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Abstract

A transient axially symmetric two-phase vortex-ring flow is investigated using
the one-way coupled, two-fluid approach. The carrier phase parameters are
calculated using the approximate analytical solution suggested by Kaplanski
and Rudi (Phys. Fluids vol. 17 (2005) 087101-087107). Due to the vorti-
cal nature of the flow, the mixing of inertial admixture can be accompanied
by crossing particle trajectories. The admixture parameters are calculated
using the Fully Lagrangian Approach (FLA). According to FLA, all of the
dispersed phase parameters, including the particle/droplet concentration, are
calculated from the solution to the system of ordinary differential equations
along chosen particle trajectories; FLA provides high-accuracy particle num-
ber calculations even in the case of crossing particle trajectories (multi-valued
fields of the dispersed media). Two flow regimes corresponding to two dif-
ferent initial conditions are investigated: (i) injection of a two-phase jet; and
(ii) propagation of a vortex ring through a cloud of particles. It was shown
that the dispersed media may form folds and caustics in these flows. In
both cases, the ranges of governing parameters leading to the formation of
mushroom-like clouds of particles are identified. The caps of the mushrooms
contain caustics or edges of folds of the dispersed media, which correspond
to particle accumulation zones.
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1. Introduction

Two-phase vortex-ring flows are widely observed in engineering and en-
vironmental conditions [1, 2], including direct injection internal combustion
engines [3]. In such flows, the admixture forms high concentration regions
with folds (local zones of crossing particle/droplet trajectories, hereafter re-5

ferred to as particles) and caustics. The Eulerian approaches cannot describe
such regions with reasonable accuracy, since these approaches are based on
the assumption of single-valued fields of the particle concentration and ve-
locities. Ferry and Balachandar [4] showed that the condition for uniqueness
of the particle velocity field is related to the particle response time and the10

maximal compressional strain of the dispersed phase flow. This uniqueness
was shown to be expected for small compressional strains, and short parti-
cle response times, which correspond to small particle Stokes numbers. As
shown by Healy and Young [5], the only method capable of calculating the
particle concentration field in the case of multi-valued admixture parameter15

fields, without using excessive computer power, is the one suggested by Os-
iptsov [6], known as the Fully Lagrangian Approach (FLA). At the edge of
a local region of crossing particle trajectories (caustics), the particle number
density has a singularity. This is a well-known feature of the mathematical
model of the collisionless continuum of point particles (see details in [7]). In20

the latter paper, typical examples of flows with singularities in the particle
number density field were analysed. It was shown that for an integrable sin-
gularity of particle number density, at the singular points the mean distance
between the particles remains finite and the model of collisionless particles
remains valid. Our study is focused on further investigation of these types25

of flows based on the previously developed vortex ring models for the carrier
phase and the Fully Lagrangian Approach (FLA) for the dispersed phase.
Particular attention is paid to the details of the mixing process with regions
of high particle concentration, which can potentially lead to the formation of
unfavourable zones of high fuel vapour concentration in internal combustion30

engines, when particles are identified with fuel droplets.

2



Vortex-ring flows have been extensively studied theoretically and experi-
mentally [1, 2, 8, 9, 10, 11, 12, 13, 14]. Theoretical studies have been mainly
focused on vortex rings in the limits of high [10, 11] and low [15, 16] Reynolds
numbers based on the initial velocity circulation and the ring radius (see [17]35

for an overview of vortex ring propagation models). In [18], the analytical
solution suggested by Kaplanski and Rudi [19] was applied to the analy-
sis of particle dynamics and mixing in an oscillating vortex pair, using the
conventional Lagrangian approach. An alternative approach to simulation
of the dynamics of particles in a 2D vortex pair formed by a plane jet, us-40

ing the Fully Lagrangian Approach (but not the Kaplanski-Rudi solution) is
described in [20].

Investigation of particle-laden vortex-ring flows is also important in stud-
ies of inertial-particle accumulation in turbulent flows. Yang and Shy [21]
investigated particle distribution in turbulent flows experimentally, while45

Squires and Eaton [22], Goto and Vassilicos [23], Chen et al. [24], and Sol-
dati and Marchioli [25] addressed it theoretically. These studies show that
admixture distribution in turbulent flows crucially depends on the vortex
structures. In the cases where the density of the particle material is higher
than the density of the carrier phase, accumulation zones were shown to be50

formed on the edges of intense local vortices. These findings agree with the
results of experimental and theoretical studies of the interactions of particles
with vortex structures [26, 27, 28]. Foster, Duck, and Hewitt [27] studied
particle concentrations in the framework of the Eulerian approach. Soldati
and Marchioli [25] used Lagrangian tracking together with statistical tools55

in order to quantify particle segregation. Lebedeva and Osiptsov[28] used
FLA to calculate particle number density fields in a steady-state, axially
symmetric, tornado-like flow.

