
Two Hidden Layers are Usually Better than One

Alan J Thomas1,*, Miltos Petridis2, Simon D Walters1, Saeed Malekshahi Gheytassi1,

and Robert E Morgan1

1School of Computing Engineering and Mathematics, University of Brighton, United Kingdom

alan.j.thomas@gmail.com*,{s.d.walters,

m.s.malekshahi,r.morgan2}@brighton.ac.uk
2Faculty of Science and Technology, Middlesex University, United Kingdom

m.petridis@mdx.ac.uk

Abstract. This study investigates whether feedforward neural networks with two

hidden layers generalise better than those with one. In contrast to the existing

literature, a method is proposed which allows these networks to be compared

empirically on a hidden-node-by-hidden-node basis. This is applied to ten public

domain function approximation datasets. Networks with two hidden layers were

found to be better generalisers in nine of the ten cases, although the actual degree

of improvement is case dependent. The proposed method can be used to rapidly

determine whether it is worth considering two hidden layers for a given problem.

Keywords: feedforward neural networks · how many hidden layers · universal

function approximation · transformative optimisation · optimal FNN topology ·

one or two hidden layers

1 Introduction

The most important aspect of the design of a neural network is its structure or topology,

since this is crucial to its generalisation capability. In the case of a fully interconnected

feedforward neural network (FNN), and given a fixed set of inputs and outputs, the

topology is directly determined by the number of hidden nodes and layers. Whilst there

is an extraordinary volume of literature on the subject of hidden node selection, there

is scarcely any about hidden layer selection. This is almost certainly due in part to

proofs that networks with a single hidden layer are sufficient for universal approxima-

tion [1–3]. Furthermore, the search space of candidate topologies is linear - so they are

easier to find and train. Consequently, there is less interest in neural networks with two

or more hidden layers and they are rarely used in practice [4].

However, it has been shown that two-hidden-layer feedforward networks (TLFNs)

can outperform single-hidden-layer ones (SLFNs) in some cases. Indeed there is some

evidence that certain problems can only be solved with a second hidden layer [5–7].

What is lacking in the literature is any indication about how SLFNs and TLFNs com-

pare in practical situations. To redress this, SLFNs and TLFNs compete head to head

on ten public domain datasets. In order to ensure a fair competition, all factors other

than the number of hidden layers are kept constant.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/188257144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In section 2, related work on the subject of the number of hidden layers is discussed.

Section 3 describes “transformative optimisation”, the approach used in this paper. This

is a new name for a technique previously developed by the Authors in [8, 9]. It is ideally

suited for the hidden-node-by-hidden-node comparisons used in the experiments. Sec-

tions 4 and 5 detail the experimental setup and methods. In section 6, the results are

summarised and discussed. It was found that TLFNs showed improvement in general-

isation performance over SLFNs in most of the cases.

2 Related Work

The volume of literature comparing SLFNs and TLFNs is very scarce [10]. Funahashi

[11] proved that any continuous function can be approximated with a single hidden

layer. However it was subsequently shown by Chester that two hidden layers were bet-

ter when dealing with pinnacle functions [5]. He states that “the problem with a single

hidden layer is that the neurons interact with each other globally, making it difficult to

improve an approximation at one point without worsening it elsewhere”. He goes on to

point out that in a TLFN, the first hidden layer can partition the input space into smaller

regions, leaving the second hidden layer free to improve the approximation. Sontag [7]

approached the question from a different angle. He showed that some nonlinear control

systems require two hidden layers to achieve stabilization. Brightwell [6] went on to

show that certain classes of problems are not realizable with a single hidden layer:

“XOR-situation, XOR-bow-tie, XOR-at-infinity, and critical cycle”.

