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Abstract. Modern information society depends on reliable functionality of in-

formation systems infrastructure, while at the same time the number of cyber-

attacks has been increasing over the years and damages have been caused. Fur-

thermore, graphs can be used to show paths than can be exploited by attackers 

to intrude into systems and gain unauthorized access through vulnerability ex-

ploitation. This paper presents a method that builds attack graphs using data 

supplied from the maritime supply chain infrastructure. The method delivers all 

possible paths that can be exploited to gain access. Then, a recommendation 

system is utilized to make predictions about future attack steps within the net-

work. We show that recommender systems can be used in cyber defense by 

predicting attacks. The goal of this paper is to identify attack paths and show 

how a recommendation method can be used to classify future cyber-attacks. 

The proposed method has been experimentally evaluated and it is shown that it 

is both practical and effective. 

Keywords: Recommender systems, Cyber security, Attack graph, Exploit, 

Vulnerability, Attack prediction, Classification 

1 Introduction 

Recommender systems are decision support systems available on the web to assist 

users in the selection of item or service selection in online domains. In doing so rec-

ommender systems assist users in overcoming the information overload problem [1, 

2]. Collaborative filtering (CF) is the most widely used method for providing person-

alized recommendations. In CF systems, a database of user submitted ratings is used 

and the generated recommendations are generated on how much a user will like an 

unrated item based on previous common rated items. Thus, the recommendation pro-

cess is based on assumptions about previous rating agreements and if these agree-

ments will be maintained in the future. In addition, the ratings are used to create an n 

x m matrix with user ids, item ids and ratings, with an example of such a matrix 

shown in table 1. This database has four users and four items with values from 1 to 5. 
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The matrix is used as input when a user is requesting recommendations and for a rec-

ommendation to be generated the degree of similarity between the user who makes 

the request and the other users’ needs to be predicted using a similarity function such 

as the Pearson Correlation Similarity (PCC) [3]. At the next step a user neighborhood 

which consists of users having the highest degree of similarity is created with the 

requester. Finally, a prediction is generated after computing the average values of the 

nearest neighborhood ratings about an item, resulting in a recommendation list of 

items with the highest predicted rating values. 

 

Table 1. An Example of a Ratings Matrix 

 Item 1 Item 2 Item 3 Item 4 

User 1 1 2 5 - 

User 2 4 5 4 1 

User 3 - - 3 2 

User 4 1 1 2 5 

 

 

Even though, recommender systems have been used for product or service recom-

mendation, in the current era where cyber-attacks have been increasing we show how 

they can assist in the prediction of future attacks. 

1.1 Problem definition and contributions 

Cyber-attack prevention methods are based on graph analysis to identify attack paths 

or use previous attacker knowledge in combination with intrusion alerts to provide 

defense actions in real time. A gap is identified in attack prediction and mitigation 

which can be solved with the use of suitable recommendation technologies. We have 

made the following contributions: 

 

1. We identify all attack paths in a graph according to constraints. 

2. We use the attack paths in combination with common vulnerability data to 

build a recommender system that predicts future attacks. 

1.2 Paper structure 

In section 2 relevant background work is analyzed. In section 3 the proposed method 

is explained. Section 4 presents the experimental evaluation and section 5 contains the 

conclusions and future work parts. 
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2 Background 

2.1 Collaborative filtering 

As explained above a database of ratings and a similarity function such as PCC are 

the two essential parts of the CF recommendation process. Except for the classical 

recommendation method, PCC, another similar method found in the literature is 

weighted PCC (WPCC) which extends PCC by setting a statically defined threshold 

of common rated items. However, since the definitions of PCC and WPCC numerous 

approaches have been proposed with the aim of improving the recommendations. 

TasteMiner  is a method that efficiently mines rating for learning partial users tastes 

to restrict the neighborhood size, thus reducing complexity and improving the accura-

cy of the recommendations [4]. Another CF approach that aims to improve the accu-

racy of the recommendations is entropy based can be found in the literature. In this 

approach an entropy driven similarity used to calculate the difference between ratings 

and a Manhattan distance model is then used to address the fat tail problem [5]. One 

more similarity measure for improving the accuracy of CF has been proposed with the 

name PIP. This measurement is based on Proximity, Impact and Popularity (PIP). 

