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In this paper, the results of structural and magnetic investigations are presented for the following amorphous
alloys: FeMeMoCrNbB (where Me = Ni or Co). The structural investigations were performed using X-ray diffrac-
tometry. It was found that the investigated samples were amorphous in the as-cast state. The magnetisation was
measured within magnetic fields ranging from 0 to 1 T using a vibrating sample magnetometer. Investigation of
the “magnetisation in the area close to ferromagnetic saturation” showed that the magnetisation process in strong
magnetic fields is connected with the rotation of magnetic moments in the vicinity of defects, which are the sources
of short-range stresses. Analysis of the high-field magnetization curves facilitated the calculation of the spin-wave
stiffness parameter.
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1. Introduction

Amorphous alloys are characterised by a lack of long-
range atomic order. However, taking into account single
atoms, short-range order could be found in the struc-
ture of amorphous materials. This order can be observed
within distances comparable with the interatomic spa-
cing. Spatial atomic order in these alloys is called “to-
pological short-range order” (TSRO). If this order is ex-
tended to different types of atoms (in alloys composed of
two- or more component elements), then it is called che-
mical short-range order (CSRO) [1]. The structural fluc-
tuations present in amorphous alloys lead to the creation
of structural defects [2–4]. Amorphous alloys consist in-
herently of atoms featuring different diameters; therefore,
the type and volume of the resulting structural defects
depend strongly on the chemical composition of each in-
dividual alloy. The structural fluctuations occurring in
amorphous materials depend also on the selected manu-
facturing and thermal annealing conditions. Production
methods involving the rapid quenching of the molten al-
loy at cooling rates of the order of 106 K/min result in the
“freezing” of randomly distributed “free volumes” within
the resulting amorphous structure. However, the configu-
ration of these defects is not stable and, even during the
solidification process, partial relaxation of these defects
can occur; the associated mechanisms include: migration
of defects, annihilation of defects, substitution with dif-
ferent defects, and conglomeration of point defects (“free
volumes”). Three-dimensional conglomerations of point
defects are unstable and are subject to a decomposition
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process, which creates linear defects — so-called “quasi-
dislocational dipoles” [5, 6].

One method for investigation of the magnetisation of
a material is the measurement of the magnetisation in
strong magnetic fields. According to the Kronmüller the-
orem [7–9], the magnetisation (μ0M) of an amorphous
alloy in a strong magnetic field (μ0H) can be described
by the following equation, which is called the “law of ap-
proach to saturation”:

μ0M (H) = μ0MS
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, (1)
where Ms — saturation magnetization, μ0 — magne-
tic permeability of a vacuum, H — magnetic field,
a1/2, a1, a2 — gradient coefficients of the linear fit rela-
ted to the type of defect, b — gradient coefficient of the
linear fit related to thermal dumping of the spin-waves
by the strong magnetic field.

The factor b is related to the spin-wave stiffness para-
meter Dspf by the following relationship [10]:

b = 3.54gμ0μB

(
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, (2)

where g — the Lande split coefficient, μB — the Bohr
magneton.

Parameter Dspf is described by the following equa-
tion [11]:

Dspf = 1/3SJex(a)a
2zm, (3)

where S — the spin value at the distance from the cen-
tral atom, Jex — the local exchange integral, a — the dis-
tance to the nearest-neighbour atoms, zm — the quantity
of magnetic atoms in the nearest neighbourhood.

The aim of this work was to determine the type of
structural defects, influencing the magnetisation proces-
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ses of the amorphous alloys: Fe60Co10Mo5Cr4Nb6B15

and Fe60Ni10Mo5Cr4Nb6B15, in addition to ascertaining
the respective spin-wave stiffness parameters (Dspf ) the-
reof.

2. Materials and methods

The investigated alloy samples were produced in the
form of ribbons with approximate dimensions: width
1 cm and thickness 20 μm. To achieve this, ingots
of the required alloys, with the nominal compositions
of Fe60Co10Mo5Cr4Nb6B15 and Fe60Ni10Mo5Cr4Nb6B15,
were cast by melting high-purity component elements (Fe
— 99.98%, Co — 99.99%, Mo — 99.9999%, Cr — 99.99%,
Nb — 99.9999%, Ni — 99.99%) in an induction furnace.
The element boron was added in the form of an alloy of
known composition: Fe45.4B54.6.

Then, the amorphous ribbons were created using the
“melt-spinning” technique, which involves the injection of
the molten material onto a rotating cylinder. The cas-
ting and melt-spinning processes were performed under
a protective argon atmosphere.