In 2011, Nakama conducted a “fair and systematic” comparison of multiple and sin-

gle hidden layer networks [10]. These had the same number of inputs, outputs, nodes,

and connections, and approximate the same target functions. He shows that the learning

rate is more flexible for a single hidden layer (Figure 1(C)), and that it also converges

faster than a multiple hidden layer (Figure 1(A)). However, the activation functions

used are solely a linear function of the weights a-d. Thus these can be rearranged to

reduce both networks to the linear perceptrons shown in Figure 1(B) and 1(D). There-

fore the results are possibly subject to misinterpretation, such as justification to exclude

multiple hidden layers from investigations [12].

Fig. 1. Nakama Networks – Multiple (A) and single hidden layer (C), with equivalents (B&D)

The current study is empirical in contrast to [5–7]. It is similar to [10] in its aim to

compare the networks fairly, although the definition of fairness differs slightly. Here

“fairness” is defined as the networks having the same number of hidden nodes, the same

activation functions, and trained with the same training algorithm with the same default

training parameters. The Levenberg-Marquardt algorithm [13] is used because it is well

suited and commonly used for function approximation problems [14]. The current study

differs from [10] in several key areas:

• Network Structure – Only conventional, fully interconnected feedforward net-

works are used. These have non-linear activation functions in the hidden nodes, and

a linear activation function in the output node. In contrast, the networks in [10] are

not fully interconnected and use only linear activation functions. As has been shown,

the consequence of this is that the networks can be reduced to linear perceptrons with

no hidden layers at all.

• Method of Comparison – The generalisation capability of the networks is compared

on a hidden-node-by-hidden-node basis over an adequate range of 1–64 nodes. This

method of comparison was chosen as it is the main area of concern for designers of

neural networks. The node-by-node comparison is facilitated by leveraging trans-

formative optimisation, a technique developed by the Authors further described in

section 3. In contrast, [10] concerns itself with the learning rate and convergence

properties in two specific cases with a total of 3 nodes.

• Training Data – Ten public domain datasets are used. These contain varying

amounts of inputs, training samples and noise, as it is important to compare the net-

works over a wide range of different problems. In contrast [10] considers two simple

mathematical functions (� = �� + �� and � = ��� + ���).

To the best of the Authors’ knowledge, this is the first study of its kind to be undertaken.

3 Transformative Optimisation

Attempting to perform a hidden node for node comparison between SLFNs and TLFNs

is a complicated affair for two reasons. Firstly, there are many different ways to allocate

a given number of nodes between the first and second hidden layers of a TLFN; and

secondly, the number of candidate topologies to be considered for a TLFN is quadratic.

Thus it can take a prohibitive amount of time to test all candidates. Transformative

optimisation is a new name given to a technique developed by the Authors which can

be applied to solve both of these problems. It has been so named because it transforms

the space of candidate TLFN topologies from quadratic to linear.

Consider the set of candidate TLFN topologies Τ, where the number of nodes in each

hidden layer varies between 1 and k, i.e.

 Τ =
���, ���, … , �
� , … , ���� , (1)

where �
� = �� ∶ � ∶ � ∶ �� (2)

The constants, �� and �� represent the number of inputs and outputs respectively for

any given domain, and � and � are the number of nodes in the first and second hidden

layers respectively. Transformative optimisation works by transforming this set into a

different set Τ� =
��, … , ��� , … , ����, where Τ� ⊂ Τ. This only has a single degree of

freedom, ��, which represents the total number of hidden nodes. Here

 ��� = �� ∶ ���� + ! ∶ �"1 − �%�� − ! ∶ ��, (3)

where � is a ratio determining the node allocation between the first and second hidden

layers, and is a constant. It has been shown in the Authors’ previous studies [8, 9],

that the optimal values are � = 0.5 and = 1. These had the highest probability of

finding the best generalisers over the same ten datasets used in the current experiments.

Substituting these values into (2), we have

 ��� = �� ∶ �0.5�� + 1! ∶ �0.5�� − 1! ∶ ��. (4)

It should be noted that the lowest value of �� which yields a two hidden layer network

is four, organised as three nodes in the first hidden layer and a single node in the second.