In the present study, a two-phase vortex-ring flow is considered in the
framework of the two-fluid (inter-penetrating continua) approach [29]. Ac-60

cording to this approach, a cloud of particles is described using continuum
values of velocity and number density of the dispersed media. In contrast to
previous studies, the approach used in our paper is based on the Kaplanski-
Rudi [19] analytical solution for the carrier phase and the Fully Lagrangian
Approach for the dispersed phase. The choice of such a combined (analytical65

and numerical) approach is supported by the fact that in the flow considered,
the mixing process can be accompanied by crossing particle trajectories, the
onset of local zones of multi-valued particle parameters, caustics and particle
accumulation regions. The analytical solution for the carrier phase and the
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use of FLA for the dispersed phase allows us to calculate particle number70

density correctly with high accuracy. Our analysis is focused on an axially
symmetric vortex ring rather than a plain vortex pair flow considered earlier
in [28]. The Kaplanski-Rudi [19] analytical model was compared against DNS
simulations in [13]. Analytical and numerical models showed good agreement.
However, it is not clear if the combination of the analytical solution based on75

the self-similar variables with FLA could be applicable to simulate two-phase
vortex ring flows.

The mathematical model of the two-phase vortex ring flow, used in the
analysis, and mathematical formalism of the Kaplanski-Rudi model are dis-
cussed in Section 2. In Section 3, two-phase jet injection and the propagation80

of a vortex ring through a cloud of dust are considered. The main results of
the paper are summarised in Section 4.

2. Formulation of the problem

We consider an axially symmetric transient flow of a two-phase gas-
particle mixture, interacting with a vortex ring, and introduce a cylindrical85

coordinate system as shown in Fig. 1. The vortex ring propagates along the
z-axis (the axis of symmetry); at the initial instant of time the vortex ring
is assumed to be confined by the z = 0 plane, R0 is the initial vortex ring
radius.

The problem is studied in the framework of the one-way coupled, two-fluid
approach [29]. The carrier phase is an incompressible viscous gas, described
by the Navier-Stokes equations. The particles are assumed to be spheres of
identical radii and masses, treated as a pressureless continuum; the particle
mass loading is assumed to be small and the effects of the admixture on the
carrier phase are ignored. We took into account the effects of the gravity
force and the aerodynamic drag approximated by the corrected Stokes drag
force [30]. The correction takes into account the effect of finite Reynolds
numbers of the flow around a particle (Red). The expression for the total
force acting on a particle is presented as [30]:

f = 6πσ∗µ (v∗ − v∗

d)χd +mg, (1)

where χd = 1+Re
2/3
d /6, Red = 2ρσ∗ |v∗ − v∗

d|/µ, g is the acceleration due to90

gravity; the asterisk indicates the dimensional parameters; subscript ‘d’ refers
to the dispersed phase, ρ and µ are the gas density and dynamic viscosity,
respectively; σ∗ is the particle radius.
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The following non-dimensional parameters are introduced:

r(d) =
r∗(d)

R0
, v(d) =

R0

Γ0
v∗

(d), t =
Γ0

R2
0

t∗, nd =
n∗

d

nd0
, (2)

where the carrier phase (parameters without subscript) and the dispersed
phase (with subscript ‘d’) coordinates and velocities are normalised using the95

same length and velocity scales; r = (r, z) , rd = (rd, zd) , v = (u, v) , vd =
(ud, vd), Γ0 is the initial circulation of the vortex ring, nd0 – characteristic
value of the initial number density.

