer-stabilized hydrocortisone 

nanosuspension with increased stability and sustained action [13]; budesonide-loaded 

polylactide nano- and microparticles with sustained release, anti-inflammatory and anti-

VEGF properties for treatment of vascular disorders of the retina [15]. 

The main approaches for local delivery of glucocorticoids into the inner ear are based on 

injection of polymeric hydrogels onto the round window [16]. Thermoresponsive in situ 

forming hydrogel containing 20% Poloxamer 407 (Pluronic F127) and 30% triamcinolone 

acetonide has been recently developed for prolonged intratympanic release of the drug [18]. 

The formulation was shown to be tolerable and support therapeutic concentrations of 

triamcinolone acetonide in the perilymph over 10 days in a guinea pig model [19]. 

Intratympanic formulations of dexamethasone composed of Poloxamer 407 [20] and 

hyaluronic acid as a gelling agent [21] were also developed. 

Whereas the reported local delivery systems include conventional particle and hydrogel 

based materials, less attention has been paid to usage of penetration enhancers in 

glucocorticoid therapy. Such enhancers could promote drug transportation across coverings 

of organs and tissues, thus permitting reduction of doses and side effects. In association with 

that, amphiphilic polymers such as copolymers of ethylene oxide (EO) and propylene oxide 

(PO) are promising materials with regulated physicochemical properties. The copolymers 

combine the ability to encapsulate different drugs and promote their intracellular and tissue 

transportation [22,23]. 

We have shown recently that glycerol based trifunctional block copolymers (TBCs) of 

EO/PO subjected to succinylation [24] or chemical oxidation [25] possessed enhanced cell 

membrane-modulating properties and biocompatibility. The oxidized TBC substantially 

promoted intraspinal delivery of rhodamine 123 as a model compound when applied onto 
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the open spinal cord of a rat [25]. In this study, we developed a novel self-assembled 

micellar nanoformulation of the TBC with methylprednisolone succinate, which is of 

particular interest in local therapy of inflammation related and traumatic diseases. 

 

2. Materials and methods 

2.1. Materials 

Dexamethasone (Sigma-Aldrich), methylprednisolone sodium succinate (Metypred, 

OrionPharma) and methylprednisolone (Medrol, Pfizer) were used. 3-(4,5-dimethyl-thiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2',7'-dichlorofluorescin diacetate, Triton 

X100, phenylmethanesulfonyl fluoride (PMSF), menadione sodium bisulfite were produced 

by Sigma-Aldrich. Pyrene, chromium (VI) oxide, reagents/solvents for chemical synthesis, 

and inorganic salts were purchased from Acros Organics. Hypergrade acetonitrile for LC-

MS and formic acid were purchased from Merck Millipore.  

Materials for cell culturing were obtained from PAA Laboratories. Milli-Q grade water 

(Milli-Q Advantage A10, Merck Millipore) was used to prepare buffers and solutions. 

 

2.2. Copolymers of ethylene oxide and propylene oxide 

Linear block copolymers of EO and PO, i.e. Plurornic L61, L121, F127 (trademark of 

BASF) were purchased from Sigma-Aldrich. Trifunctional glycerol-based EO/PO block 

copolymer Laprol 6003-2B-18 (TBC) (analogue of Voranol, Dow Chemical) was obtained 

from PJSC ‘Nizhnekamskneftekhim’ (Russia). The main physicochemical characteristics of 

the copolymers including the number-average molecular weight (MW), mean number of EO 

(x) and PO (y) units, the hydrophilic-lipophilic balance (HLB) [26] and the critical micellar 

concentration (CMC) values are shown in Table 1S (SM). TBC was chemically oxidized 

with the use of chromium oxide as recently described [25]. 

 

2.3. Preparation and characterization of copolymer-glucocorticoid compositions 

Stock solutions of the copolymers were prepared in milli-Q water at a concentration of 10 

mg/mL. Methylprednisolone succinate (MPS) was dissolved in isotonic sodium chloride 

solution (0.9%) at a concentration of 62.5 mg/mL (125.9 mM) recommended for infusion. 

MP and dexamethasone (DXM) were initially dissolved in DMSO.  
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To prepare compositions and mixed micelles composed of the glucocorticoids and 

copolymers, equal volumes of solutions of these two components were carefully mixed and 

left for 30 min to allow drug-copolymer association and mixed micelles formation. 

Compositions of glucocorticoids and copolymers were characterized by a dynamic light 

scattering (DLS) technique on a Zetasizer Nano ZS analyzer (Malvern Instruments). The 

hydrodynamic diameter (HD), the particle dispersion index (PDI) and the zeta potential (ζ-

potential) of pure copolymers and their mixtures with drugs were determined. The HD and 

PDI were measured in an isotonic solution, PBS (pH 7.4) or twice diluted DMEM cell 

culture medium at different temperatures (25, 37 and 50°C). ζ-potential was registered in 

0.05 M HEPES buffer (pH 7.0).  

Mixed micelles of TBC-COOH and MPS were characterized with the use of pyrene 

fluorescent probe as described elsewhere [27].  