Additionally, odd values of �� yield fractional node values. This can be dealt with in

two ways. The first rounds the nodes in the first hidden layer down and rounds those in

the second up or vice versa. Alternatively, only even values of �� are considered:

 ��� = �� ∶ �� + 1! ∶ �� − 1! ∶ ��, (5)

where �� = 2� and 2 ≤ � ≤ +. In this case the set of candidate topologies Τ� is

 Τ� = ,��, … , �
 , … , ��- , �� = 2�. (6)

Note that from (1), |Τ| = +�, and from (2), |Τ�| = + − 1. This corresponds to the trans-

formation of the candidate space from quadratic to linear. In this study, the rounding

method is used to compare the performance of SLFNs and TLFNs node by node.

4 Experiments

4.1 Data Acquisition

A total of ten datasets were acquired for the experiments. These were selected on the

basis of their availability in the public domain, and suitability for function approxima-

tion. One consequence of these selection criteria is that the datasets all have a single

output. An exception to this was the engine dataset available in Matlab, which has two

inputs and two outputs. However, the torque output was reassigned as an input, thus

converting it to a 3 input, 1 output dataset. The datasets were sourced from the UCI

Machine Learning Repository [15], Bilkent University Function Approximation Re-

pository [16], University of Porto Regression Datasets [17], and Matlab. The datasets

used are summarised in Table 1.

Table 1. Dataset Summary

Name Samples Inputs Source

Abalone 4177 8 UCI Machine Learning Repository

Airfoil Self-noise 1503 5 UCI Machine Learning Repository

Chemical 498 8 Matlab chemical_dataset

Concrete 1030 8 UCI Machine Learning Repository

Delta Elevators 9517 6 University of Porto Regression Datasets

Engine 1199 3 Matlab engine_dataset

Kinematics 8292 8 BU Function Approx. Repository

Mortgage 1049 15 BU Function Approx. Repository

Simplefit 94 1 Matlab simplefit_dataset

White Wine 4898 11 UCI Machine Learning Repository

Following the data acquisition phase, Matlab R2014b was used to prepare the data,

create and train the neural networks and generate the raw results for analysis.

4.2 Data Preparation

This one-off phase split each dataset into three sub-sets: training, validation and test.

The validation set was used to stop the training early when the validation error began

to rise, and the test set was used exclusively as an estimate of each network’s generali-

sation error. Eighty percent of the original data was randomly allocated to the training

set, and the remaining twenty percent was equally allocated between the validation and

test sets. In order to ensure consistency, the same sub-sets were used to create and test

all networks within the scope of a given dataset.

4.3 Network Creation, Training and Evaluation

All networks in the experiments were created, trained and evaluated in an identical

fashion. They were created using the ‘fitnet’ function of the Neural Network Toolbox,

with the ‘mapminmax’ function for input and output processing. The activation func-

tion of all hidden nodes was ‘tansig’ and that of the output node was linear. The training

function used was Levenberg-Marquardt, ‘trainlm’, which often yields the best results

for function approximation problems. The networks were all trained using Matlab’s

default training parameters: 1000 epochs, training goal of 0, minimum gradient of 10/0,

6 validation failures, 1 = 0.001, 1234 = 0.1, 1
�4 = 10 and 1567 = 10/��.

The error function used during training was the mean squared error function ‘mse’,

however the generalisation error was reported using the normalised root mean squared

error (NRMSE). This is a function of the number of samples �, the target output �8
, and

the actual output �
 . It is normalised to the target output swing �8567 − �85
� , in order

to faciltate comparison between different datasets. The NRMSE 9 is given by:

 9 = �
:8;<=/:8;>?

