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Alternatives to hydraulic drives that used on vehicles are necessary in order to reduce the 

Carbon dioxide ( 2CO ) emission and oil consumption. Hence better performance and efficiency 

of the vehicles can be achieved by using free piston engine, in which the piston reciprocate 
linearly with a permanent magnet linear generator (PMLG) without the need of a crankshaft. 
The PMLG has high performance, but suffering from the cogging force. The cogging force 
induces undesired vibration and acoustic noise and makes a ripple in the thrust force. 
Moreover, the cogging force deteriorates the control characteristics, particularly in terms of the 
position control and speed precisely. This paper proposes 
Somaloy to replace the laminated silicon steel sheets in order to reduce the cogging force in a 
PMLG. Through a finite-element analysis, it has been shown that, the stator core made of 
Somaloy minimizes the cogging force of the PMLG, moreover, giving larger flux-linkage and 
back-electromotive force 
(B-EMF), respectively.  
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1. Introduction 

 

Significant amounts of Carbon dioxide ( 2CO ) emission and other pollutants are 

produced by the extensive use of fossil fuels as an energy source for both land and  

sea-based transport [1]. Within the automotive industry, there are many kinds of research 

have been done to reduce the oil consumption which causes environmental problems and 

high cost. The hybrid electric vehicle is one of currently studied solutions [2, 3]. 

The configuration of the conventional internal combustion engines powering the hybrid 

electric vehicles generally used the crank mechanism, which restricts the motion of the 

piston. Moreover, the major part of the total friction losses occurring in the conventional 

combustion engine because of the crank mechanism [4, 5]. Besides, the crank mechanism 

limits the range of the compression ratio of the engine. Hence better performance and 

efficiency of the conventional engine can be achieved by eliminating the crank mechanism. 

This can easily be realized by using free piston engine, in which the piston reciprocate 

linearly with PMLG without the need of a crankshaft [6-8]. 

The free-piston engine converter composed of a permanent magnet linear generator 

coupled to a free-piston engine. Recently, this technology is being a major of concern of  

a number of researchers worldwide. The flexibility and easy controllability as well as the 
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high efficiency of electrical machines,  make them an interesting concept [9, 10]. The 

growing interest of the automotive industry in the technology of electric hybrid vehicles is  

a driving force behind the interest in free-piston engine generators. The single piston and 

dual piston of free-piston engine generator designs have been reported. The use of the 

electric machine as a rebound device has been proposed in order to replace a bounce 

chamber in the single piston engine. The use of the electric machine in a motoring mode to 

aid engine control and for starting is possible by implementing an appropriate power 

electronics control [8, 11].  

Mainly, there are four different approaches to producing a linear energy conversion. The 

first approach is to use the electrostatic properties. Thus, a maximum force density of about 

16 N/m2 can be obtained. The second approach of which is of the interest for this study, is 

to produce a linear energy conversion by an electromagnetic way. The third and fourth 

approaches based on mechanical friction use the piezoelectric or magnetostrictive 

properties to interact with the translator [12]. 

The developments based on the PMLG are very likable owing to efficient 

electromagnetic performance, despite, suffers from the cogging force. This force produces 

due to the attraction between ferromagnetic core and magnetic with zero current in the 

winding of the machine [13, 14]. The periodic waveform of the cogging force is depending 

on the relative position of the translator. When the excitation current assigned to the 

winding of the machine, the cogging force will be added to a thrust force. The cogging 

force makes a ripple in thrust force. The ripple resulted by the cogging force will 

deteriorates the position control and precise speed in many applications. The low-speed 

applications are more suffering from such ripple; moreover, it produces undesirable 

acoustic noises and vibrations. Thus, at the design stage must be minimized [13]. Numbers 

of techniques have been used to reduce the cogging force in permanent magnet machines, 

but most of these techniques contribute to the reducing of the actual electromagnetic 

performance. Alternatively, air-cored PMLGs are preferred in terms of unavailability of 

cogging force, lightweight and simplicity but they have limitations in electromagnetic 

performance [15-17]. Table 1 gives the comparisons of the slotted and slotless linear 

electrical machines [18]. 

 

Table 1: Slotted versus slotless linear electrical machines 

Quantity Slotted  Slotless  

Higher efficiency at lower speed range √  

Higher thrust density √  

Lower input current √  

 Higher efficiency at higher speed range  √ 

Lower cogging force  √ 

Minimum cost of the winding  √ 

Less use of PM material √  

Minimum noise   √ 

 

An accurate and fast calculation of the magnetic field distributions created by the PMs 

are necessary for many electromagnetic machines, they can provide more efficient design 

and execution of such machines, subsequently, higher performance can be obtained [19]. 