 

2.4. Atomic force microscopy  

TBC-COOH/MPS micelles were diluted with milli-Q water at final concentrations from 

0.3 to 1.0 mg/mL (TBC-COOH) and from 2.1 to 6.3 mg/mL (MPS). Mica sheet was cut and 

cleaved into thin sections (1×1 cm) with the internal side used as a substrate. Aliquots (1 

µL) of TBC-COOH/MPS or TBC-COOH solutions were spread onto the substrate and air-

dried. Atomic force microscopy (AFM) analysis was performed on a Bruker Dimension 

FastScan microscope (Bruker). The AFM images were obtained in PeakForce QNM 

(quantitative nanomechanical mapping) mode with the use of standard silicon cantilevers 

ScanAsystAir (Bruker) having curvature 2 nm and stiffness 0.4 N/m. Height profiles of 

typical nanostructures in AFM images and average geometry of the particles were presented 

(mean±SD, n≥20). 

 

2.5. Mammalian cell culturing  

SH-SY5Y human bone marrow neuroblastoma and PC-12 rat pheochromocytoma 

(ATTC) cell lines were used. The cells were cultured aseptically in DMEM containing 10% 

fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL penicillin and 100 µg/mL 

streptomycin at 37°C in humidified air atmosphere with 5% CO2. 
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2.6. Assessment of antiradical properties of TBC-COOH/MPS  

2.6.1. Fluorescent assay for Co/H2O2 reaction  

Stock solutions of cobalt chloride (CoCl2) and hydrogen peroxide (H2O2) were prepared 

in milli-Q water. H2O2 concentration was verified spectrophotometrically at λ=240 nm using 

an extinction coefficient of 43.6 M-1. CoCl2 and H2O2 were mixed in PBS (pH 7.4) to obtain 

final concentrations of 0.23 mM (CoCl2) and 21.6 mM (H2O2). 2',7'-dichlorofluorescin 

diacetate (DCFDA) was added at concentration of 5 µM as a fluorescent indicator of oxygen 

radicals [28]. The reaction was carried out at ambient temperature in a 96-well plate with or 

without drug formulations. The fluorescence intensity was registered kinetically at λex=488 

nm and λem=535 nm during 60 min on an Infinite M200 PRO microplate analyzer 

(TECAN). The response to MPS and TBC-COOH/MPS was measured as a percentage of 

the signal of control Co/H2O2 reaction without effectors (100%).  

 

2.6.2. Fluorescent analysis of H2O2-induced oxidative burst in cells  

PC-12 cells were seeded in a 96-well plate and allowed to form a confluent monolayer. 

Cells were washed with Hank’s balanced salt solution (HBSS), pre-stained with 20 µM 

DCFDA and rewashed with HBSS two times. Oxidative burst in the stained cells was 

induced by incubating them in PBS solution containing 100 mM H2O2 for 1 h in CO2-

incubator. A compound of interest was added to the cells in PBS and incubated for 1 h 

followed by registration of the fluorescent signal from treated cells on an Infinite M200PRO 

microplate analyzer (TECAN) at λex=488 nm and λem=535 nm. 

 

 2.7. Cell viability study  

The effect of MPS, TBC-COOH and their mixed micelles on viability of SH-SY5Y and 

PC-12 cells was evaluated with the aid of an MTT assay. Cells were cultured for 7 h in the 

presence of compounds, then for 72 h without compounds followed by replacement of the 

medium with a fresh one containing the MTT reagent (0.5 mg/mL). Cells were additionally 

cultured for 3 h to allow them to reduce MTT into a water insoluble formazan, which was 

further dissolved in DMSO (100 μL per well). The optical absorbance of formazan solution, 

which is proportional to the number of viable cells, was measured in each well using an 

Infinite M200PRO microplate analyzer (TECAN) at a wavelength of 555 nm. The cell 
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viability was calculated as a percentage of reference cells grown without compounds (100% 

viability). 

 

2.8. HPLC and LC-MS/MS 

2.8.1. Sample preparation of MPS-treated cells  

SH-SY5Y cells were seeded and grown onto a 6-well plate in standard conditions until a 

confluent monolayer was formed. The medium was then replaced by a fresh one containing 

3.1 or 0.6 mg/mL of MPS or its micellar formulations with TBC-COOH (0.5 or 0.1 mg/mL, 

respectively). The cells were exposed to compounds for 1.5 h in a CO2-incubator, during 

which cells were readily detached from the plate surface. Collected cells were washed two 

times with chilled HBSS by means of centrifugation. The resultant cell pellet was frozen at 

–80°C and then lysed in 150 µL solution of 0.1% Triton X100 with 0.1 mM PMSF. 

Extraction of MPS and MP was performed according to procedures detailed in [29] with 

some modifications. The cell lysate was mixed with 400 µL of diethyl 

ether/dichloromethane (v/v, 60:40). The mixture was agitated at 500 rpm for 15 min at room 

temperature followed by centrifugation and collection of supernatant (360 µL). The extract 

was dried on a speed vacuum concentrator, solubilized in 100 µL of 

dichloromethane/isopropanol mixture (v/v, 85:15) and used for analysis of MPS and MP. 

 

2.8.2. LC-MS/MS  

Chromatographic separation of glucocorticoids was performed on an Infinity 1290 

UHPLC system (Agilent) using Discovery HS C18 column, 3 µm, 5 cm×2.1 mm (Supelco). 

A triple quadrupole mass-spectrometer QTRAP 6500 (ABSciex) was used as a mass 

analyzer. Parameters of the analysis were as follows. Electrospray ionization (ESI) was set 

to the positive ion mode; capillary voltage was 5.2 kV; source type was Turbo Spray Ion 

Drive with temperature 500ºС; curtain gas pressure was 35 psi; declustering potential was 

51 V, collision energy was automatically optimized for each transition; flow rate was 0.4 

mL/min; injection volume was 5 µL.  