@∑ ":>/:8>%B?>CD
� (7)

4.4 Experimental Method

A total of 20 experiments were carried out on each of the datasets. Half of these were

using SLFNs, and the other half using TLFNs. Each experiment consisted of varying

the number of hidden nodes �� between 1 and 64. For SLFNs, the number of hidden

nodes was simply ��. For TLFNs, the number of nodes in each of the hidden layers

was calculated according to equation (3), using the rounding method described in sec-

tion 2. Because the random weight initialisation can cause training to getting trapped in

local minima [4], each topology is trained 30 times, and the network with the most

favourable generalisation error is chosen as the “champion” network for that particular

topology. For clarity, the pseudo-code for a single experiment is shown in Figure 2.

function e = singleExperiment(type, nh)

 for nh = 1 to 64 do

 if type is ‘SLFN’ % calc nodes in each layer

 n1 = nh % First hidden layer nodes

 n2 = 0 % SLFN has no hidden layer 2

 elseif type is ‘TLFN’

 n1 = int(0.5nh + 1) % round down for layer 1

 n2 = nh -- n1 % Calculate nodes in layer 2

 end if

 for candidate = 1 to 30 do % process 30 networks

 net = createNetwork(n1,n2)

 nrmse[candidate] = trainNetwork(net)

 end do

 e[nh] = min(nrmse) % Calculate winner’s error

 end do

 return e

end function

Fig. 2. Pseudo-code for a single experiment

5 Results and Discussion

For each experiment, the overall “champion” is the network with the lowest generali-

sation error. Its total number of hidden nodes ��, and generalisation error 9 are rec-

orded. The results are summarised in Table 2, were 1"��% represents the mean number

of hidden nodes and 1"9% the mean generalisation error (as a percentage) over ten ex-

periments. The relative improvement is calculated as E1"9% = 1"9FGHI% − 1"9JGHI%,

and the improvement factor is calculated as K = E1"9%/9FGHI. The winners are in Table

2 are emboldened.

Table 2. Results Summary

Dataset
M"NO% M"P% (%) QM"P%

(%)

f

(%) SLFN TLFN SLFN TLFN

Abalone 34.1 24.7 6.5280 6.4597 0.0683 1.05

Airfoil 40.9 38.7 3.8244 2.8222 1.0022 26.21

Chemical 31.6 36.4 3.3738 3.4762 -0.1024 -3.04

Concrete 44.5 41.2 4.0272 3.6937 0.3335 8.28

Delta Elevators 10.7 18.6 5.0334 5.0315 0.0019 0.04

Engine 56.9 46.9 0.8963 0.8428 0.0535 5.97

Kinematics 54.1 35.2 4.5220 4.3730 0.1490 3.30

Mortgage 51.7 50.1 0.3497 0.3424 0.0073 2.10

Simplefit 10.4 10.8 0.0014 0.0012 0.0002 12.63

White Wine 36.3 47.0 11.4743 11.3983 0.0761 0.66

As might be expected, the results were varied and dataset dependent. The generali-

sation error is known to be dependent on the complexity of the function to be approxi-

mated as well as the level of noise within it. For example, the Simplefit dataset is a very

simple function which has no noise at all. It yielded almost zero generalisation error,

and there is not much to be gained by using a TLFN. On the other end of the scale, the

Airfoil dataset showed significant gains in generalisation error for a TLFN. Overall, 9

out of 10 datasets showed an improvement of some kind when using two hidden layers.

Some showed more significant gains than others. The only exception to this is with the

Chemical dataset, where a single hidden layer performed best. However this was only

a 0.1% relative improvement E1"9%. Since the generalisation error is so low in some

cases, it was thought that a fairer method of comparison was using the improvement

factor K in the final column of Table 2. The overall average improvement factor was

5.72% with a standard deviation of 8.5%. In over half of the cases, the TLFNs also

achieved this improvement with fewer hidden nodes. It should be remembered, how-

ever, that node for node TLFNs are more complex as they have more weights. Since it

is the weights which learn the problem, TLFNs have a larger storage capacity, which

might account for this improvement.

