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Abstract—The explosive growth of visual data both online
and offline in private and public repositories has led to urgent
requirements for better ways to index, search, retrieve, process
and manage visual content. Automatic methods for generating
image descriptions can help with all these tasks as well as
playing an important role in assistive technology for the visually
impaired. The task we address in this paper is the automatic
generation of image descriptions that are anchored in spatial
relations. We construe this as a three-step task where the first
step is to identify objects in an image, the second step detects
spatial relations between object pairs on the basis of language
and visual features; and in the third step, the spatial relations
are mapped to natural language (NL) descriptions. We describe
the data we have created, and compare a range of machine
learning methods in terms of the success with which they learn the
mapping from features to spatial relations, using automatic and
human-assessed evaluations. We find that a random forest model
performs best by a substantial margin. We examine aspects of our
approach in more detail, including data annotation and choice of
features. For Step 3, we describe six alternative natural language
generation (NLG) strategies, evaluate the resulting NL strings
using measures of correctness, naturalness and completeness.
Finally we discuss evaluation issues, including the importance
of extrinsic context in data creation and evaluation design.

I. INTRODUCTION

The motivation for the research presented in this paper is
two-fold. On the one hand, there is the now routinely cited
explosion of data that is characteristic of the information age:
visual data—along with textual and numerical data, one of
the three main big data categories—continues to proliferate at
an enormous rate, online as well as in privately and publicly
held offline repositories. This has led to urgent requirements
for better ways to index, search, retrieve, process and manage
visual content. On the other hand, substantial proportions of
the population are excluded from visual online content and
the information age more generally [1], non-observance of
accessibility requirements making the internet a frustrating
experience for visually impaired people [2]. Blindness and
partial sight are increasing, due to changing demographics and
greater incidence of diseases such as diabetes, at great financial
and human cost (WHO, [3]). Automatic image description
plays a role in indexing, search, retrieval and management
of visual data as well as making visual data accessible to the
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visually impaired, used on the fly or offline e.g. as part of
fulfilling accessibility requirements.

Taking even the most cursory look at human image descrip-
tions, it is clear that humans prioritize mention of foregrounded
and/or relatively large entities such as people, animals, cars,
buildings, etc., and their attributes (color, size, etc.). Similarly
important are relationships linking these entities, to each
other and to their surroundings, including relationships with a
temporal dimension (a boy riding a bicycle; a dog swimming
in a lake), and relationships without (a boy on a bike; a
dog in a lake). While the truth content of descriptions such
as these four with respect to an image is relatively easy to
determine, it is hard to draw the line between them and types
of descriptions that involve conjecture beyond the evidence in
the image.E.g., looking at Figure 1,1 strictly speaking, only
the fourth description does not involve any conjecture.

In the work reported in this paper we focus on entities and
spatial relations as aspects of image description that require
minimal conjecture. The questions we wish to address are (1)
to what level of accuracy can spatial relations be determined
by machine learning (ML) methods; (2) to what extent do
human authors agree when determining spatial relations from
still images; and (3) what level of quality can be achieved with
image descriptions anchored in automatically detected spatial
relations. The first and third questions are important because
we need good performance for descriptions to be practically
useful; the second because annotations will provide a poor
basis for ML if agreement is low.

We construe automatic generation of image descriptions
anchored in spatial relations as a three-step task: (1) entity
identification (which we do not address ourselves); (2) iden-
tifying the spatial relations between pairs of entities on the
basis of geometric and language features (Sections V to VII);
and (3) generating natural language (NL) descriptions from
sets of spatial relations (Section IX). The image data we use
is described in Section IV-A, the annotations we collected for
them in Section IV-B and IV-C. Recognizing the importance
of human evaluation [5], we report two such sets of results
(Sections VII-C and IX-F) as well as automatic metric scores.
We discuss the role of application purpose in evaluations in

1Image adapted from: http://lear.inrialpes.fr/RecogWorkshop08/docu-
ments/everingham.pdf
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A main holds two bikes near a beach.
A young man wearing a striped shirt is holding two bicycles.
Man with two bicycles at the beach, looking perplexed.
Red haired man holding two bicycles.
Young redheaded man holding two bicycles near beach.

Fig. 1. Image 2008 008320 from PASCAL VOC 2008 with annotations and
image descriptions obtained by Rashtchian et al. [4] (BB = bounding box).

some depth in the discussion section (Section X) which brings
the paper to a close.