However, numerous modeling methods are exist for prediction and analysis the 
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electromagnetic behaviour of the electric machines. These methods vary from simple and 

accurate to a complicated and time-consuming models [20]. The finite element analysis 

(FEA) is offering many features, thus, it is widely used for the modeling and simulation of 

the electrical machines. However, the FEM empowers us to perform a complicated analysis 

of electrical machines in a minimum estimation time. 

 This paper presents the electromagnetic analysis and cogging force investigation of  

a PMLG using two different ferromagnetic materials for the stator core by using finite 

element analysis (FEA) software ANSOFT Maxwell. 

 

2.  Problem formulation 

 

The FEA has been used to compute the magnetic field along the cross-section of the 

proposed generator. By the fact that, with the rare-earth magnet materials, a high magnetic 

field was possible to be achieved, especially, with the Halbach array configuration. 

However, in this study, the quasi-Halbach magnetization technique was selected for the 

moving-magnet, because it has the following advantages as compared with a conventional 

PM array [21, 22]: 

� The array of PMs does not require any backing steel magnetic circuit, and the PMs 

can be bonded directly to a non-ferromagnetic supporting tube, such as plastics or 

aluminum. 

� The power efficiency of the machine will be doubled because the fundamental field is 

stronger by a factor of 1.4 than in a conventional PM array. 

� As compared to a conventional PM array, the magnetic field is more sinusoidal.  

The picture of the Halbach array is shown in Fig.1 (a), and Fig.1 (b) shows the 

representation of the generated flux from the quasi-Halbach [21, 23].  

 

 

 

 

 

 

(a) Five PM-ring quasi-Halbach array 

 

 
(b) Magnet flux distributions of the Halbach array magnets 

Fig. 1. Quasi-Halbach magnetization and its magnetic flux distributions  
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The finite element two-dimensional (2-D) and three-dimensional (3-D) models adopted 

from ANSYS Maxwell simulation software for the proposed PMLG with laminated silicon 

steel and Somaloy stator core are shown in Fig. 2 and Fig. 3, respectively. The FPLG with 

single phase and long translator. It contains 6 coils and  6 slots. The translator is made of 

the neodymium-iron-boron (NdFeB) permanent magnet and it consists series of  

quasi-Halbach magnetized magnets. Quasi-Halbach magnetization provides higher air gap 

magnetic field distribution [24, 25]. The FEA is carried out for the PMLG with both 

materials; an axisymmetrical coordinate system with vector orientation for magnets has 

been adopted for the calculations. 

The FE mesh affects the FEA calculation, especially in terms of time and accuracy of 

the computation. Thus, when the automatic mesh was used, allowed for a faster simulation 

and shorter execution time than a fine mesh. Nevertheless, the computation accuracy is low 

because the number of degrees of freedom is low [26]. Therefore, the fine mesh has been 

assigned for both proposed designs. It can be concluded that, the automatic mesh is suitable 

for fast computing, but with low accuracy; whereas, the fine mesh is suitable for high 

accuracy, but the computing process will be slow. 

 

 
Fig. 2. Configuration of proposed PMLG with silicon steel lamination stator core (a) two-dimensional (b) three-

dimensional  

 

 
Fig. 3. Configuration of proposed PMLG with Somaloy stator core (a) two-dimensional (b) three-dimensional 

 

(a) 

(b) 

Stator core 

Translator 

Coils of the winding 

(a) 
(b) 



J. Electrical Systems 13-3 (2017): 489-502 
 

 493

Therefore, the magnetic field analysis is confined to two regions, namely the airspace 

region in which the permeability is 0µ , and the magnetic region in which the permeability 

is 0 rµ µ , rµ being the relative recoil permeability which for rare-earth PMs is close to unity. 

Therefore, for the magnetic flux density, B  in airspace region and magnetic region, 

respectively, can be expressed as [27, 28]  

                                                   0B Hµ=                                                                               (1) 

 

                                                0 0rB H Mµ µ µ= +                                                                  (2) 

The magnetization, M of the linear machine in the cylindrical coordinate system can be 

expressed as [27, 29, 30]  

                                               r r zz
M M e M e= +                                                                    (3) 

The magnetization distribution was expandable into Fourier series, with 
r

M  and 
z

M  

expressed as a function of z as in (4) and (5), respectively [14, 29].   

                                                
1,2,...

cosr rn n

n

M M m z
∞

=

= ∑                                                           (4) 

                                               
1,2,...

sinz zn n

n

M M m z
∞

=

= ∑                                                            (5) 

where 
rM  and 

zM  denoted the components of M in the radially and axially directions, 

respectively, and 2 /n lpm n Tπ= . 