MS/MS conditions were optimized using an automated ‘Compound optimization’ 

algorithm of the Analyst 1.6.2 software (ABSciex). The mass spectrometric data were 

analyzed using a MultiQuant 3.0.2 software (AB Sciex). The calibration curve was plotted 

for analyte concentrations from 0.005 to 500 µМ. Data were expressed as mean±SD (n=6). 
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The statistically significant difference was evaluated by Student’s t-test with a significance 

level of p<0.05. 

 

3. Results and discussion  

3.1. Structure-dependent interaction of block copolymers and glucocorticoids  

We studied the linear block copolymers, such as Pluronic L61, L121, F127, and the 

glycerol-based TBC with their structure and characteristics shown in Fig.1S and Table 1S 

(SM). The Pluronic copolymers were selected as promising drug carriers studied in 

anticancer compositions [23,30]. Methylprednisolone (MP), methylprednisolone succinate 

(MPS) and dexamethasone (DXM) (Fig.1S) were selected as the most frequently used 

glucocorticoid drugs administered systemically and locally [16].  

The compositions of the copolymers and glucocorticoids, prepared by mixing them at 

different concentrations in aqueous solutions, were assessed with DLS technique. It was 

found that MPS at a relatively high concentration of 63 mM (31.3 mg/mL) spontaneously 

rearranges aggregates of some of the copolymers (Pluronic L121, TBC, TBC-COOH). 

Opaque solutions of these copolymers (5 mg/mL) became transparent after addition of 

MPS, indicating disappearance of (sub)microsized polymeric aggregates. 

To characterize aggregates of the pure copolymers and copolymer-glucocorticoid 

compositions, the HD, PDI and ζ-potential were registered. Average DLS data (mean±SD, 

n=3) are summarized in Table 2S (SM). Hydrophobic Pluronic L121 (HLB=1) and the TBC 

(HLB=3) formed labile thermosensitive aggregates with the HD of over 100 nm (Fig.1A,B, 

Table 2S). Association of MPS with these copolymers resulted in formation of almost 

monodisperse small micelles with a mean HD of 30.0±0.3 nm and 19.0±0.2 nm, and a 

corresponding PDI of 0.1 and 0.2, for Pluronic 121 (Fig.1A, Table 2S) and TBC (Fig.1B, 

Table 2S), respectively. Furthermore, the composition of carboxylated copolymer TBC-

COOH and MPS produced micelles of similar size (HD=19.6±0.3 nm) and higher 

homogeneity (PDI=0.1) to those of TBC/MPS composition (Fig.1C, Table 2S). 

Under the same conditions, no defined particulates were detected for the composition of 

MPS with Pluronic L61, which possesses relatively low HLB (HLB=3) but poor micelle-

forming ability. Relatively hydrophilic Pluronic F127 (HLB=22) with extended 

polyethylene oxide (PEO) blocks formed a well-defined micellar system with the HD of 
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23.1±0.04 nm and PDI of 0.1, which however became disorganized in the presence of MPS 

(Fig.1D, Table 2S).  

To reveal the importance of the succinyl group in MPS for the formation of the nanosized 

micelles, control experiments were performed using non-succinylated glucocorticoids, MP 

and DXM. Due to their restricted aqueous solubility these glucocorticoids were initially 

assessed in water/DMSO mixed solvent (1:1 by volume) at a concentration as high as 25 

mM. DMSO, however, affected micelle-forming properties of the glucocorticoid 

compositions with copolymers. To determine potential association of MP and DXM with 

the copolymers in aqueous solution, the component concentrations were decreased to 0.3 

mM (glucocorticoids) and 0.1 mg/mL (TBC-COOH). Both MP and DEX increased 

homogeneity of the TBC-COOH aggregates, suggesting copolymer-glucocorticoid 

interactions, but did not assemble into nanosized micelles (Fig.1E) in contrast to MPS, 

which however was used at a much higher concentration (Figs.1A, 1B, 1C).       

Menadione sodium bisulfite (MEN), the water-soluble form of vitamin K (Fig.1S), was 

additionally studied as a reference compound with an aromatic and anionic structure similar 

to MPS. Mixing of MEN at a concentration as high as 63 mM with TBC-COOH (5 mg/mL) 

was also accompanied by disappearance of opalescence of the copolymer solution. DLS 

analysis showed that the resultant TBC-COOH/MEN composition produces well-defined 

nanosized aggregates but of a bigger HD (HD=143.2±1.8 nm, PDI=0.2) compared with 

TBC-COOH/MPS (Fig.2S, SM). 

Together, our results reveal that the water-soluble glucocorticoid MPS at increased 

concentrations associates spontaneously with hydrophobic micelle-forming copolymers of 

EO/PO into very small and homogeneous mixed micelles. It is likely that MPS binds to the 

polypropylene oxide (PPO) block of copolymers through its steroid scaffold by means of 

hydrophobic interaction. This binding presumably requires appropriate physicochemical 

characteristics of the drug molecule, which relate to its aqueous solubility and anionic 

nature, including the octanol-water partition coefficient (logP), the distribution coefficient 

(logD) and the ionization constant (pKa) for ionizable compounds [31]. Decreased logD of 

MPS (logD is 0.02 at pH 7 [32]) compared with uncharged MP and DXM (theoretical logP 

is 1.56 and 1.68, respectively, www.drugbank.ca, ChemAxon software) due to the presence 

of an anionic succinyl group assures amphiphilic properties and sufficient solubility of MPS 

to allow its self-assembling with the amphiphilic copolymers into mixed micelles.  