Kaltaev [15] obtained an analytical solution to the vorticity equation
corresponding to the Stokes flow (Re = ρΓ0/µ = 0) for the case, when at the
initial instant of time the vorticity distribution is set as ζ = δ (z) δ (r − 1)
(see also [31]). In the reference frame fitted to the vortex ring, this solution
can be presented as:

ζ =
1

4
√
π
t−3/2 exp

(

−z2 + r2 + 1

4t

)

I1

( r

2t

)

,

where I1 is the modified Bessel function.
Since the governing Stokes equation is linear, the expression for the vor-

ticity distribution in the stationary frame of reference can be rewritten as:

ζ =
1

4
√
π
t−3/2 exp

(

−(z − zvc)
2 + r2 + 1

4t

)

I1

( r

2t

)

, (3)

where zvc = zvc (t) is the position of the vortex centroid.100

Kaplanski-Rudi [19] suggested to generalise Solution (3) to the case of
small but finite Reynolds numbers based on the initial velocity circulation
and the ring radius and rewrite it as (cf. [32]):

ζ =
Re3/2

4
√
π
t−3/2 exp

(

−Re
(z − zvc)

2 + r2 + 1

4t

)

I1

(

Re
r

2t

)

. (4)

Solution (4) can be derived from Equation (3) by rescaling time t̃ = t/Re,
Re = ρΓ0/µ. This solution was studied in a number of papers, e.g. [16, 19, 32]
to name a few. Kaplanski and Rudi [33] show that Solution (4) becomes a
Gaussian distribution of vorticity and Phillips self-similar solution in the
limits of

√
t̃ =

√

t/Re → 0 and
√
t̃ =

√

t/Re → ∞, respectively. These105
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correspond to the initial stage of a vortex ring development and its decay
stage, respectively.

In this case, the expressions for the stream function (Ψ) and the transla-
tional velocity (Vvc) were presented as [19]:

Ψ = −r
√
Re

4
√
2t

∞
∫

0

F

(

x,
√
Re

z − zvc√
2t

)

J1

(√
Re

x√
2t

)

J1

(√
Re

rx√
2t

)

dx, (5)

F (x, y) = exp (xy) erfc

(

x+ y√
2

)

+ exp (−xy) erfc

(

x− y√
2

)

;

Vvc =

√
Re

4
√
2t
t−1/2

[

3 exp

(

−Re

4t

)

I1

(

Re

4t

)

+
Re

24t
2F2

({

3

2
,
3

2

}

,

{

5

2
, 3

}

,−Re

2t

)

−

−3Re

10t
2F2

({

3

2
,
5

2

}

,

{

2,
7

2

}

,−Re

2t

)]

,

(6)
where J1 is the Bessel function of the first kind, 2F2 is the generalised hyper-
geometric function.

The vortex ring translational velocity (6) was shown to be in good agree-110

ment with the results obtained for high and low Reynolds numbers of the flow
based on the initial velocity circulation and the ring radius in the limiting
cases t → 0 and t → ∞ [16].

Solution (5) is not a rigorous solution to the nonlinear NavierStokes equa-
tion. However, in a number of papers, including [16, 34, 35], it was shown115

that the integral characteristics based on this solution, such as translational
velocity Vvc and energy, are very weak functions of the Reynolds number for
all times. The predictions of the Kaplanski and Rudi model were verified
against the predictions of direct numerical simulations (DNS) and demon-
strated satisfactory accuracy (see [34] for the details).120

In the present study, we use Solutions (5) and (6) in order to obtain
a qualitative description of two-phase vortex-ring flow in the case of finite
Reynolds numbers based on the initial velocity circulation and the ring ra-
dius.

The dispersed phase is modelled using the Fully Lagrangian Approach [6],125

which makes it possible to calculate all of the dispersed phase parameters
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including number density, from the solutions to the systems of ordinary dif-
ferential equations along chosen particle trajectories:

ndrd |J | = nd0rd0 (7)
∂rd
∂t

= vd,
∂vd

∂t
= 1

Stk
(v − vd)χd +

1
Fr2

ez, (8)
∂Jij
∂t

= qij , (9)
∂qij
∂t

= 1
Stk

(

∂vi
∂r
Jrj +

∂vi
∂z
Jzj − qij

)

χd +
1

Stk
(vi − vdi)

∂χd

∂xj0
, (10)

∂χd

∂xj0
=

1

9

Red0

Re
1/3
d

1

|v− vd|

(

(u− ud)

(

∂u

∂r
Jrj +

∂u

∂z
Jzj − qrj

)

+

+ (v − vd)

(

∂v

∂r
Jrj +

∂v

∂z
Jzj − qzj

))