When the flux waveform is known, it can be used to calculate the open-circuit voltage of 

the motor. Therefore, with a time-varying magnetic flux, ( )tφ , the induced voltage can be 

calculated as [23, 31]:  

                                 
( )

c

d t dB
e A

dt dt

φ
= − = −                             (6) 

where B is the magnetic flux density and A is the area that is occupying B . On the other 

hand, the thrust force for a given motor current can also be calculated from the 

electromagnetic power as the product of the EMF and winding current divided by the 

translator speed, tv . Therefore, TF  is quantified as in (7) [29, 32]:  

                                                    ( ) ( )c a
T E d a T d a

t

e i
F K z i K z i

v
= = =                                        (7) 

The dynamics of the system governing the armature movement of the proposed motor 

along the z-axis when the mass, mM , is moving at speed; tv with a damping coefficient, b , 

and spring elasticity, k , based on Alembert’s equation can be expressed as [33, 34]: 

                                                  ( )t
m t t T d aM

dv
bv k v dt K z i

dt
+ + =∫   (8) 

By substituting the value of TF from (7), equation (8) can be rewritten as: 
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                                                t
m t t TM

dv
bv k v dt F

dt
+ + =∫  (9) 

When the linear velocity is related to the displacement and time, the velocity of the 

translator can be expressed as [35]:  

                          d
tv

dz

dt
=  (10) 

By taking the integration of (9) and substituting the value of tv , it results in: 

                                            

2

2

d d
m d TM

d z dz
b kz F

dtdt
+ + =  (11) 

where dz ,
2 2

dd z dt , TK , ai  and ddz dt  are the displacement of the translator, linear 

acceleration, thrust force constant, coil current and velocity of the translator, respectively. 

The flux-linkage, cψ , in the winding can be obtained as 

                                                   
1

sinc c n d

n

m zψ φ
∞

=

=∑                               (12) 

where 

                                      
(2 )c rn dpn

c

n

N K K

m

π
φ =  (13) 

where cN and dpnK are the number of coil turns and the winding factor, respectively. 

 

 

3. Results and discussion 

 

In this study, the machine is running at no-load, the winding current is zero. The 

permeability into the magnets and the coils is 0
µ without demagnetization of the magnet. 

The magnetic properties of silicon steel lamination and Somaloy have been identified. The 

design specification and main dimensions of the proposed PMLG are tabulated in Table 2.  

 

Table 2: Design specification and main dimensions of PMLG 

Parameter Value Unit 

Magnet thickness 29.50 mm 

Mechanical air gap   1.00 mm 

Magnetic Remanence   1.14 Tesla 

Stroke 45.00 mm 

The total length 221 mm 

  

The analysis comparisons have been conducted based on two different outcomes, such 

as the flux line and flux density distribution in the generator. The outcomes of the analysis 

are further discussed as follows. Fig. 4 and Fig. 5 show the magnetostatic results for the 

flux lines and flux density distribution in the proposed design with silicon steel lamination 

using 2-D FEA. The quasi-Halbach provided the magnetization for the translator and 

created the flux line in round or closed loop pattern. From the indicator attached, there is  

a strong flux line created by the permanent magnet indicated by red and green lines. While 

the positive and negative value of the flux line just to illustrate the complete loop. Besides, 
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the flux density is also an important performance measure to ensure the performance of the 

PMLG. From Fig. 5, as per expected, the same location of strong flux lines will create 

strong flux density. It shows that flux lines are perpendicular with flux density. The FE 

mesh rebuilt at each position with refinement mesh nearly the air gap. The variation of the 

flux lines is from 0.00054 to 0.00054 weber, whereas the flux density varies from 0.0003 to 

2.5266 T. 

 

 
Fig. 4. Magnetic flux lines distribution with Somaloy stator core 

 

 
Fig. 5. Magnetic flux density distribution with Silicon steel laminations 

 

Fig. 6 and Fig. 7 show the flux lines and flux density distributions, calculated by 2-D 

FEA on a generator in which the translator has quasi-Halbach magnetized magnets and 

stator core made of Somaloy. The flux lines vary from 0.00054 to 0.00054 weber as can be 

observed, there is no difference between the flux lines in the generator for both materials, 

because the calculation has been carried at no load and there is no effect of the core 

material. The variation of the flux density is from 0.0004 to 2.8247 T, it can be observed 

more magnetic flux density has been distributed in the generator with Somaloy core. 
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Fig. 6. Magnetic flux lines distribution with Somaloy core 

 
Fig. 7. Magnetic flux density distribution with Somaloy core 

 

The comparison of the air gap magnetic flux density at zero translator’s displacement is 

shown in Fig. 8. It will be seen that, it is not much difference between the two 

ferromagnetic materials are used for the stator core of the PMLG, as average magnetic flux 

density of 0.7733 tesla and 0.7707 tesla have been obtained for silicon steel lamination and 

Somaloy, respectively. The same translator has been used in both cases. 
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Fig. 8. Comparison of the air gap magnetic flux distribution of the proposed PMLG with silicon steel lamination 

and Somaloy stator cores. 