So which is better? The evidence in these experiments point to TLFNs. However,

the actual amount of improvement is case dependent. Furthermore, low complexity

might be a design consideration or requirement and this might need to be balanced

against the potential gains in generalisation error. So perhaps a better question might

be: Is it worth using a TLFN? Fortunately, through transformative optimisation, this

can easily be checked. Although the full 1-64 node scans used in these experiment (Fig-

ures 4-6 in Appendix A) each took several hours, this need not be the case. Binary

sampling techniques can be used to reduce this process to a matter of minutes, whilst

giving a broad idea of the likely gains (if any) and sometimes even an idea of where to

look. This is illustrated in Figure 3, which shows the result of binary sampling applied

to the Airfoil dataset.

Fig. 3. Airfoil using 12 point binary sampling

6 Conclusion

This study set out to discover whether networks with two hidden layers generalise better

than those with a single hidden layer in practical situations. In order to answer this

question, a method called “transformative optimisation” was proposed and applied to

perform a hidden-node-by-hidden-node comparison of SLFNs and TLFNs across ten

separate datasets. It was found that in nine out of ten cases TLFNs outperformed

SLFNs, but that the amount of improvement was very case dependent. However, the

proposed method can be used in conjunction with binary sampling to rapidly determine

whether it is worth using two hidden layers for any given problem. Although the results

presented here indicate that TLFNs outperform SLFNs, further investigation with more

complicated real-life datasets is necessary.

 On a final note, this method could potentially be used for other training algorithms,

although it would need to be verified whether the optimal values of � = 0.5 and = 1

still hold. Early indications are that this could well be the case for the ‘trainscg’ training

algorithm [8], although more extensive testing is required. This verification, as well as

equivalent comparisons of TLFNs and SLFNs for other training algorithms could be

the subject of further work.

Acknowledgements. We thank Prof. Martin T. Hagan of Oklahoma State University

for kindly donating the Engine dataset used in this paper to Matlab. Thanks also to Prof.

I-Cheng Yeh for permission to use his Concrete Compressive Strength dataset [18], as

well as the other donors of the various datasets used in this study.

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0 5 10 15 20 25 30 35 40 45 50 55 60 65

G
e

n
e

ra
li

sa
ti

o
n

 E
rr

o
r

(N
R

M
S

E
)

Hidden Nodes (nh)

SLFN

TLFN

Appendix A – Full Results: Average Node for Node Comparisons

Fig. 4. Abalone (top), Airfoil, Chemical and Concrete (bottom)

0.065

0.066

0.067

0.068

0.069

0.070

0.071

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ge
ne

ra
lis

at
io

n E
rro

r (
NR

M
SE

)

Hidden Nodes (nh)

SLFN

TLFN

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ge
ne

ra
lis

at
io

n E
rro

r (
NR

M
SE

)

Hidden Nodes (nh)

SLFN

TLFN

0.035

0.045

0.055

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ge
ne

ra
lis

at
io

n E
rro

r (
NR

M
SE

)

Hidden Nodes (nh)

SLFN

TLFN

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ge
ne

ra
lis

at
io

n E
rro

r (
NR

M
SE

)

Hidden Nodes (nh)

SLFN

TLFN

Fig. 5. Delta Elevators (top), Engine, Kinematics, and Mortgage (bottom)

0.050

0.051

0.052

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ge
ne

ra
lis

at
io

n E
rro

r (
NR

M
SE

)

Hidden Nodes (nh)

SLFN

TLFN

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ge
ne

ra
lis

at
io

n E
rro

r (
NR

M
SE

)

Hidden Nodes (nh)

SLFN

TLFN

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ge
ne

ra
lis

at
io

n E
rro

r (
NR

M
SE

)

Hidden Nodes (nh)

SLFN

TLFN

3.5

4.5

5.5

6.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ge
ne

ra
lis

at
io

n E
rro

r (
NR

M
SE

)

Hidden Nodes (nh)

SLFN

TLFN

Fig. 6. Simplefit (top) and White Wine (bottom)

References

1. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal ap-

proximators. Neural Netw. 2, 359–366 (1989)

2. Hornik, K., Stinchcombe, M., White, H.: Some new results on neural network approxima-

tion. Neural Netw. 6, 1069–1072 (1993)

3. Huang, G.-B., Babri, H.A.: Upper bounds on the number of hidden neurons in feedforward

networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw.