Initially the proximity factor is applied to calculate the absolute difference between 

two ratings, then the impact factor is applied to show how strongly an item is pre-

ferred and finally the popularity factor is applied to how common the user ratings are. 

These three factors are then combined to calculate a final value  [6]. HU-FCF  is a 

hybrid fuzzy CF method for improved recommendations [7]. In this method, CF is 

extended with a fuzzy similarity that is calculated on user demographic data. A CF 

recommendation method based on singularities has been proposed [8]. In this method, 

the traditional similarities can be improved if contextual information from the entire 

user body are used to calculate singularities. Thus, the larger the singularity between 

users then the impact of it in the similarity is larger. Additionally, the use or power 

law augments to similarity values can be found in the literature with the name PLUS 

[9]. PLUS, is a method applied to user similarities to adjust their value using a power 

function and achieves a tradeoff between accuracy and diversity of the recommenda-

tions. Yet another approach for improved recommendations is the use of Pareto domi-

nance [10]. Pareto dominance is used initially as a pre-filtering service were the less 

promising users are eliminated from the user neighborhood. Then, the rest are used in 

a typical CF recommendation process. An additional recommendation approach in-

cludes the breakup of the user neighborhood in multiples levels [11]. This can be done 

either using a static approach  or a dynamic one [11, 12]. In both approaches the user 

similarities are adjusted either in a positive or a negative way based on the number of 

co-rated items and the PCC values and are assigned to one of multiple levels based on 

the final computed value. Thus, the predictions are made using the new user neigh-

borhood and the recommendations are improved. An additional method that can be 

used to improve the quality of the recommendations is natural noise removal [13]. 

Items and users are characterized based on their profiles and a defined strategy is used 

to eliminate natural noise, thus receiving more accurate recommendations. Also, other 

traditional approaches exist that can be used to improve CF and include the use of 
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content-boosted CF or the utilization of sparsity measures [14, 15]. COUSIN  is a 

recommendation model that improves both the accuracy and the diversity of the rec-

ommendations by using a regression model that affectively removes weak user rela-

tionships [16]. There is also an approach in the literature called Trinity  that uses his-

torical data and tags to provide personalized recommendations based on a three-

layered object-user tag network [17]. In addition to the methods mentioned already 

the use of user-item subgroups has been proposed as a way of providing improved 

recommendation systems [18]. 

2.2 Attack graph generation and analysis 

Cyber-attack prevention technologies typically use attack graph generation and analy-

sis methods to identify all possible paths that attackers can exploit to gain unauthor-

ized access to a system [19]. There are numerous methods available for attack graph 

generation and analysis. In [20] the authors use a general graph model, which is based 

on the JIGSAW specification language. Sample attack scenarios are created using 

different methods such as substitution, distribution and looping. In [21] the authors 

developed an intrusion correlator for intrusion alerts, which produces correlation 

graphs as output. Then, they use these graphs to create attack strategy graphs. The 

authors in [22] utilize modeling based approach that is used to perform an analysis of 

the security of the network. This is done using model checking tools and a model is 

presented that describes the vulnerability to attack of the network. In [23] the authors 

developed a tool called NuSMV. This is a model checking tool that implements an 

algorithm for automatic generation of attack graphs. A logic-based approach is pro-

posed in [24]. In this approach, the authors use logic rules to compute the attack graph 

and use logic deduction to reach the final facts from the initial facts. Although, this 

approach suffers from performance issues as the state grows. In [25] a Breadth-first 

search solution is used by the authors to build the attack graph.  

A layered solution is proposed where the bottom layer contains attacker privileges 

and the upper layer contains the privileges computer after each step of the algorithm. 