ACCEPTED M
ANUSCRIP

T



11 

 

The fact that MEN (theoretical ACD logD at pH 7.4 is –4.55) forms larger and obviously 

less dense associates with the copolymer under the same conditions shows that MPS 

possesses more appropriate characteristics, which favor the self-assembly of mixed 

micelles. These characteristics of MPS, which could relate to its amphiphilic properties, 

logD, molecular weight, presence of hydroxyl groups, nature and flexibility of the anionic 

group, should be evaluated elsewhere.                     

In addition, the ζ-potential of the mixed micelles of TBC (TBC-COOH) with MPS and 

MEN was measured and compared as a criterion for their colloidal stability (Fig.3S, SM). 

TBC alone produced weakly charged aggregates with ζ of –0.5±0.2 mV, while the TBC-

COOH aggregates were anionic with ζ of –24.2±4.0 mV due to the presence of the ionized 

carboxyl groups. Association of MPS with both TBC and TBC-COOH provided anionic 

micelles with the ζ-potential of –24.0±5.2 mV for TBC/MPS and –27.8±3.2 mV for TBC-

COOH/MPS (Fig.3S). Interestingly, TBC-COOH/MEN aggregates were characterized by 

noticeably lower potential of –16.2±1.1 mV, whereas no micelles were detected for the 

TBC/MEN composition, suggesting that the copolymer and drug components should 

provide sufficient anionic charge to stabilize the mixed micelles. These data suggest a type 

of organization of the mixed copolymer/MPS micelles where the succinate groups of MPS 

molecules, together with the carboxyl groups and PEO blocks of the copolymer, are 

oriented into the aqueous phase forming a micellar corona, while the steroid rings of MPS 

and PPO block of the copolymer form the hydrophobic core (‘Graphical abstract’). 

Among the different copolymers studied, the carboxylated copolymer TBC-COOH was 

further used to prepare drug formulation, since the TBC-COOH/MPS micelles were 

characterized by the highest homogeneity and anionic charge. In particular, the ζ-potential 

of TBC-COOH/MPS was almost –30 mV at physiological pH, which generally corresponds 

to a stable colloidal system [34]. Furthermore, TBC and its derivatives exhibit relatively low 

adverse effects on mammalian cells compared with hydrophobic Pluronics, and effectively 

promotes intracellular penetration of small molecules and macromolecules [24,25,33], 

making them preferable for pharmaceutical applications. 

 

3.2. Verification of TBC-COOH/MPS formulation  

3.2.1. Micelle formation at different concentrations of TBC-COOH and MPS   

ACCEPTED M
ANUSCRIP

T



12 

 

The quality of the TBC-COOH/MPS micellar system was found to be dependent on 

concentration (ratio) of the components upon mixing (Fig.4S, SM). When the concentration 

of MPS was serially diluted from 31.3 to 3.9 mg/mL (concentration of TBC-COOH was 5 

mg/mL), the (sub)microsized aggregates were formed, along with the main fraction of the 

mixed micelles at ~20 nm. These aggregates presumably corresponded to an excess of TBC-

COOH or unsaturated copolymer/MPS complexes. Below the MPS concentration of 3.9 

mg/mL, the micellar system was disorganized (data not shown). At a constant MPS 

concentration (31.3 mg/mL), decrease in the TBC-COOH concentration also promoted 

formation of larger aggregates (Fig.4S). For the given MPS concentration the defined 

nanosized fraction disappeared at a copolymer concentration below 1.25 mg/mL.   

The results show that an optimal weight ratio for the TBC-COOH/MPS micelles 

according to DLS data is approximately 1:6.3 (copolymer to MPS), which corresponds to 

~80 molecules of MPS per one molecule of TBC-COOH and ~1.1 molecules of MPS per 

each PO unit. This stoichiometry supports chemical affinity of the glucocorticoid drug to the 

PPO component of the copolymer, which facilitates their self-assembly into the mixed 

micelles after reaching sufficient constituent concentrations. The disappearance of 

(sub)micron labile associates upon mixing of TBC-COOH and MPS at the optimal 

concentrations (31.3 and 5 mg/mL, respectively) (Fig.4S) indicates that the equilibrium is 

shifted towards the nanosized micelles. These data suggest the possibility of in situ 

preparation of the TBC-COOH/MPS formulation with a relatively high theoretical 

entrapment efficiency up to 86.3%. The structure and stability of the formulation developed 

were further verified using independent techniques. 