,

where

Jij =
∂xi

∂xj0

, qij =
∂vdi
∂xj0

,

Stk =
mΓ0

6πσµR2
0

, Fr =
Γ0

R0

√
gR0

, Red = Red0 |v − vd| , Red0 =
2σΓ0

R0ν
,

indices i and j take values of r or z; ez is the unit vector along the z-axis; rd0,
zd0 are the Lagrangian variables (the coordinates of initial particle positions);
rJ is the Jacobian of the transform from the Eulerian to the Lagrangian coor-
dinates. (7) is the continuity equation rewritten in the Lagrangian variables;
(8) are momentum balance equations along chosen particle trajectories; (9)
and (10) are additional equations to calculate the Jacobian components, they
are derived from (8) by differentiation with respect to rd0 and zd0. The initial
conditions are presented as:

rd = rd0, zd = zd0,

ud = ud0, vd = vd0, nd = 1,

qij = 0, Jij = δij ,

(11)

where δij is Kronecker delta. The expressions for the velocity components
and their derivatives follow from (5).130
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3. Results of numerical simulation

As mentioned above, Solution (5) and its analogue in the limiting case
when Re → 0 were studied in [15, 19, 32]. Typical time evolutions of the
vortex ring velocity and the position of the vortex centroid (zvc) are shown
in Fig. 2, Re = 100. The position of the vortex centroid is calculated based
on integrating Expression (6):

Vvc =
dzvc
dt

, zvc (0) = 0, (12)

(z-component) and from the solution of the equation ∂ζ/∂r = 0 (r-component).
The latter equation can be rewritten as

Re r2vc + 2t

Re rvc
=

I0 (0.5Re rvc/t)

I1 (0.5Re rvc/t)
. (13)

At the initial stage, the vortex ring propagates with higher velocity and
it’s radius is almost constant. For the case of Re = 100 (see Fig. 2), the
decay of the vortex ring begins at t ≈ 75, and is characterised by low vortex
ring propagation velocity and slow growth of the vortex ring radius. This is135

consistent with the analysis of Solution (4) at the limits of
√
t̃ =

√

t/Re → 0

and
√
t̃ =

√

t/Re → ∞ (see Section 2).
We considered two problem formulations of the two-phase flow corre-

sponding to two initial conditions. The first problem is the injection of a
two-phase jet into a vortex ring. The second problem is the vortex ring140

propagation through a cloud of particles. Since Solution (5) has a singu-
larity at t = 0, the initial time instant was taken as t = t0 > 0. It was
assumed that Re = 100. ’Gas-particle’ systems with two types of particles
were considered: particles with lower inertia (Stk = 0.32,Red0 = 1) and
higher inertia (Stk = 8,Red0 = 5) (see Table 1 for gasoline droplets and air145

mixture; Re = 100; gasoline is approximated by a single-component fuel,
iso-octane). System (7)–(10) of ordinary differential equations with initial
conditions (11) was solved using the 4-th order Runge-Kutta method [36]
for 441 and 861 chosen particle trajectories, for the case of jet injection and
interation of a cloud of particles with the vortex ring respectively. In Sys-150

tem (7)–(10), the values of the carrier phase velocity components and their
derivatives (improper integrals) were calculated numerically.

The clouds of particles are subjected to significant deformations, leading
to the formation of regions with high values of number density. The regions
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σ∗, µm Stk Red0
50 8 5
10 0.32 1

Table 1: The droplet Stokes and Reynolds numbers.

of singularity of the particle number density are formed at the edges of the155

folds of the dispersed phase concentration field.

3.1. Two-phase jet injection with formation of a vortex ring

In order to simulate two-phase injection using Solution (5) and Sys-
tem (7)–(10) with initial conditions (11), various initial conditions for the
dispersed phase were considered. It was found that two-phase vortex rings
(mushroom-like clouds of particles) are formed if at initial time instant t0
the z−component of particle velocity is set greater than that of the carrier
phase. The results are presented in Figs. 3 and 4 for the following initial
conditions:

t0 = 0.01, rd = rd0, zd = zd0,

ud = 5u (0, zvc (t0) , t0) , vd = 0, nd = 1,

qij = 0, Jij = δij .

(14)

The highest degree of shading corresponds to the highest value of particle
number density.