9, 224–229 (1998)

4. Zhang, G. P.: Avoiding Pitfalls in Neural Network Research. IEEE Trans. Syst. Man Cybern.

Part C Appl. Rev. 37, 3–16 (2007)

5. Chester, D. L.: Why two hidden layers are better than one. In: Caudhill, M. (ed.) Interna-

tional Joint Conference on Neural Networks, vol. 1, pp. 265-268. Laurence Erlbaum, New

Jersey (1990)

6. Brightwell, G., Kenyon, C., Paugam-Moisy, H.: Multilayer neural networks: one or two hid-

den layers?. In: Mozer, M. C., Jordan, M. I., Petsche, T. (eds.) Advances in Neural Infor-

mation Processing Systems. vol. 9, pp. 148–154., MIT Press, Cambridge, MA (1997)

7. Sontag, E., D.: Feedback stabilization using two-hidden-layer nets. IEEE Trans. Neural

Netw. 3, 981–990 (1992)

8. Thomas, A. J., Walters, S. D., Petridis, M., Malekshahi Gheytassi, S., Morgan, R. E.: Ac-

celerated Optimal Topology Search for Two-Hidden-Layer Feedforward Neural Net-works.

In: Jayne, C. and Iliadis, L. (eds.) EANN 2016. CCIS, vol. 629, pp. 253–266. Springer,

Switzerland (2016). doi: 10.1007/978-3-319-44188-7_19

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ge
ne

ra
lis

at
io

n
Er

ro
r (

NR
M

SE
x1

0-3
)

Hidden Nodes (nh)

SLFN

TLFN

0.115

0.116

0.117

0.118

0.119

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ge
ne

ra
lis

at
io

n E
rro

r (
NR

M
SE

)

Hidden Nodes (nh)

SLFN

TLFN

9. Thomas, A. J., Walters, S. D., Malekshahi Gheytassi, S., Morgan, R. E., Petridis, M.: On the

Optimal Node Ratio between Hidden Layers: A Probabilistic Study. Int. J. Mach. Learn.

Comput. 6, 241-247 (2016). doi: 10.18178/ijmlc.2016.6.5.605

10. Nakama, T.: Comparisons of Single- and Multiple-Hidden-Layer Neural Networks. In: Liu,

D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) Advances in Neural Networks –

ISNN 2011 Part 1. LNCS, vol. 6675, pp. 270–279. Springer, Heidelberg (2011)

11. Funahashi, K. –I.: On the approximate realization of continuous mappings by neural net-

works. Neural Netw. 2, 183–192 (1989)

12. Idler, C.: Pattern Recognition and Machine Learning Techniques for Algorithmic Trading.

MA thesis, FernUniversität, Hagen, Germany (2014)

13. Moré, J. J.: The Levenberg-Marquardt algorithm: Implementation and theory. In: Watson

G. A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978).

doi: 10.1007/BFb0067690

14. Beale, M. H., Hagan, M. T., Demuth, H. B.: Neural Network Toolbox User’s guide.

https://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf

15. UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/

16. Bilkent University Function Approximation Repository. http://funapp.cs.bilkent.edu.tr/Da-

taSets/

17. Regression Datasets. http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

18. Yeh, I. -C.: Modeling of strength of high performance concrete using artificial neural net-

works. Cem. Concr. Res., 28, 1797–1808 (1998)