 

3.2.2. Interaction of TBC-COOH/MPS with pyrene probe  

The TBC-COOH/MPS formulation (weight ratio 1:6.3) was assessed with a pyrene probe 

which distributes and fluoresces in the hydrophobic milieu of micelles [35]. Fig.5S (SM) 

shows the dependence of pyrene fluorescence on concentrations of TBC-COOH and TBC-

COOH/MPS in PBS. The fluorescent signal of pyrene began to increase at a TBC-COOH 

concentration of 31 μg/mL, reflecting the transition of separate polymeric molecules 

(‘unimers’) to their micellar aggregates. Maximum fluorescence was observed at the highest 

copolymer concentration with an enhancement factor of 4.8 (Fig.5S). 
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In the case of TBC-COOH/MPS, the fluorescent signal increased at the same TBC-

COOH concentration (31 μg/mL) with an enhancement factor of just 1.7 and decreased at 

the concentration above 250 μg/mL (Fig.5S). The noticeable decrease in pyrene 

fluorescence for TBC-COOH/MPS compared with TBC-COOH suggests a suppression of 

probe/mixed micelle interaction, apparently due to stable occupation of the hydrophobic 

PPO core by glucocorticoid molecules.  

 

3.2.3. Effect of dilution, temperature and blood serum  

The dilution effect on micellar stability and structure of the TBC-COOH/MPS 

formulation was assessed. Fig.2A shows variation of the HD and PDI of the mixed micelles 

in serial dilution. When TBC-COOH/MPS concentration decreased from 5 mg/mL to ~40 

μg/mL for the copolymer (from 31.3 to 0.25 mg/mL for MPS, respectively), the HD 

moderately increased from 19.6 to 65 nm. This increase is apparently due to some loosening 

and swelling of the diluted micelles. Micellar polydispersity increased more significantly 

under the same conditions (Fig.2A). A further decrease in the concentration of TBC-

COOH/MPS (below 40 μg/mL for the copolymer) was accompanied by drastic enlargement 

of micellar aggregates due to disorganization of the micellar system.  

It should be noted that under the same conditions TBC-COOH/MEN aggregates were 

significantly less stable upon dilution and collapsed at a component concentration of 0.6 

mg/mL (TBC-COOH) and 7.9 mM (MEN) (data not shown). This shows that the TBC-

COOH/MPS formulation is relatively stable during dilution.      

The thermoresponsive properties of the TBC-COOH/MPS formulation were further 

estimated. The size of the TBC-COOH/MPS micelles remained unchanged at temperature 

of 25°C and 37°C (HD=19.6±0.3 nm), whereas a slight increase in the HD to 21.6±0.28 nm 

was observed at 50°C (Fig.2B). These data demonstrate the resistance of TBC-COOH/MPS 

to thermal fluctuations further supporting its steady micellar structure. This is in great 

contrast to thermosensitive EO/PO based copolymers which are known to be hydrated and 

better solubilized at decreased temperatures, while becoming more hydrophobic and 

susceptible to flocculation at elevated temperatures due to dehydration of the copolymer 

units [22]. The lack of thermoresponsive properties of the TBC-COOH/MPS formulation 

suggests decreased sensitivity of the copolymer component to the (de)hydration effect as a 

result of its association with the glucocorticoid. 
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Blood serum stability of the formulation was assessed to predict its aggregation in body 

fluids [36]. For this purpose, TBC-COOH/MPS micelles were analyzed in a model cell 

culture medium supplemented with 5% FBS (DMEM/FBS). The size of the micellar system 

in DMEM/FBS remained unchanged (Figs. 1F versus 1C) with only a slight increase in 

polydispersity (PDI=0.25). This increase in polydispersity is, however, explained by the 

interfering effect of serum proteins on the DLS analysis. As shown earlier, the size of 

aggregates of different copolymers of EO and PO alone was significantly affected by serum 

proteins under the same conditions [27]. The low effect of DMEM/FBS on the mixed 

micelles is presumably due to decreased adsorption of the serum proteins on the surface of 

mixed micelles of dense and anionic structure. 

 

3.2.4. AFM of TBC-COOH/MPS formulation  

AFM was used to visualize the nanosized TBC-COOH/MPS micelles which were spread 

and dried onto a surface of freshly cleaved mica (Fig.3). TBC-COOH alone formed large 

drop-like structures which merged together onto the hydrophilic substrate (Fig.3A), whereas 

the TBC-COOH/MPS micelles were detected as discrete particulate nanostructures (Fig.3A) 

with the average dimensions measured at half-height as follows (mean±SD): 172.9±26.2 nm 

(width) and 40.1±6.2 nm (height). Further analysis showed that the nanostructures are 

aggregates, composed of smaller nanoparticles, which are clearly observed in Fig.3B 

(arrows). These smaller particles with narrower dimensions (width=22.7±5.7 nm, 

height=7.8±2.8 nm) were identified as the TBC-COOH/MPS micelles. Any fluctuations of 

the geometry may result from shrinking and deformation of the micelles after drying. 

The AFM data show that the mixed micelles possess a particulate-like structure which is 

preserved upon adsorption onto the solid surface. This implies rigidity of the micellar core 

presumably due to a kind of tight association of MPS molecules with PPO blocks, which is 

not expected in the case of conventional micellar systems, including liposomes, which 

generally require more complicated techniques for visualization [10]. 