The two-phase flows with two particle sizes were considered. The cloud of160

particles with higher inertia propagates with higher velocity; it is subjected
to smaller deformations and lesser number density variations. For example,
in the case of Stk = 8, the number density is almost uniform: its variation is
within 10%, with higher values in the core and lower values at the periphery of
the jet (see Fig. 3). In the case of smaller particles, the cloud of particles takes165

a mushroom-like form. In the case of Stk = 0.32 (Fig. 4), the particle number
density in the stalk of the mushroom is approximately 1; the highest particle
concentration is observed in the cap region, where the particle number density
reaches its maximum but finite value of 43 (the values of nd were capped at
4 in Figs. 3–5 to improve visualisation of the results). The number density170

values are higher towards the periphery of the cap. In both cases, the clouds
of particles overtook the vortex centroid and moved ahead of it. The effect
of gravity leads to a positional shift of the cloud without affecting its shape;
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their number densities remain the same as in the case when gravity was
ignored.175

Note that in both cases shown in Figs. 3 and 4, one can clearly see that
the locations of the vortex ring-like structures identified by means of the
particle number density fields are rather different from the locations of the
vortex rings formed in the carrier phase. Thus the location of the carrier
phase vortex rings cannot be identified based on the analyses of particle180

number densities in the general case. Thus, the reliability of the results of
our previous analyses (e.g. [3]), where the location of the regions of maximal
vorticity of the vortex ring-like structures in gasoline engines was identified
based on the analysis of the particle velocities, can be questioned.

To investigate the effect of non-homogeneous initial distribution of parti-
cle number density, we assume that:

nd(r, z, 0) =
1

1 + exp(10(r − 0.9))
(15)

The number density fields predicted for the cases of homogeneous and185

inhomogeneous initial distributions are compared in Fig. 5. As it can be seen
from the figure, initial inhomogeneity of particle number density distribution
leads to non-uniform distribution of this number density with radius along
the centreline of the jet. The highest particle number density is observed
in the periphery of the cap, similarly to the case of uniform initial number190

density distribution. The values of the number density are close in both
cases.

The effect of particle inertia was studied for 0.02 ≤
√

ρ/ρd ≤ 0.04 (sub-
script d refers to dispersed phase (particles)), and 0.01 ≤ Stk ≤ 100, which
corresponds to particles of various densities and sizes from a few to a few195

hundred micrometers. As follows from Figures 3-5 (and a number of similar
figures not shown in the paper), the shape of the jet only slightly depends
on the particle density. The effect of particle density is the most pronounced
for Stk ∼ 1 − 10. In the case of large particles (Stk ∼ 10 − 100), the cloud
of particles travels almost without deformation (see Fig. 4). The two-phase200

region turned out to be the broadest for Stk ∼ 1. The particles in the front
of the jet interact with the vortex and form a wide cap. Particles behind the
cap shift towards the axis and form a stalk of the mushroom-like two-phase
jet. The tail of the cloud is extended along the centerline, stretching the
cloud up to 10 times compared with the original cloud. The particle num-205

ber density remains around 1 in the tail and reaches its highest value in the

10



mushroom cap. In the case of small particles, Stk ∼ 0.01, the admixture
velocity relaxes to the carrier phase velocity while particles remain inside the
vortex ring. Therefore, the particles in this case move towards the centerline
and stay behind the vortex ring; as the two-phase region stretches along the210

centreline, admixture number density decreases.

3.2. Propagation of a vortex ring in a dusty gas

The second problem considered is the propagation of a vortex ring through
a cloud of particles. As in the first problem, the interactions of the vortex ring
with particles of high and low inertia were considered. The initial conditions
are assumed to be the following:

t0 = 0.2, rd = rd0, zd = zd0,

ud = 0, vd = 0, nd = 1,

qij = 0, Jij = δij .

(16)

The results of our numerical simulation are presented in Figs. 6–8. In the case
of high-inertia particles (see Figs. 6 and 7), the initially rectangular-shaped
cloud of particles deforms into a mushroom-like structure. The particles ini-215

tially located at the periphery move towards the centerline, forming a stalk.
The particles initially positioned closer to the axis of symmetry and closer
to the vortex ring are pushed to the periphery. The cloud of particles turns
inside out, so that the dispersed phase forms a fold. The time evolution of a
Lagrangian frame formed by the dispersed particles in interaction with the220

vortex ring is shown in Fig. 7. The particle number density forms a singu-
larity at the edge of the fold (see Fig. 7). The unbounded growth of particle
number density on the edges of local regions of crossing particle trajectories
(caustics) is a well known feature of the mathematical model of the collision-
less continuum of point particles. The FLA allows us to simulate two-phase225

flows in the case of multi-valued particle parameter fields (folds) and to cor-
rectly calculate particle concentration at the edges of the fold. Note that this
singularity of the particle concentration field is integrable and the assumption
of the collisionless flow of particles remains valid when the particle volume
fraction is sufficiently small. As shown in [7], for initial/characteristic parti-230

cle volume fractions below 10−5 the interparticle collisions can be neglected
even at the points of integrable singularities of nd (see [7] for further details).
Number densities higher than 4 are assumed to be equal to 4 in Figs. 7 and
8 to improve visualisation of the results. In the case of low-inertia particles
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(see Fig. 8), the particles initially positioned closer to the axis of symmetry235

are accumulated near a 2D surface. Thus the originally rectangular-shaped
cloud of particles deforms into a mushroom-like structure, similarly to the
case considered earlier. The regions with the highest particle number density
are formed at the cap sides.