II. LANGUAGE AND SPACE

Psycholinguistics and cognitive linguistics research on lan-
guage and space has a long history including influential
work by Leech [6], Bennett [7], Jackendoff [8], Talmy [9],
Herskovits [10] and others who have studied how language
marks spatial distinctions and patterns, and ascribes structure
to space. In this section we relate our research to some of this
literature, in order to provide a framework for conceptualizing
and reporting our experiments. A detailed review of spatial
preposition models is provided by Kelleher and Costello [11].

It is generally agreed that speakers do not take into account
a scene’s full, complex details, but access radically simplified
representations. A process known as schematization “reduces
a physical scene with all its richness of detail, to a sparse
and sketchy semantic content” [10, p. 169]. For Herskovits
[10], [12], schematization is a set of object geometry selection
functions, e.g. idealizing objects to a point, line, plane, etc.,
or selecting parts of objects. Importantly, this reduction in
complexity is a matter of degree and depends on factors
such as distance between objects (e.g. objects are not always,
as assumed e.g. by others such as Landau and Jackendoff
[13], reduced to points). Other spatial representations accessed
by language include2 the 2D plane of view and axis-based
componential representations of objects.

In order “[t]o compute a spatial relation between two
objects, one must: 1. Configure them together—that is, select
them for attention in a way that makes it possible to apprehend

2For full list see Herskovits, 1997, p. 193.

the applicable spatial relations; and 2. Categorize the configu-
ration. [...] Several lexically expressible relations can generally
categorize a given configuration of two objects” [10, p. 199].

The literature is not very explicit about how linguistic spatial
relations formally map to prepositions. Herskovits is clear
[10, p. 160ff.] that prepositions have multiple senses each
of which has multiple use types and is moreover subject to
fuzzy interpretation due to convention-based sense shifting
and pragmatic processes of tolerance [12, pp. 78ff. and 86ff.].
However, is there a single linguistic spatial relation for every
sense and use type? Are they in some way parametrized to
account for fuzzy interpretation? It seems clear at least that
the set of configurations that match a preposition’s one sense
will not be identical to that of another.

From Scene to Description: Building on Herskovits’s frame-
work, we construe the processes underlying spatial image
description to be as follows (schematization and categorization
as above):

[scene as it is] —-schematize−→ [schematic configura-
tion with two object sets Ot, Ol] —-categorize−→ [spa-
tial relation psu(Ot, Ol)] —-realize−→ [description with
matching syntactic structure including PP headed by a
preposition denoting p]

Schematization is parametrized by linguistic goal and is
language specific among other things [10, p. 159]; it pro-
duces a single configuration. Categorization and realiza-
tion can produce multiple outputs. We understand individ-
ual location prepositions to denote multiple spatial relations
psu(Objecttrajector, Objectlandmark) corresponding to senses
s and use types u. We adopt the trajectory and landmark terms
[14] in preference to the cognitive linguistics literature’s Figure
and Ground as the more general terms.3

It seems clear that it is possible to systematically avoid
generating unsuitable preposition senses and use types only if
that distinction is marked at the spatial relation level. Having
prepositions denote single spatial relations (as Herskovits
appears to do when she refers (p. 160) to “the spatial relation
denoted by the preposition”, our italics) makes it impossible to
systematically avoid generating descriptions that can only be
understood as a different sense or use type inconsistent with
the observed scene.

Domain-specific Spatial Relation Sets: In some contexts
there may not be sufficiently fine-grained information available
in the scene configuration to distinguish different preposition
senses and use types. We deem this to be the case if two spatial
relations (SR) consistently co-occur in SR sets selected by
annotators (Section IV). In that case we consider them, in this
context only, and not in any strict lexical sense, synonymous,
which in turn we interpret as license to merge them into
one SR. In the present context, for reasons of practicality
we assume that a preposition’s senses and use types are all
synonymous in this sense, as distinguishing even just senses

3In expressions about spatial relationships, “typically one entity is taken as
a reference point (or area) with respect to which the other is located” [14, p.
648]; the former is the landmark and the latter is the trajector. E.g. in She is
on the balcony, she is the trajector and the balcony is the landmark.



would make data annotation (Section IV) a specialist task and
training data much harder to obtain. It would also increase
data sparsity. In fact, we go one step further (Section IV-B)
and in some special cases consider spatial relations that are
denoted by different prepositions synonymous in the above
sense. However, in those cases we do justify the merge with
co-occurrence statistics from data.

