
Two Hidden Layers are Usually Better than One 

Alan J Thomas1,*, Miltos Petridis2, Simon D Walters1, Saeed Malekshahi Gheytassi1, 

and Robert E Morgan1 

1School of Computing Engineering and Mathematics, University of Brighton, United Kingdom 

alan.j.thomas@gmail.com*,{s.d.walters, 

m.s.malekshahi,r.morgan2}@brighton.ac.uk 
2Faculty of Science and Technology, Middlesex University, United Kingdom 

m.petridis@mdx.ac.uk 

Abstract.  This study investigates whether feedforward neural networks with two 

hidden layers generalise better than those with one. In contrast to the existing 

literature, a method is proposed which allows these networks to be compared 

empirically on a hidden-node-by-hidden-node basis. This is applied to ten public 

domain function approximation datasets. Networks with two hidden layers were 

found to be better generalisers in nine of the ten cases, although the actual degree 

of improvement is case dependent. The proposed method can be used to rapidly 

determine whether it is worth considering two hidden layers for a given problem.  
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1 Introduction 

The most important aspect of the design of a neural network is its structure or topology, 

since this is crucial to its generalisation capability. In the case of a fully interconnected 

feedforward neural network (FNN), and given a fixed set of inputs and outputs, the 

topology is directly determined by the number of hidden nodes and layers. Whilst there 

is an extraordinary volume of literature on the subject of hidden node selection, there 

is scarcely any about hidden layer selection. This is almost certainly due in part to 

proofs that networks with a single hidden layer are sufficient for universal approxima-

tion [1–3]. Furthermore, the search space of candidate topologies is linear - so they are 

easier to find and train. Consequently, there is less interest in neural networks with two 

or more hidden layers and they are rarely used in practice [4]. 

However, it has been shown that two-hidden-layer feedforward networks (TLFNs) 

can outperform single-hidden-layer ones (SLFNs) in some cases. Indeed there is some 

evidence that certain problems can only be solved with a second hidden layer [5–7]. 

What is lacking in the literature is any indication about how SLFNs and TLFNs com-

pare in practical situations. To redress this, SLFNs and TLFNs compete head to head 

on ten public domain datasets. In order to ensure a fair competition, all factors other 

than the number of hidden layers are kept constant. 
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In section 2, related work on the subject of the number of hidden layers is discussed. 

Section 3 describes “transformative optimisation”, the approach used in this paper. This 

is a new name for a technique previously developed by the Authors in [8, 9]. It is ideally 

suited for the hidden-node-by-hidden-node comparisons used in the experiments. Sec-

tions 4 and 5 detail the experimental setup and methods. In section 6, the results are 

summarised and discussed. It was found that TLFNs showed improvement in general-

isation performance over SLFNs in most of the cases. 

2 Related Work 

The volume of literature comparing SLFNs and TLFNs is very scarce [10]. Funahashi 

[11] proved that any continuous function can be approximated with a single hidden 

layer. However it was subsequently shown by Chester that two hidden layers were bet-

ter when dealing with pinnacle functions [5]. He states that “the problem with a single 

hidden layer is that the neurons interact with each other globally, making it difficult to 

improve an approximation at one point without worsening it elsewhere”. He goes on to 

point out that in a TLFN, the first hidden layer can partition the input space into smaller 

regions, leaving the second hidden layer free to improve the approximation. Sontag [7] 

approached the question from a different angle. He showed that some nonlinear control 

systems require two hidden layers to achieve stabilization. Brightwell [6] went on to 

show that certain classes of problems are not realizable with a single hidden layer: 

“XOR-situation, XOR-bow-tie, XOR-at-infinity, and critical cycle”. 

In 2011, Nakama conducted a “fair and systematic” comparison of multiple and sin-

gle hidden layer networks [10]. These had the same number of inputs, outputs, nodes,  

and connections, and approximate the same target functions. He shows that the learning 

rate is more flexible for a single hidden layer (Figure 1(C)), and that it also converges 

faster than a multiple hidden layer (Figure 1(A)). However, the activation functions 

used are solely a linear function of the weights a-d. Thus these can be rearranged to 

reduce both networks to the linear perceptrons shown in Figure 1(B) and 1(D). There-

fore the results are possibly subject to misinterpretation, such as justification to exclude 

multiple hidden layers from investigations [12]. 