Once again, as the size of the graph grows there are performance issues. In [26] the 

authors propose an algorithm that only creates a graph containing the worst case sce-

narios. This approach performs better in terms of performance, but it cannot guarantee 

that all relevant paths will be returned. In [27] the authors try to reduce complexity by 

introducing the concept of group reachability. This method uses a breadth first meth-

od and uses prerequisite graphs that express reachability conditions among network 

hosts. The authors in [28] develop further the prerequisite graphs by adding infor-

mation about client-side attacks, firewalls and intrusion detection. In [29] the authors 

use a distributed attack graph generation algorithm based on a multi-agent system, a 

virtual shared memory abstraction and hyper-graph partitioning to improve the overall 

performance of the system. The method is based on depth first search and it is shown 

that the performance is improved with the use of agents after a specific graph size. In 

[30] the authors use a bidirectional search method to generate the attack graph. They 

also apply a restriction about the depth of the search, which limits the algorithm from 

identifying less possible attacks. In [31] an approach that is based on artificial intelli-
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gence with the name Planner is applied to generate the attack graph. Customized algo-

rithms are used to generate attack paths in polynomial time.  

In [32] the authors propose a graph-based approach to analyze vulnerabilities, that 

can analyze risk to a specific asset and examine possible consequence of an attack. In 

[33] the use of a probabilistic model is proposed. This model measures risk security, 

computes risk probability and considers dynamic network features. A somewhat dif-

ferent approach is proposed by the authors in [34]. The use of dynamic generation 

algorithm is proposed, that returns the top K paths. Furthermore, it is not required to 

calculate the full attack graph to return the top attack paths. NetSPA is a network 

security planning architecture that very efficiently generates the worst case attack 

graphs [35]. To do this the system uses information from software types and versions, 

intrusion detection systems, network connectivity and firewalls. In [36] the use 

Bayesian attack graph generation for dynamic security risk management.  

In [37] the authors developed a MulVAL, a logic-based network security analyzer. 

This is a vulnerability analysis tool that models the interaction of software bugs along 

with network configurations. The data about the software bugs are provided by a bug-

reporting community, while all the other relevant information is enclosed within the 

system. In addition to MulVAL, TVA is another tool for generating attack graphs [19, 

38]. TVA is based on topological analysis of network attack vulnerability and the idea 

is to exploit dependency graph to represent preconditions and postconditions and then 

exploit. At the next step, a search algorithm finds attack paths that exploit multiple 

vulnerabilities. 

3 Proposed method 

Our proposed method takes elements from both collaborative filtering recommender 

systems and attack path discovery methods to identify attacks paths and predict at-

tacks. Initially, we use an attack path discovery method that has unique characteris-

tics, such as the attacker location, the attacker capability and which the entry and 

target points are. The, attack path discovery method returns all non-circular attack 

paths that exist between assets that belong to the specified characteristics. At the next 

step, we use the attack paths along with a recommender system to predict future at-

tacks and to classify them. 

3.1 Attack path discovery 

Attackers can use a set of basic privileges that can satisfy some initial input require-

ments to gain unauthorized access to a system. Attack graphs show every possible 

path that an attacker can use to gain further privileges [19, 39]. In general, various 

vulnerabilities, such as software vulnerabilities or inappropriate configuration set-

tings, exist in information systems and can be exploited by attackers to gain access. 

An infrastructure it typically comprised of numerous nodes that can be exploited to 

intrude into the network. In addition, the number of vulnerabilities that exist on the 

network and the reachability conditions that occur are the factors that determine the 
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size of the attack graph. In, addition as the graph becomes larger, the possibility of 

more exploitation options for an attacker increases. To build the attack graph we use 

direct conditions and utilize information from open sources. Initially, the weaknesses 

defined in the Common Weakness Enumeration (CWE) [40] are used and at the sec-

ond step, Information from the Common Vulnerabilities and Exposures (CVE) [41] 

database are used. A model is introduced where an attacker can gain access to infor-

mation system sources and move in a directed path. Moreover, a set of preconditions 

are specified, which include the length of the path, the location and capability of the 

attacker. The pseudocode of the attack path discovery is shown in algorithm 1. 