Altogether, our results confirm that TBC-COOH and MPS undergo self-assembly to 

produce uniform and relatively stable mixed micelles. These data support possible usage of 

the TBC-COOH/MPS as a pharmaceutical formulation. The size and polydispersity of this 

formulation developed is noticeably lower than those for  reported compositions: 

polysorbate 20/cholesterol vesicles (146-205 nm) [9,10], nanostructured lipid carriers (380-

ACCEPTED M
ANUSCRIP

T



15 

 

408 nm) [8], poly(phenylacetylene) and poly(phenylacetylene-co-acrylic acid) nanoparticles 

(190-500 nm) [37], PLGA nanoparticles (400-600 nm) [17], surfactant-stabilized 

nanosuspension (300 nm) [13], PLA nanoparticles (345 nm) [15] and microparticles (3.6 

µm) [15]. PEG-PCL micelles loaded with dexamethasone acetate were proposed as an 

infusion formulation of the low soluble drug [6]. This formulation was characterized by a 

relatively low drug loading (2-12%) and neutral charge of micelles (ζ-potential was –1.3 

mV). In addition, these above described formulations require multi-step procedures for their 

preparation and may contain undesirable toxic solvents and surfactants. The comparison 

shows substantial advantages of the TBC-COOH/MPS micelles over conventional 

formulations which rely on entrapment of the glucocorticoid into vehicles rather than self-

assembly into uniform mixed micelles. Cellular toxicity and availability of the TBC-

COOH/MPS micelles was further assessed as a preliminary part of their pharmacokinetic 

study. 

 

3.3. Effect of TBC-COOH/MPS formulation on cell viability 

The effect of the TBC-COOH/MPS micelles on viability of mammalian cells was studied 

in comparison with the unformulated MPS. In view of possible neuroprotective applications 

of glucocorticoids, neuronal SH-SY5Y and PC-12 cell lines were used. To better address 

rapid clearance of MP [38,39], the cells were exposed to the compounds for 7 h, 

additionally cultured for 72 h and subjected to the MTT assay (section 2.7.). Under these 

conditions, TBC-COOH did not affect cell viability but promoted cytotoxicity of MPS in 

the formulation.      

Fig.4 shows relationships between cell viability and concentration of MPS and TBC-

COOH/MPS. MPS was found to possess a half-maximal inhibitory concentration (IC50) of 

1.0±0.1 mg/mL for SH-SY5Y cells and 1.1±0.2 mg/mL for PC-12 cells (mean±SD, n=3) 

due to intrinsic cytotoxicity of the glucocorticoid drugs at the concentration range studied 

[40,41]. Association of MPS with TBC-COOH led to some decrease in IC50 value, which 

was particularly profound for SH-SY5Y cells. The IC50 of TBC-COOH/MPS was almost 

0.3±0.1 mg/mL for SH-SY5Y cells and 0.9±0.1 mg/mL for PC-12 cells in terms of MPS 

(Fig.4), indicating that the formulated MPS at least preserves its bioactivity in vitro. 

An almost 3-fold increase in the overall effect of TBC-COOH/MPS on viability of SH-

SY5Y cells could be explained by enhanced cellular uptake of the mixed micelles compared 

ACCEPTED M
ANUSCRIP

T



16 

 

with the unbound glucocorticoid. MPS is considered to have a relatively low permeability 

across cellular membranes at submillimolar level [42]. Increased diffusion of MPS across 

the plasma membrane at higher millimolar concentrations seems to promote its cytotoxicity 

(Fig.4). Entrapment of MPS within the mixed micelles was found to enhance its effect on 

SH-SY5Y cells predominantly at lower submillimolar range (Fig.4A), which was attributed 

to improved cellular accumulation of the formulated MPS. 

The enhancing effect observed is likely to result from endocytotic uptake of TBC-

COOH/MPS micelles, which is typical for polymeric micelles of similar size [43]. These 

data suggest that association of MPS with TBC-COOH into the mixed micelles increases 

cellular penetration of the glucocorticoid to different extents depending of a specific cell 

type.  

 

3.4. Antiradical activity of TBC-COOH/MPS  

In view of the established antioxidant activity of MP [44,45], radical-scavenging 

properties of the formulated MPS were evaluated. A pre-optimized fluorescent assay based 

on the Fenton-like reaction between H2O2 and CoCl2 was applied as detailed in [46]. The 

reactive oxygen species (ROS), such as the hydroxyl radical generated in the reaction were 

detected by using the DCFDA probe. 

Fig.5A shows the inhibitory effect of MPS and TBC-COOH/MPS at different 

concentrations on ROS production in the prooxidant CoCl2/H2O2 reaction. MPS suppressed 

ROS generation by almost 50% at a concentration as high as 1.6 and 3.1 mg/mL. The 

inhibitory activity of MPS decreased with concentration in the range from 0.8 to 0.1 

mg/mL, where the effect was similar to that of TBC-COOH/MPS. At a concentration of 

MPS of 3.1 mg/mL, the TBC-COOH/MPS formulation inhibited ROS generation to a much 

higher extent, namely, almost to 74% value compared with the unformulated MPS (Fig.5A). 

These data demonstrate that the TBC-COOH copolymer is capable of promoting the 

antiradical activity of MPS in the prooxidant reaction (Fig.5A) presumably by diminishing 

intramolecular interactions of the glucocorticoid and increasing its effective concentration. 

Reactivity of the formulated MPS seems to be supported by a small size of the mixed 

micelles and a high molar ratio of MPS to TBC-COOH in the formulation.  

In vitro antiradical activity of the drug formulations was further assessed on PC-12 cell 

monolayers in a 96-well microplate format. The cells were pre-stained with DCFDA and 
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subjected to H2O2-induced oxidative burst. In addition to MPS, DXM was used for 

comparison because of its relatively good permeability across cellular membranes [46]. 

After 1 h exposure, DXM at its upper soluble level of ~0.1 mg/mL (~0.3 mM) was found to 

decrease cell fluorescence by ~25%, indicating partial inhibition of ROS formation in the 

cells treated (Fig.5B).  