 

The back-electromotive force (B-EMF) is a very useful parameter in the design of 

electrical machines because it enables the designer of estimating the efficiency and thrust 
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force. The amount of the magnetic flux which is developed by the magnets and links the 

winding is used to calculate the B-EMF of the machine. Fig. 9 shows the comparison of the  

B-EMF of the generator with both ferromagnetic materials. Moreover, Table III gives the 

comparison of rms B-EMF and average B-EMF for the generator with the materials that 

have been used for the stator core. It can be seen that the generator with Somaloy gives 

better performance. 
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Fig. 9. Comparison of no-load B-EMF waveforms at 1 m/s 

 

Table 3: Comparison of B-EMF of PMLG with silicon steel lamination and Somaloy stator core 

Material rms B-EMF Average B-EMF 

Silicon steel 13.32 V 10.55 V 

Somaloy 25.85 V 12.23 V 

 

Fig. 10 shows the comparison of flux-linkage in the winding of the generator for both, 

with silicon steel and Somaloy, it can be observed that the generator with Somaloy has  

a higher flux-linkage. Furthermore, Table 4 gives the average value and rms value of  

flux-linkage in the two cases. 
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Fig. 10. Comparison of no-load flux-linkage at 1 m/s 
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Table 4: Comparison of flux-linkage of PMLG with silicon steel lamination and Somaloy 

stator core 

Material rms flux-linkage Average flux-linkage 

Silicon steel 0.1165 wb 0.0093 wb 

Somaloy 0.1323 wb 0.0203 wb 

 

Winding inductance also one of the performance measures for the electrical machine, 

therefore, Fig. 11 shows the comparison of the winding inductance for the proposed PMLG, 

it can be observed that, the PMLG with Somaloy has higher winding inductance than the 

generator with silicon steel lamination. 
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Fig. 11. Comparison of winding inductance for the generator with two different stator core materials 

Cogging force in the PMLG leads to oscillations of the generator speed and therefore 

output voltage and power fluctuations. The cogging force corresponds to the force due to 

the shape of the teeth and the permanent magnets when the current in the coil of the 

machine is zero. This force its evaluation is very sensitive to the mesh. However, the 

preferred and accurate method to compute the cogging force, is the use of the transient 

solver with motion; because the mesh will remain unchanged for all the positions. 

Therefore, the stator is fixed and the translator will move with steps. Thus, only the 

magnetic field from the magnets is exist and then the effect of the slot will present. As the 

translator of the FPLG moved forward and backward, this effect was computed by using the 

FEA. Fig. 12 to Fig. 14 show the comparison of the cogging force resulted between the 

stator and moving magnet of the translator at different translator acceleration and under two 

different ferromagnetic materials for the stator core. The result is fluctuating between the 

positive and negative value of force. The result shows that the cogging force is reduced in 

the case of using Somaloy for a stator core of the PMLG at velocities 0.6 m/s, 1.0 m/s and  

2.0 m/s, respectively. 
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Fig. 12. Comparison of the tangential electromagnetic force component when the excitation current is zero and 

45.0 mm displacement of the translator, under a linear velocity of 0.6 m/s. 
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Fig. 13. Comparison of the tangential electromagnetic force component when the excitation current is zero and 

45.0 mm displacement of the translator, under a linear velocity of 1 m/s. 
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Fig. 14. Comparison of the tangential electromagnetic force component when the excitation current is zero and 

45.0 mm displacement of the translator, under a linear velocity of 2 m/s.  
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Therefore, the cogging force reduction in the proposed design with Somaloy stator core 

as compared with previous published similar design [36-38], but with different techniques, 

it can be clearly observed that this proposed design is superior in the term of the cogging 

force reduction. 

 

 

5. Conclusion 

 

This paper investigated the influence of ferromagnetic material of the stator core on the 

amount of induced cogging force in a free-piston permanent magnet linear generator 

(PMLG). The PMLG with laminated silicon steel and Somaloy is analyzed using FEA. 

Electromagnetic characteristics such as open-circuit magnetic field distributions, B-EMF, 

flux-linkage, and magnetic flux density are analyzed and presented. The cogging force 

investigation is carried out for PMLG with both ferromagnetic materials along with main 

dimensions and specifications have been given. It is found that the properties of the 

material have a significant influence on the cogging force reduction. Also, the velocity of 

the translator influences the cogging force dramatically. Moreover, from the comparisons 

between the PMLG with silicon steel laminations and PMLG with Somaloy, it has been 

found that the PMLG Somaloy showed a superior performance over the PMLG with silicon 

steel laminations. There is a much reduction of the cogging force of generator, and the next 

challenge is to do as much as it can minimize the cogging force in order to have better 

performance. Further, with the check for the fabrication availability, it is found that is 

difficult to fabricate such generator with silicon steel laminations rather than using 

Somaloy.  
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