 

 

Fig. 1. Nakama Networks – Multiple (A) and single hidden layer (C), with equivalents (B&D) 



The current study is empirical in contrast to [5–7]. It is similar to [10] in its aim to 

compare the networks fairly, although the definition of fairness differs slightly. Here 

“fairness” is defined as the networks having the same number of hidden nodes, the same 

activation functions, and trained with the same training algorithm with the same default 

training parameters. The Levenberg-Marquardt algorithm [13] is used because it is well 

suited and commonly used for function approximation problems [14]. The current study 

differs from [10] in several key areas: 

• Network Structure – Only conventional, fully interconnected feedforward net-

works are used. These have non-linear activation functions in the hidden nodes, and 

a linear activation function in the output node. In contrast, the networks in [10] are 

not fully interconnected and use only linear activation functions. As has been shown, 

the consequence of this is that the networks can be reduced to linear perceptrons with 

no hidden layers at all. 

• Method of Comparison – The generalisation capability of the networks is compared 

on a hidden-node-by-hidden-node basis over an adequate range of 1–64 nodes. This 

method of comparison was chosen as it is the main area of concern for designers of 

neural networks. The node-by-node comparison is facilitated by leveraging trans-

formative optimisation, a technique developed by the Authors further described in 

section 3. In contrast, [10] concerns itself with the learning rate and convergence 

properties in two specific cases with a total of 3 nodes. 

• Training Data – Ten public domain datasets are used. These contain varying 

amounts of inputs, training samples and noise, as it is important to compare the net-

works over a wide range of different problems. In contrast  [10] considers two simple 

mathematical functions (� = �� + �� and � = ��� + ���).   

To the best of the Authors’ knowledge, this is the first study of its kind to be undertaken.  

3 Transformative Optimisation 

Attempting to perform a hidden node for node comparison between SLFNs and TLFNs 

is a complicated affair for two reasons. Firstly, there are many different ways to allocate 

a given number of nodes between the first and second hidden layers of a TLFN; and 

secondly, the number of candidate topologies to be considered for a TLFN is quadratic. 

Thus it can take a prohibitive amount of time to test all candidates. Transformative 

optimisation is a new name given to a technique developed by the Authors which can 

be applied to solve both of these problems. It has been so named because it transforms 

the space of candidate TLFN topologies from quadratic to linear. 

Consider the set of candidate TLFN topologies Τ, where the number of nodes in each 

hidden layer varies between 1 and k, i.e. 

 Τ = 
���, ���, … , �
�  , … , ���� , (1) 

where �
� = �� ∶  � ∶ � ∶ �� (2) 



The constants, �� and �� represent the number of inputs and outputs respectively for 

any given domain, and � and � are the number of nodes in the first and second hidden 

layers respectively. Transformative optimisation works by transforming this set into a 

different set Τ� = 
��, … , ��� , … , ����, where Τ� ⊂ Τ. This only has a single degree of 

freedom, ��, which represents the total number of hidden nodes. Here 

 ��� = �� ∶ ���� +  ! ∶ �"1 − �%�� −  ! ∶ ��, (3) 

where � is a ratio determining the node allocation between the first and second hidden 

layers, and   is a constant. It has been shown in the Authors’ previous studies [8, 9], 

that the optimal values are � = 0.5 and  = 1. These had the highest probability of 

finding the best generalisers over the same ten datasets used in the current experiments. 

Substituting these values into (2), we have 

 ��� = �� ∶ �0.5�� + 1! ∶ �0.5�� − 1! ∶ ��. (4) 

It should be noted that the lowest value of �� which yields a two hidden layer network 

is four, organised as three nodes in the first hidden layer and a single node in the second. 

Additionally, odd values of �� yield fractional node values. This can be dealt with in 

two ways. The first rounds the nodes in the first hidden layer down and rounds those in 

the second up or vice versa. Alternatively, only even values of �� are considered: 

 ��� = �� ∶ �� + 1! ∶ �� − 1! ∶ ��, (5) 

where �� = 2� and 2 ≤ � ≤ +. In this case the set of candidate topologies Τ� is 

 Τ� = ,��, … , �
 , … , ��- , �� = 2�. (6) 

Note that from (1), |Τ| = +�, and from (2), |Τ�| = + − 1. This corresponds to the trans-

formation of the candidate space from quadratic to linear. In this study, the rounding 

method is used to compare the performance of SLFNs and TLFNs node by node. 

4 Experiments 

4.1 Data Acquisition 

A total of ten datasets were acquired for the experiments. These were selected on the 

basis of their availability in the public domain, and suitability for function approxima-

tion. One consequence of these selection criteria is that the datasets all have a single 

output. An exception to this was the engine dataset available in Matlab, which has two 

inputs and two outputs. However, the torque output was reassigned as an input, thus 

converting it to a 3 input, 1 output dataset. The datasets were sourced from the UCI 

Machine Learning Repository [15], Bilkent University Function Approximation Re-

pository [16], University of Porto Regression Datasets [17], and Matlab. The datasets 

used are summarised in Table 1. 