 

 

Algorithm 1: Attack path discovery 

Input: Asset graph (G), attacker location, attacker capability 

Output: Graph, affected assets, attack paths 

#We create two empty lists to hold attack paths and assets 

attackpaths = [] affectedassets = [] 

#We return all paths from source to target 

for e in parameters entry points 

If attacker location < required level of attacker location OR attacker capability < 

required attacker capability 

return empty graph 

 else  

get single source shortest path length  

set propagation length for entry point e 

    for target point t 

#Create a list with all non-circular paths from entry e to target t 

get all paths in the graph G from entry e to target t that are up to the pre-specified 

path length 

 for the size of paths found 

  add paths to attackpaths [] list, add affected assets to affectedassets [] list 

#Return the graph, the affected assets and the attack paths found as a direct input to 

#the attack visualization algorithm 

return Graph, affected assets, attack paths 

3.2 Attack prediction 

To recommend attack predictions we use a parameterized version of multi-level col-

laborative filtering method described in [11], although other methods could be applied 

according the scenario and the available data. This method applies collaborative filter-

ing and then rearranges the order of the k nearest neighbors according to the similarity 

value and the number of co-rated items. We use characteristics from the above-

mentioned method to classify attacks. To do that we initially apply classical collabo-

rative filtering using PCC defined in equation 1. In PCC Sim (a, b) is the similarity of 

users a and b, ra,p is the rating of user a for product p, rb,p is the rating of user b for 
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product p and 𝑟̅𝑎, 𝑟̅𝑏 represent user's average ratings. P is the set of all products. At 

the next step, we check the similarity values returned by equation 1 and the number of 

co-rated vulnerabilities. Depending on the similarity value returned and the common 

vulnerabilities, we classify these attacks from very high to very low. Finally, we 

check if there are any attack paths between the assets before the classification process 

is finished. A detailed explanation of the steps can be found in algorithm 2 which 

provides the pseudocode of the attack prediction recommender system. 

 

 

𝑆𝑖𝑚
𝑃𝐶𝐶

𝑎, 𝑏
=  

∑ 𝑝 ∈ 𝑃(𝑟𝑎, 𝑝 − 𝑟̅𝑎)(𝑟𝑏, 𝑝 −  𝑟̅𝑏)

√∑ 𝑝 ∈ 𝑃(𝑟𝑎, 𝑝 −  𝑟̅𝑎)2 √∑ 𝑝 ∈ 𝑃(𝑟𝑏, 𝑝 −  𝑟̅𝑏)2
     (1) 

 

 

Algorithm 2: Attack prediction 

Input: attack paths, affected assets, vulnerabilities 

Output: predicted attacks 

#Vulnerabilities refers to common vulnerabilities between assets 

load vulnerabilities 

apply equation 1 using vulnerabilities as input 

get similarity values  

#If there are common vulnerabilities, then typically these receive the same score 

#between assets, thus, resulting in absolute similarities 

#Then we rearrange the order of the similarity by adding the number of co-rated 

#items as a constraint 

#classification refers to predicted attack classification, which is from very high to 

#very low 

then #n is the number of co-rated items and x1, x2, x3 and x4 are fixed integers 

 if n>=x1 then classification == very high 

  else if n<x1 && n>=x2 then classification == high 

   else if n<x2 && n>=x3 then classification == Medium 

    else if n<x3 && n>=x4 then classification == Low 

 else classification == very low 

then 

 get attack paths 

  if attack path exists 

   set classification == very high 

else if attack path does not exist && classification == very high then classifica-

tion == high 

  else classification == classification 

Return predicted attacks 
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4 Experimental evaluation 

The experiments took place in a simulated environment using a Pentium i7 2.8 GHz 

with 12 gigabytes of RAM, running windows 10.  The data used were supplied by the 

maritime supply chain IT infrastructure and more particular from the port of Valencia 

and the experiments were conducted within a cyber-security maritime supply chain 

risk management system. The dataset contains 26 hardware and software assets, nu-

merous vulnerabilities, with some of them being common within the assets.  Initially, 

we evaluate the attack path discovery method in terms of performance, the results of 

which are shown in table 2. Then, we present a case study that shows how to predict 

attacks utilizing the data from the maritime supply chain IT infrastructure.  