As mentioned above, the particle number density increases without bound240

on the caustics (edges of the folds of the particle concentration field). Thus,
one can expect that, with an increase in the initial volume fraction of the
admixture, particle interactions may become possible in these regions. These,
however, are not taken into account within the framework of FLA.

As in the cases shown in Figs. 3 and 4, one can clearly see in Figs. 7245

and 8 that the locations of vortex ring-like structures identified based on the
particle number densities are rather different from the locations of vortex
rings formed in the carrier phase.

The interaction of a cloud of particles with vortex rings and particle trans-
port in a vortex-ring flow take place in many environmental flows (flow of250

sediment particles in rivers, transport of sand, dust, pollutants in the air,
distribution of plankton). The results presented in our paper agree qualita-
tively with the 2D simulation of a plane vortex pair propagating in a cloud
of particles presented in [20] and with the experimental study of particle
transport in a vortex ring [26]. In the latter papers it was observed that255

heavy particles are pushed away from the regions with high vorticity and
accumulate near the edges of the vortex pair.

The Reynolds number for the fluid flow is based on the initial velocity
circulation and describes the intensity of the vortex ring. A flow with higher
or lower Reynolds number corresponds to a vortex ring with higher or lower260

intensity and higher/lower translational velocity. The velocity scale of the
flow is related to the initial circulation and therefore the particle Stokes
number is also related to the vortex ring intensity. The behaviour of the
high and low inertia particles qualitatively remains the same, taking into
account the scaling of the particle Stokes number.265

4. Conclusion

Using the Fully Lagrangian Approach (FLA) for the dispersed phase and
the Kaplanski-Rudi [19] analytical solution for the carrier phase, an axially
symmetric transient particle-laden flow in a vortex ring has been investigated.
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The FLA is believed to be the only approach to be able to correctly predict270

the particle concentration field in the flow with crossing particle trajectories.
It was shown that the Kaplanski-Rudi [19] analytical solution may be

used to simulate both injection of a two-phase jet with a vortex ring field and
interaction of a vortex ring with a cloud of particles if the particle inertia
parameter Stk ∼ 0.1 − 10. In both cases, the flow regimes leading to the275

formation of the two-phase mushroom-shaped structures with distinct zones
of particle accumulation are predicted. For both problem formulations, it was
shown that the two-phase ring-like structure position differs from the vortex
ring of the carrier phase. This is attributed to the admixture inertia. In the
case when particles are identified with fuel droplets directly injected into a280

combustion chamber, these zones of particle accumulation are expected to
lead to the unfavourable formation of zones of rich fuel vapour concentration.
It has been observed that in some cases, the dispersed medium forms folds
and caustics with singularities and local zones of particle accumulation in the
concentration fields. Accurate calculations of number density in these zones285

could not be performed if the analysis was based on the conventional rather
than the Fully Lagrangian Approach.
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Figure 1: Flow diagram of the vortex ring.
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Figure 2: Vortex centroid axial velocity (solid curve) and position in the axial direction
(dashed curve) versus time, (top); Vortex centroid position in the radial direction (bottom)
versus z; Re = 100.
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Figure 3: Evolution of the cloud of particles and their number concentration; positions of
the vortex centroid (diamond); Re = 100, Stk = 8; t = t0 = 0.01, t = 10, t = 50.
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Figure 4: Evolution of the cloud of particles and their number concentration; positions of
the vortex centroid (diamond); Re = 100, Stk = 0.32; t = t0 = 0.01, t = 10, t = 180.

19



0 2 4 6 80

1

2

0

1

2

0 2 4

z

ns

r

r

Figure 5: Admixture number density distribution for uniform (top) and non-uniform (bot-
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Figure 7: Evolution of the cloud of particles and their number concentration; positions of
the vortex centroid (diamond); Re = 100, Stk = 8.
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Figure 8: Evolution of the cloud of particles and their number concentration; positions of
the vortex centroid (diamond); Re = 100, Stk = 0.32.
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