MPS did not significantly affect the fluorescent signal at a 10-fold higher concentration 

of 1.2 mg/mL (2.5 mM) (p<0.05) which was attributed to its lower intracellular penetration 

compared with DXM. The antioxidant effect of DXM, however, was only slightly enhanced 

in the composition with TBC-COOH in contrast to the formulated MPS which exhibited the 

highest inhibitory action on the oxidative burst by almost 66% (Fig.5B). This enhanced 

effect of the TBC-COOH/MPS formulation could be explained by its improved cellular 

uptake compared with DXM and increased reactivity to ROS (Fig.4). 

These results highlight a possibility of enhancing antiradical activity of MPS in the 

composition with TBC-COOH. This effect is of interest in high-dose glucocorticoid therapy 

of traumatic and ischemic diseases accompanied by intense oxidative stress and 

inflammation. 

 

3.5. Cellular transport of MPS and TBC-COOH/MPS  

Analysis of pharmacokinetics of drugs formulations in vitro and in vivo is an important 

task. Different mass spectrometry (MS) techniques coupled with gas chromatography 

[48,49] and liquid chromatography (LC) [50–53] have been proposed to quantify the 

glucocorticoids in body fluids and tissues. Among them, LC-tandem MS (LC-MS/MS) with 

triple quadrupole detection and selected reaction monitoring mode is a sensitive technique 

which is particularly useful for pharmacokinetic applications [54–56]. The detection limits 

for MP in biological matrices reported were 7.2 ng/mL (plasma) [55], 0.05 ng/g (brain 

tissue) [53]. 

The QTRAP 6500 LC-MS/MS system was used to detect intracellular levels of the 

glucocorticoids after a short-term exposure of SH-SY5Y cells to MPS and TBC-

COOH/MPS. Fig.6S (SM) shows the mass spectra of pure MPS as well as its metabolite MP 

generated upon chemical or enzymatic cleavage of the succinate group [57]. The precursor 

ion for MPS was registered at 475.1 m/z. According to multiple reaction monitoring (MRM) 

transition, five ion products of MPS were selected for analysis of the glucocorticoid as 
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follows (m/z): 321.2 (quantifier), 253.2, 185.0, 161.1, 90.9. The same parameters for MP 

were as follows (m/z): the precursor ion 375.2, ion products 161.1 (quantifier), 185.0, 135.1, 

90.9.  

The LC-MS peak area was detected as a signal to quantify the analytes within the 

concentration range from 5 nM to 500 µМ (from 2.4 ng/mL to 237 µg/mL). Linear 

relationships between MPS (MP) concentrations (x) and the signal (y) were observed within 

the range from approximately 0.5 to 250 µМ with fitted equations being y=2.7098×105x 

(r=0.9932) for MPS and y=3.8005×105x (r=0.9616) for MP. This calibration was far above 

the detection limit but sufficient for in vitro analysis. 

Pregrown adhered SH-SY5Y cells were incubated with MPS or TBC-COOH/MPS for 

1.5 h at glucocorticoid concentrations of 1.3 and 6.5 mM. Following the incubation, the 

cells were lysed and the drugs were extracted as detailed in the section 2.8.1. A 

representative MRM chromatogram of MPS and MP with a retention time of 2.32 and 2.51 

min, respectively, is provided in Fig.7S (SM). Fig.6 shows mean intracellular concentrations 

of MPS and MP as well as total MPS+MP level detected in cell lysates (100 µL of lysate of 

106 cells) for two extracellular MPS doses applied. 

Both the intracellular level of MPS and MP and their ratio were found to be dependent on 

the dose applied. At MPS concentration of 6.5 mM, the glucocorticoid was predominantly 

detected in the cells in its succinylated form (53.1 µM and ~89% of the total MPS+MP 

level), whereas at a 5-fold lower MPS concentration (1.3 mM), the intracellular level of 

MPS was 9.8 µM (~74% of the total MPS+MP level) (Fig.6). Hence, the total intracellular 

MP concentrations (MPS+MP) for 6.5 and 1.3 mM extracellular MPS doses differed by a 

factor of ~4.5.  

These results indicate that at the doses studied transport of MPS into the cells is 

controlled by passive diffusion. The intracellular glucocorticoid is predominantly revealed 

in the esterified form, although some decrease in MPS/MP ratio occurs when extracellular 

MPS concentration is reduced from 6.5 to 1.3 mM (Fig.6). This is in accordance with 

observations of the relatively slow intracellular hydrolysis of MPS [42]. 

No statistically significant difference in the intracellular content of the glucocorticoid was 

observed for free and formulated MPS at a concentration of 6.5 mM (Fig.6A). Hence, at this 

concentration, the TBC-COOH/MPS micelles are characterized by the same intracellular 

uptake as free MPS. At lower MPS concentration of 1.3 mM, an increase in the 
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glucocorticoid level was observed in the cells treated with the the formulated MPS (Fig.6B). 

The intracellular glucocorticoid concentration was increased by a factor of 1.52, 1.74 and 

1.58 for MPS, MP and MPS+MP, respectively. This increase is consistent with the above 

presented data on enhanced cytotoxic (Fig.4) and antioxidant activity (Fig.5) of the TBC-

COOH/MPS micelles. 