Automatic Image Description: In our work we start from
a still image in which the plane of view is fixed. Some of our
component techniques could be interpreted as combining to
correspond to schematization: (1) object identification yields
an abstraction of the objects as rectangles (the bounding
boxes); (2) geometric feature computation (a) yields further
abstractions of objects e.g. as points (centroids of bounding
boxes), and (b) makes available other spatial information such
as distance between objects; and (3) scenes are ‘configured’
into pairs of objects where one is the trajector and the other
the landmark. Our methods categorize pair configurations into
spatial relations, before generating an NL description for them.

III. RELATED RESEARCH IN IMAGE DESCRIPTION

The aim of image labelling (or tagging, or indexing) is to
identify regions in an image that are meaningful to a human
observer, and to attach labels to them that capture that meaning
in some way. Image labelling goes back at least to the
1960s (for an overview of early image labelling work see
Rosenfeld and Azriel [15]). A simple form of description can
be generated from such region labels, but it would not be
much more than a list. A step further is recent work on visual
relationship detection [16], [17], [18] where relations between
objects are identified in addition to the objects themselves.

Image description proper starts where a summarizing de-
scription of the whole image is aimed for, which involves
prioritizing more important elements and relationships in a
fully realized NL description of the input image. A fairly
basic division is between (i) methods that create a new
description for a given image from scratch, and (ii) methods
that measure the similarity of a new image with other images
for which descriptions exist, and then use one or more of
those descriptions to create a description for the new image.
See [19], [20], [21], [22], [23] for examples of the latter; our
focus here is on methods of the former type. A recent survey
by Bernardi et al. [24] reviews both types in detail.

Methods that create a new description for a given image
from scratch can be said to have the main three component
steps mentioned in the introduction: (1) identification of type
and, optionally, location of objects and background/scene in
the image; (2) detection of attributes, relations and activities
involving objects from Step 1; and (3) generation of a word
string from a representation of the output from Steps 1 and 2.
For Step 1, some systems identify labelled regions [25], [26],
others directly map images to words [27]. For Step 2, systems
determine object attributes [26], [28], spatial relationships
[29], [30], [31], activities [26], [30], etc. In Step 3, systems
differ in the amount of linguistic knowledge they bring to bear
on the generation process. Some view the task as similar to

a linearization problem where the aim is to work out a likely
string of words containing the labels, relations and attributes
from Steps 1 and 2 [27], [32]; others employ templates to slot
the latter into [29], [30], while still others use grammar-based
techniques to construct descriptions [33], [34].

Identifying the spatial relationships between pairs of objects
in images is an important part of image description, but is
rarely addressed as a separate subtask in its own right. If a
method produces spatial prepositions, it tends to be as a side-
effect of the overall method [33], [35], or else relationships are
not between objects, but e.g. between objects and the scene
[29]. An example of preposition selection as a separate subtask
is Elliott & Keller’s work [30] who base the mapping on
manually composed rules. Spatial relations also play a role in
referring expression generation [36], [37] where the problem
is, however, often simplified as a content selection task from
known symbolic representations of objects and scene.

Mostly closely related to our work for Step 2 is work by
Ramisa et al., 2015 [38] and Hürlimann & Bos, 2016 [39].
In both, various visual and verbal features computed for a
given image are used to predict prepositions to describe the
spatial relations between a pair of objects in the image. We
have ourselves previously reported preliminary work in this
area for English [40], [41] and French [31], [42].

IV. IMAGE DATA AND ANNOTATIONS

Our main data source is the VOC’08 corpus of images [43] in
which objects have been annotated with rectangular bounding
boxes and object class labels. We collected additional annota-
tions for images (Section IV-C) which list, for each object pair,
a set of prepositions selected by human annotators as correctly
describing the spatial relationship between the objects.

A. Source Data Sets

VOC’08 9K: The data from the PASCAL VOC 2008 Shared
Task Competition (VOC’08) consists of 8,776 images and
20,739 objects in 20 object classes. In each image, every object
belonging to one of the 20 VOC’08 object classes is annotated
for class, bounding box, viewpoint, truncation, occlusion, and
identification difficulty [43], examples of all of which can be
seen in Figure 1. Of these annotations we use the following:

• class: aeroplane, bird, bicycle, boat, bottle, bus, car, cat,
chair, cow, dining table, dog, horse, motorbike, person,
potted plant, sheep, sofa, train, tv/monitor.

• bounding box: an axis-aligned box surrounding the extent
of the object visible in the image.

VOC’08 1K: Using Mechanical Turk, Rashtchian et al. [4]
collected five descriptions each for 1,000 VOC’08 images
selected from the larger 9K set (see above) randomly but
ensuring there were 50 images from each VOC’08 class.
Contributors had to have high hit rates and pass a language
competence test before creating descriptions, leading to rela-
tively high quality with few grammatical or spelling mistakes.
See Figure 1 for an example.