The structure of the obtained alloys was investigated
by means of a Bruker D8 Advance X-ray diffractometer
with a copper anode. The measurement of the isother-
mal magnetisation curves was achieved using a vibrating
sample magnetometer.

The obtained alloys are paramagnetic at room tem-
perature. Therefore, in order to determine the presence
and type of defects, and to evaluate their effect on the
magnetisation process, isothermal magnetisation curves
were recorded for the following conditions: a tempera-
ture value of 250 K, and a maximal value of induction of
the magnetising field of 1 T.

3. Results and discussion

Figure 1 shows the X-ray diffraction patterns obtained
for the samples of the investigated alloys.

Fig. 1. The X-ray diffraction patterns
for: (a) Fe60Co10Mo5Cr4Nb6B15 and (b)
Fe60Ni10Mo5Cr4Nb6B15.

On examination of the obtained diffraction patterns, a
wide maximum is visible at the 2Θ angle ≈ 44◦; this is
typical for amorphous alloys.

The magnetisation curves for the investigated alloys
are presented in Fig. 2.

Fig. 2. High-field magnetisation curves, as a function
of magnetic field induction, for the investigated amor-
phous alloys: Fe60Co10Mo5Cr4Nb6B15 (a, b) and
Fe60Ni10Mo5Cr4Nb6B15 (c, d).

In the case of the alloy with added Co, over the mag-
netic field range of 0.008 T to 0.03 T, the following linear
relationship is present (Fig. 2a): M/MS(μ0H)−1/2.

This confirms that, within this field range, the mag-
netisation process is related to microscopic rotations of
magnetic moments in the vicinities of point defects [12].
In higher magnetic fields, i.e. > 0.03 T, a different li-
near relationship is observed (Fig. 2b): M(μ0H)1/2. This
indicates the presence of the Holstein–Primakoff para-
process, related with the dumping of thermally induced
spin-waves [13].

Similar relationships were observed for the second of
the investigated alloys. In lower magnetic fields, in the
vicinity of ferromagnetic saturation, the linear relations-
hip of reduced magnetisations of: M/MS(μ0H)−1/2 was
observed. This indicates that, within the magnetic field
range of 0.004 T to 0.015 T, point defects constitute
the predominant influence on the magnetisation process.
In stronger magnetic fields (greater than 0.015 T), the
Holstein–Primakoff paraprocess was observed.

Parameters calculated from analysis of the magnetisa-
tion curves are presented in Table I.

TABLE I
The parameters obtained from analysis of the magneti-
sation curves: a1/2 — coefficient related to the presence
of structural defects, b — factor related to the Holstein–
Primakoff paraprocess, Dspf — the stiffness parameter
of the spin wave.

Parameters a1/2 b Dspf

Sample [T−1/2] [10−2 eV nm2]
Fe60Co10Mo5Cr4Nb6B15 0.006 0.075 37
Fe60Ni10Mo5Cr4Nb6B15 0.004 0.085 34

Analysis of the initial magnetisation curves in the
region of the Holstein–Primakoff paraprocess allowed
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the determination of the spin-wave stiffness parameter
Dspf . The larger value of this parameter for the alloy
with added Co indicates a larger quantity of magnetic
atoms and smaller distances between them. This means
a higher packing density of magnetic atoms is present
in this alloy [14, 15]. This could be connected with the
creation of CSRO.

4. Conclusions

The microstructure and magnetic proper-
ties of ribbon samples of the amorphous alloys,
Fe60Co10Mo5Cr4Nb6B15 and Fe60Ni10Mo5Cr4Nb6B15,
have been investigated and presented. The amorphicity
of the investigated materials was confirmed by X-ray
studies.

The effect of the alloying component on the type of
structural defects in the approach to saturation region
has been studied. The curves of the initial magnetisation
have been analysed, according to the Kronmüller theo-
rem. It has been found that, for both of the investigated
alloys, the predominant role in the magnetisation pro-
cess when under the influence of strong magnetic fields
is played by the rotation of magnetic moments in the vi-
cinity of point defects (Fig. 2a,c). The further increase
in the magnetisation is related to the dumping of the
thermally activated spin waves (Fig. 2b,d).

Analysis of the high-field magnetisation curves in the
Holstein–Primakoff paraprocess region allowed the deter-
mination of the values of the stiffness parameters of the
spin waves. The value of Dspf is higher for the sample
of Fe60Co10Mo5Cr4Nb6B15 alloy, which suggests a higher
atomic packing density. The distances between the ne-
arest neighbouring magnetic atoms are smaller than for
the alloy containing Ni, which results in an improvement
in CSRO [16].
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