Table 1. Dataset Summary 

Name Samples Inputs Source 

Abalone 4177 8 UCI Machine Learning Repository 

Airfoil Self-noise 1503 5 UCI Machine Learning Repository 

Chemical 498 8 Matlab chemical_dataset 

Concrete 1030 8 UCI Machine Learning Repository 

Delta Elevators 9517 6 University of Porto Regression Datasets 

Engine 1199 3 Matlab engine_dataset 

Kinematics 8292 8 BU Function Approx. Repository 

Mortgage 1049 15 BU Function Approx. Repository 

Simplefit 94 1 Matlab simplefit_dataset 

White Wine 4898 11 UCI Machine Learning Repository 

 

Following the data acquisition phase, Matlab R2014b was used to prepare the data, 

create and train the neural networks and generate the raw results for analysis. 

4.2 Data Preparation 

This one-off phase split each dataset into three sub-sets: training, validation and test. 

The validation set was used to stop the training early when the validation error began 

to rise, and the test set was used exclusively as an estimate of each network’s generali-

sation error. Eighty percent of the original data was randomly allocated to the training 

set, and the remaining twenty percent was equally allocated between the validation and 

test sets. In order to ensure consistency, the same sub-sets were used to create and test 

all networks within the scope of a given dataset. 

4.3 Network Creation, Training and Evaluation 

All networks in the experiments were created, trained and evaluated in an identical 

fashion. They were created using the ‘fitnet’ function of the Neural Network Toolbox, 

with the ‘mapminmax’ function for input and output processing. The activation func-

tion of all hidden nodes was ‘tansig’ and that of the output node was linear. The training 

function used was Levenberg-Marquardt, ‘trainlm’, which often yields the best results 

for function approximation problems. The networks were all trained using Matlab’s 

default training parameters: 1000 epochs, training goal of 0, minimum gradient of 10/0, 

6 validation failures, 1 = 0.001, 1234 = 0.1, 1
�4 = 10 and 1567 = 10/��. 

The error function used during training was the mean squared error function ‘mse’, 

however the generalisation error was reported using the normalised root mean squared 

error (NRMSE). This is a function of the number of samples �, the target output �8
, and 

the actual output �
 . It is normalised to the target output swing �8567 − �85
� , in order 

to faciltate comparison between different datasets. The NRMSE 9 is given by: 

 9 = �
:8;<=/:8;>?

@∑ ":>/:8>%B?>CD
�  (7) 



4.4 Experimental Method 

A total of 20 experiments were carried out on each of the datasets. Half of these were 

using SLFNs, and the other half using TLFNs. Each experiment consisted of varying 

the number of hidden nodes �� between 1 and 64. For SLFNs, the number of hidden 

nodes was simply ��. For TLFNs, the number of nodes in each of the hidden layers 

was calculated according to equation (3), using the rounding method described in sec-

tion 2. Because the random weight initialisation can cause training to getting trapped in 

local minima [4], each topology is trained 30 times, and the network with the most 

favourable  generalisation error is chosen as the “champion” network for that particular 

topology. For clarity, the pseudo-code for a single experiment is shown in Figure 2. 

function e = singleExperiment(type, nh)  

 for nh = 1 to 64 do 

  if type is ‘SLFN’     % calc nodes in each layer 

   n1 = nh         % First hidden layer nodes 

   n2 = 0         % SLFN has no hidden layer 2 

  elseif type is ‘TLFN’ 

   n1 = int(0.5nh + 1)   % round down for layer 1  

   n2 = nh -- n1      % Calculate nodes in layer 2 

  end if 

  for candidate = 1 to 30 do % process 30 networks 

   net = createNetwork(n1,n2)  

   nrmse[candidate] = trainNetwork(net)  

  end do 

  e[nh] = min(nrmse) % Calculate winner’s error   

 end do 

 return e 

end function 

Fig. 2. Pseudo-code for a single experiment 

5 Results and Discussion 

For each experiment, the overall “champion” is the network with the lowest generali-

sation error. Its total number of hidden nodes ��, and generalisation error 9 are rec-

orded. The results are summarised in Table 2, were 1"��% represents the mean number 

of hidden nodes and 1"9% the mean generalisation error (as a percentage) over ten ex-

periments. The relative improvement is calculated as E1"9% = 1"9FGHI% − 1"9JGHI%, 

and the improvement factor is calculated as K = E1"9%/9FGHI. The winners are in Table 

2 are emboldened. 