B. Spatial Relations for Annotation

In order to determine the set of spatial relations (SRs) to be
used by our annotators, we proceeded as follows. From the
VOC’08 1K dataset we obtained a set of candidate prepositions
by parsing the 5,000 descriptions with the Stanford Parser
version 3.5.24 with the PCFG model, extracting the nmod:prep
prepositional modifier relations, and manually removing the
non-spatial ones. This gave us a set of 38 English prepositions.

In order to obtain an analogous set of prepositions for
French, as a first step we asked two French native speakers to
compile the list of possible translations of the English preposi-
tions, and to check these against 200 random example images
from our corpus. The full list for French had 21 prepositions
and these were reduced to a smaller set, on the basis of an
earlier batch of annotations [42], by eliminating prepositions
that were used fewer than three times by annotators (en haut
de, parmi), and those which co-occur with another preposition
in more than 60%5 of the times they occur in total (á l’interieur
de, en dessous de), in accordance with the general sense
of synonymity defined in Section II. We found this kind of
co-occurrence to be highly imbalanced, e.g. the likelihood
of seeing á l’interieur de given dans is 0.43, whereas the
likelihood of seeing dans given á l’interieur de is 0.91. We
take this as justification for merging á l’interieur de into dans,
rather than the other way around. The whole process leaves a
set of 17 French prepositions:
VF = {à côté de, á l’éxterieur de, au dessus de, au niveau
de, autour de, contre, dans, derrière, devant, en face de, en
travers de, le long de, loin de, par delà, près de, sous, sur}

As discussed in Section II, we make the domain-specific
assumption that there is a one-to-one correspondence between
prepositions and the SRs they denote. While our machine
learning task is SR detection, we ask annotators to annotate
our data with the corresponding prepositions (a more human-
friendly task).

C. Annotation

For our annotation experiments, we selected all images with
two and three objects in bounding boxes from the VOC’08
data, giving a set of 1,554 images (about 18% of the corpus).
For each object pair Oi and Oj in each image, and for both
orderings of the object labels, Li, Lj and Lj , Li, the task
for annotators was to select (i) the single best preposition
for the given pair, and (ii) the possible prepositions for the
given pair (selected from a given list) that accurately described
the relationship between the two objects in the pair. Figure 2
is a screen grab from our annotation tool showing the first
annotation task (free-text entry of single best preposition).

For the French annotation interface, we replaced the English
VOC’08 object class labels (Section IV-A) with their French
equivalents (used also for language features, Section V). Even
though in the first annotation task, annotators were not limited

4http://nlp.stanford.edu/software/lex-parser.shtml#Download
5This is a very high threshold and far above co-occurrence percentages for

any other preposition pairs.

TABLE I
DIFFERENT VERSIONS OF DATA SET USED IN EXPERIMENTS (SR =

SPATIAL RELATION; n TRAINING INSTANCES).

Name Description n
DS-F Complete data set, best/all SR annotations 11,291
DS-F-best DS-F with best-SR annotations only 5,240
DS-F-all DS-F with all-SR annotations only 9,737
DS-F-all-sub DS-F-all reduced to size of DS-F-best 5,240

to the prepositions shown in the second task, they did not use
any others (a few typos we corrected manually). As it would
have been virtually impossible to remember the exact list of
prepositions and only use those, we interpret this as meaning
that annotators did not feel other prepositions were needed.

We used pairwise kappa to assess inter-annotator and intra-
annotator agreement. For selection of best prepositions this is
straightforward; for all prepositions it is less straightforward,
because the sets of selected prepositions differ in set size and
overlap size. Our approach was to align the preposition sets
and to pad out the aligned sets with blank labels if an annotator
did not select a preposition selected by another annotator.
Calculated in this way on a batch of 40 images, for single
best prepositions (annotation task 1), average inter-annotator
agreement was 0.67, and average intra-annotator agreement
was 0.81. For all possible prepositions (annotation task 2),
average inter-annotator agreement was 0.63, and average intra-
annotator agreement was 0.77. These would have been higher
if one of the annotators had not had much lower kappas than
the others, an issue we return to in Section VIII-B.

