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Editorial
The importance of Computational Fluid Dynamics (CFD) 

codes in modelling of the processes in various engineering systems, 
including those related to irrigation and drainage is well recognized 
[1]. The range of problems to which these codes can be applied and 
the reliability of their predictions, however, are still far from clear to 
the engineering community, although the developments of these codes 
led to their application to new fields, including modelling of magneto 
hydrodynamic processes and the processes in rarefied gases [2,3]. At 
first sight the main problem here lies in the limitations of the available 
computer power, and application of direct numerical simulations 
could make the predictions of these codes almost 100% reliable. This 
could be potentially achieved only in the case when we are able to 
determine very accurately all initial and boundary conditions. This is 
obviously not possible in most realistic engineering systems. Hence, 
any predictions of CFD codes are always expected to be approximate. 
In what follows the nature of these approximations and possible pitfalls 
in the interpretation of CFD results are discussed.

A widely used simplification in CFD analysis is based on the 
reduction of the dimensions. As an example, we can consider flow 
around an infinitely long cylinder or square prism, perpendicular to 
the direction of the flow. At first sight this problem could be considered 
based on the 2-dimensional (2D) approximation [4]. However, at 
Re>200, vortices developing behind the cylinder become unstable 
to spanwise bending [5] which cannot be modelled based on the 2D 
approximation.

Another widely used simplification is based on the assumption that 
the effects of turbulence in the flow can be described by the Reynolds 
Average Navier-Stokes (RANS) equation. This approach, however, 
cannot explain the origin of noise (flow induced vibrations) in the flow 
[5].

A whole range of new problems emerges when we attempt to apply 
CFD codes to modelling multiphase flows. In the case of single-phase 
flows the reduction of the cell sizes is expected to always improve the 
accuracy of calculations. This is not always the case when multiphase 
flows are modelled and special techniques need to be applied to 
eliminate the grid dependence of the results of this modelling [6].

Many practically important processes, including stability analysis 
of the flows, cannot be described with the help of any available CFD 
code [7].

To summarize the above brief analysis, we can conclude that CFD 
codes cannot be used as exclusive tools for engineering research. They 
can, however, be useful tools in this research if used together with 
other tools of flow analysis. We need to have a clear idea about the 
general properties of the flow to be analysed before a CFD code can be 
applied to the analysis of the details of this flow. The link between CFD 
codes and other tools used for the analysis of the flows is still an open 
question.

In some cases CFD analysis can be complemented by asymptotic 
analysis [8]. Also, CFD results can be complemented by more advanced 
models of individual processes [9]. Recently, a new direction in CFD 

code developments, based on direct implementation of new analytical 
solutions into these codes, was developed [10,11].
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