Table 2.  Performance evaluation results 

No. of test 
Attacker 

capability 

Propagation 

length 

Running 

time (sec) 

1 Low 3 <1 

2 Low 4 <1 

3 Low 5 <1 

4 Medium 3 <1 

5 Medium 4 <1 

6 Medium 5 1 

7 High 3 <1 

8 High 4 1 

9 Hugh 5 1.2 

4.1 Case study: The maritime supply chain IT infrastructure  

The maritime supply chain infrastructure it typically comprised of numerous assets 

that can be exploited to gain access and reach specific assets by popping from one to 

another. For the case study, we have used a snippet of data derived from the Valencia 

port IT infrastructure. In table 3 the data used show the common vulnerabilities be-

tween assets and their respective score. Assets 1, 2 and 3 are hardware assets, while 

the description column represents the vulnerable software asset that is installed on the 

respective hardware asset. Furthermore, the assets and attacks paths between them are 

a vital part of risk assessment. The following non-circular attack paths are present in 

the system: 

1. Asset1  Asset2 

2. Asset2  Asset3 

3. Asset2  Asset1 

However, it should be noted that attack paths might vary according to the specific 

settings used, such as the propagation length, attacker location, capability, entry and 

target points. 
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Table 3.  Common vulnerabilities 

Assets Description 
CVE 

2015-1769 

CVE 

2015-2423 

CVE 

2015-2433 

CVE 

2015-2485 

Asset 1 

(Desktop 

PC) 

Windows 10 

Installed on 

Desktop PC 

10 2.9 2.9 10 

Asset 2 

(Laptop 1) 

Windows 10 

Installed on 

Laptop 1 

10 2.9 2.9 10 

Asset 3 

(Laptop 2) 

Windows 10 

Installed on 

Laptop 2 

10 2.9 2.9 - 

 

 

Then the administrator executed algorithm 2 to predict very high and high classifica-

tion attacks. Moreover, for the case study we have assigned the minimum number of 

co-rated items to be 3 for very high classification and 2 for high classification. Thus, 

algorithm 2 classified: 

1. Asset1  Asset2 as very high  

2. Asset2  Asset1 as very high 

3. Asset1  Asset3 as high 

4. Asset3  Asset1 as high  

5. Asset2  Asset3 as high 

6. Asset3  Asset2 as high 

 

At the next step, the method checked for attack path relations between the assets and 

rearranged the classifications. Thus, the administrator received the following final 

predictions:  

 

1. Asset1  Asset2 as very high 

2. Asset2  Asset1 as very high 

3. Asset2  Asset3 as very high 

4. Asset1  Asset3 as high 

5. Asset3  Asset1 as high 

6. Asset3  Asset2 as high 

4.2 Discussion 

Cyber-attack prediction systems are important in risk management to provide mitiga-

tion solutions. To do that the identification of possible attack scenarios and providing 

defensive solutions for assets protection are the two most important parts. Further-

more, it is important for this to take place within a reasonable amount of time. It is 

shown that within a small amount of time the attack path discovery method delivers 

the non-circular attack paths between assets. Furthermore, at the next stage a classifi-
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cation list is created that provides a prediction list of attack movement between assets. 

For example, the likelihood that an attacker who gained access to asset 1 to explore 

the possibility of gaining access to asset 4 is higher when compared to gaining access 

to either asset 2 or asset 3. However, the possibility of common vulnerabilities receiv-

ing different scores in different assets should be further exploited since this will result 

in different classification scales. 

5 Conclusions and future work 

Various online services use recommender systems for product or service recommen-

dation. However, the use of such systems in the cyber-defense domain has not been 

explored. In this paper, we proposed a collaborative filtering based recommender 

system that uses common vulnerabilities between assets, identifies attack paths and 

combines the information to recommend future attacks. Although, the method is prac-

tical, it could become more effective if certain aspects are extended. Thus, in the fu-

ture, we aim to investigate the following directions: 

Path length recommendation. We aim to apply recommendation techniques to dy-

namically identify the length of the path that should be searched, thus making the 

attack path discovery process faster. 

Attack recommendation. A part of our research will concentrate on more intelligent 

approaches for cyber-attack predictions based on advanced methods. 

Defense recommendation. Another research direction will focus on defense strategy 

recommendation. 

Prediction Validation. We aim to validate the attack predictions using real data from 

real world scenarios along with expert consultation. 
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Horizon 2020 research and innovation program under grant agreement No 653212. 
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