 

 



Table 2. Results Summary 

Dataset 
M"NO% M"P% (%) QM"P% 

(%) 

f     

(%) SLFN TLFN SLFN TLFN 

Abalone 34.1 24.7 6.5280 6.4597 0.0683 1.05 

Airfoil 40.9 38.7 3.8244 2.8222 1.0022 26.21 

Chemical 31.6 36.4 3.3738 3.4762 -0.1024 -3.04 

Concrete 44.5 41.2 4.0272 3.6937 0.3335 8.28 

Delta Elevators 10.7 18.6 5.0334 5.0315 0.0019 0.04 

Engine 56.9 46.9 0.8963 0.8428 0.0535 5.97 

Kinematics 54.1 35.2 4.5220 4.3730 0.1490 3.30 

Mortgage 51.7 50.1 0.3497 0.3424 0.0073 2.10 

Simplefit 10.4 10.8 0.0014 0.0012 0.0002 12.63 

White Wine 36.3 47.0 11.4743 11.3983 0.0761 0.66 

 

As might be expected, the results were varied and dataset dependent. The generali-

sation error is known to be dependent on the complexity of the function to be approxi-

mated as well as the level of noise within it. For example, the Simplefit dataset is a very 

simple function which has no noise at all. It yielded almost zero generalisation error, 

and there is not much to be gained by using a TLFN. On the other end of the scale, the 

Airfoil dataset showed significant gains in generalisation error for a TLFN. Overall, 9 

out of 10 datasets showed an improvement of some kind when using two hidden layers. 

Some showed more significant gains than others. The only exception to this is with the 

Chemical dataset, where a single hidden layer performed best. However this was only 

a 0.1% relative improvement E1"9%. Since the generalisation error is so low in some 

cases, it was thought that a fairer method of comparison was using the improvement 

factor K in the final column of Table 2. The overall average improvement factor was 

5.72%  with a standard deviation of 8.5%. In over half of the cases, the TLFNs also 

achieved this improvement with fewer hidden nodes. It should be remembered, how-

ever, that node for node TLFNs are more complex as they have more weights. Since it 

is the weights which learn the problem, TLFNs have a larger storage capacity, which 

might account for this improvement. 

So which is better? The evidence in these experiments point to TLFNs. However, 

the actual amount of improvement is case dependent. Furthermore, low complexity 

might be a design consideration or requirement and this might need to be balanced 

against the potential gains in generalisation error. So perhaps a better question might 

be: Is it worth using a TLFN? Fortunately, through transformative optimisation, this 

can easily be checked. Although the full 1-64 node scans used in these experiment (Fig-

ures 4-6 in Appendix A) each took several hours, this need not be the case. Binary 

sampling techniques can be used to reduce this process to a matter of minutes, whilst 

giving a broad idea of the likely gains (if any) and sometimes even an idea of where to 

look. This is illustrated in Figure 3, which shows the result of binary sampling applied 

to the Airfoil dataset. 



 

Fig. 3. Airfoil using 12 point binary sampling 

6 Conclusion 

This study set out to discover whether networks with two hidden layers generalise better 

than those with a single hidden layer in practical situations. In order to answer this 

question, a method called “transformative optimisation” was proposed and applied to 

perform a hidden-node-by-hidden-node comparison of SLFNs and TLFNs across ten 

separate datasets. It was found that in nine out of ten cases TLFNs outperformed 

SLFNs, but that the amount of improvement was very case dependent. However, the 

proposed method can be used in conjunction with binary sampling to rapidly determine 

whether it is worth using two hidden layers for any given problem. Although the results 

presented here indicate that TLFNs outperform SLFNs, further investigation with more 

complicated real-life datasets is necessary. 

 On a final note, this method could potentially be used for other training algorithms, 

although it would need to be verified whether the optimal values of � = 0.5 and  = 1 

still hold. Early indications are that this could well be the case for the ‘trainscg’ training 

algorithm [8], although more extensive testing is required. This verification, as well as 

equivalent comparisons of TLFNs and SLFNs for other training algorithms could be 

the subject of further work. 
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Appendix A – Full Results: Average Node for Node Comparisons 

 

 

 

 

Fig. 4. Abalone (top), Airfoil, Chemical and Concrete (bottom) 
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Fig. 5. Delta Elevators (top), Engine, Kinematics, and  Mortgage (bottom) 
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Fig. 6. Simplefit (top) and White Wine (bottom) 
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