Together, our results suggest increased cellular availability of the TBC-COOH/MPS 

micelles at concentrations of MPS which do not favor drug diffusion across the plasma 

membrane. Considering the cytosolic and nuclear localization of the glucocorticoid 

receptors [1], effective intracellular delivery of MPS is prerequisite to its bioactivity. 

Our study shows that the TBC-COOH/MPS nanoformulation is characterized by a 

relatively high availability and activity at molecular and cellular levels (Figs. 4–6). 

Considering the shown ability of TBC-COOH to enhance permeability of spinal cord tissues 

[25], we believe that the formulation developed can be used for local delivery of MPS in 

acute spinal cord injury as well as other traumatic and inflammation-related diseases. 

In view of the chemical stability of TBC-COOH in aqueous solution and its self-

assembling with MPS, the formulation can be potentially prepared in situ, e.g. by mixing 

lyophilized MPS and presolubilized TBC-COOH in appropriate parenteral forms, such as 

Solu-Medrol (Pfizer). Our study provides incentive for further preclinical studies into the 

suitability of the TBC-COOH/MPS nanoformulation for the glucocorticoid therapy. 

 

4. Conclusions  

We have, for the first time, developed a uniform and stable micellar formulation of 

methylprednisolone succinate by its self-assembling with the chemically modified EO/PO 

copolymer (micelle size=19.6 nm, PDI=0.1, ζ= –28 mV). The carboxylated trifunctional 

block copolymer with improved physicochemical, biocompatible and penetration enhancing 

properties was used to form mixed micelles, which are characterized by high encapsulation 

efficacy and cellular availability of MPS. Primary study of the formulation demonstrated its 

increased cellular uptake and antiradical activity to that of free MPS. LC-MS/MS analysis 

of cellular transportation and hydrolysis of MPS using QTRAP 6500 system was optimized, 

which will be further extended for in vivo study of the pharmacokinetics of mixed micelles. 
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Figure captions 

 

Fig. 1. Representative distributions of the hydrodynamic diameter of block copolymers and 

their compositions with glucocorticoid drugs. (A) Pluronic L121, (B) trifunctional block 

copolymer (TBC), (C, E, F) TBC-COOH, (D) Pluronic F127. (A–D), (F) 

methylprednisolone succinate (MPS), (E) methylprednisolone (MP), dexamethasone 

(DXM). (○) pure copolymer solution; (□) copolymer/glucocorticoid composition. 

Concentrations (A–D), (F): copolymers 5 mg/mL, MPS 31.3 mg/mL, (E): all components 

0.1 mg/mL. 

Fig. 2. (A) Relationships between (○) hydrodynamic diameter (HD), (□) particle dispersion 

index (PDI) of TBC-COOH/MPS micelles upon serial dilution. Initial concentrations: TBC-

COOH 5 mg/mL, MPS 31.3 mg/mL. The critical concentration for disruption of the micellar 

system is indicated by the vertical arrow. (B) Effect of temperature on HD of TBC-

COOH/MPS micelles.     
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Fig. 3. Atomic force microscopy images of (A) TBC-COOH and (A, B) TBC-COOH/MPS 

micelles spread onto mica surface. The discrete micelles (left column, arrows) and their 

height profile (right column) are shown in (B).  

Fig. 4. Concentration–cell viability curves for (○) methylprednisolone succinate (MPS) and 

(□) TBC-COOH/MPS micelles. SH-SY5Y and PC-12 cells were pre-cultured with 

compounds for 7 h followed by MTT assay (72 h). The micelles were prepared at 1:6.3 

weight ratio; starting concentration of MPS in the medium is 5 mg/mL. The data were fitted 

using ‘dose response/sigmoidal’ function (OriginPro 8 software) y=A1+(A2-

A1)/(1+10^((IC50-x)*p)), where y is viability (%), x is MPS concentration, A1 is the bottom 

asymptote, A2 is the top asymptote (limited to 100%), IC50 is the half-maximal inhibitory 

concentration, p is Hill slope. R-squared for the fit is 0.99 and 0.71 for SH-SY5Y and 0.93 

and 0.96 for PC-12 cells for MPS and TBC-COOH/MPS, respectively. 

Fig. 5. Inhibitory effect of glucocorticoids and TBC-COOH/glucocorticoid compositions on 

H2O2-induced generation of oxygen radicals (A) in cell-free reaction with cobalt chloride 

and (B) in treated PC-12 cells. For (A), 100% corresponds to Co/H2O2 reaction without 

effectors. TBC-COOH/MPS micelles were prepared at 1:6.3 weight ratio. For (B), 1 – 

control (H2O2-treated cells without effectors), 2 – MPS, 3 – DXM, 4 – TBC-COOH/MPS, 5 

– TBC-COOH/DXM. Concentrations (mg/mL): 1.2 (MPS), 0.1 (DXM), 0.2 (TBC-COOH). 

Mean±SD (n=3) are shown. Oxygen radicals were detected by using DCFDA probe; 

DCFDA-stained PC-12 cells were incubated with drug formulations for 1 h. 

Fig. 6. Concentration of methylprednisolone succinate (MPS) and methylprednisolone (MP) 

in extract of SH-SY5Y cells exposed to MPS and TBC-COOH/MPS micelles at MPS 

concentrations of (A) 6.5 mM; (B) 1.3 mM. Mean±SD are shown, *p<0.05, n=6, ~106 cells 

per 100 µL of extract. 
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