D. Different Versions of Data Used in Experiments

Our complete data set has 1,020 images with two objects
(2,040 ordered object pairs), and 534 images with three
objects (3,204 ordered object pairs), from which we use a
total of 5,240 ordered object pairs. For each ordered object
pair Objs, Objo we have the set of prepositions ps,oi selected
for it by the annotators. Each such triple (Objs, Objo, p

s,o
i )

becomes an individual dataset instance. There are altogether
11,291 dataset instances, corresponding to 2.2 prepositions
per ordered pair. For ease of reference, Table I provides an
overview of the different versions of the French data we use
in the experiments below along with the shorthand names used
for each in the results tables.

V. MACHINE LEARNING METHODS

In this section, we describe the different machine learning
(ML) models we test (Section V-C), the features we use to
train the models (Section V-A; Table II), and the set-up within
which we tune model hyper-parameters, train the models, and
investigate subsets of features (Section V-B).

A. Features

The ML methods described in the following section all use
the feature set shown in Table II. F0, F1, F15 and F16 are
language features. F0 is the class label of the first object, F1
of the second (e.g. person). F15 and F16 are GloVe word



Fig. 2. Screen grab of annotation tool set for French, showing first task (free-text entry of single best preposition).

TABLE II
LANGUAGE AND VISUAL FEATURES AS USED BY THE ML METHODS IN SECTION V-C. NOTE THAT THE 17 NUMBERED FEATURES ABOVE CORRESPOND

TO FEATURE VECTORS OF LENGTH BETWEEN 114 AND 138, DEPENDING ON METHOD.

F0: Object label Ls — definition depends on learning method NB, DT, RF: {0, 1, ..., 19}; others:
1-hot encoding (20 bits)

F1: Object label Lo — definition depends on learning method
F2: Area of bounding box of Objs normalized by image size. [0, 1]
F3: Area of bounding box of Objo normalized by image size. [0, 1]
F4: Ratio of Objs bounding box area to that of Objo. [0, size of Objs]
F5: Distance between bounding box centroids, normalized by image diagonal. [0, 1]
F6: Area of overlap of bounding boxes normalized by the area of the smaller bounding box. [0, 1]
F7: Distance between centroids divided by sum of square root of areas/2 (approximated average

width of bounding boxes).
[0, ∼20]

F8: Position of Objs relative to Objo expressed as one of 4 categories, depending on the angle with
the vertical axis.

NB, DT, RF: {0, 1, 2, 3}; others:
1-hot encoding (4 bits)

F9–F12: Let distance from image edge of left and right edges be a1, b1 for first box and a2, b2 for
second box: F9 = (a2− a1)/(b1− a1), F10 = (b2− a1)/(b1− a1). Similarly for the top
and bottom edges, giving F11 and F12.

[∼-40, ∼+40]

F13: Aspect ratio of box of Objs. [0, ∼10]
F14: Aspect ratio of box of Objo.
F15: GloVe word vector for Ls. here: ∼ [−2,+3]
F16: GloVe word vector for Lo.

vectors [44] for the labels each of length 50.6 F2–F14 are
visual features measuring various aspects of the geometries of
the bounding boxes (BBs). Most features express a property
of just one of the objects, but F4–F9 express a property of
both objects jointly, e.g. F6 is the normalized BB overlap.

B. Machine Learning Set-up

Several of our ML methods (see Section V-C) have hyper-
parameters (HPs) that need to be tuned in order to get
good performance out of them, via some form of hyper-
parameter optimization (HPO). At the same time, we wanted
to investigate the role played by the different features in a
feature optimization (FO) framework. In FO, the task is to
find the subset of features that maximizes a given performance
metric, and this space can be searched exhaustively, at least in
principle. For HPO, it is not possible to test all combinations
of HP values because many HPs are continuous-valued, and

6GloVe is a count-based method for creating distributed word representa-
tions; essentially, it starts with the word co-occurrence matrix computed from
a given corpus, factorizes it into a lower-dimensional word-by-features matrix,
and uses the rows in the matrix (indexed by the words) as word vectors.

some are unbounded; this is usually addressed by manually
discretizing and bounding HP values which yields a grid of
points in HP space which can be searched exhaustively, e.g.
by grid, random or sequential search [45], [46].

For a full exploration of the feature and (discretized,
bounded) HP spaces, the basic model training process would
have to be repeated for every feature subset, for every combi-
nation of HP values. Bearing in mind, moreover, that there are
usually multiple ML methods, this tends to be computationally
infeasible. We have a small data set and optimal HP values
depend on the feature set being used; this means that we
cannot use the complexity-reducing option of fine-tuning HP
values in a separate process and discarding the data used for it
afterwards. Instead, we opt for a similarly7 parsimonious set-
up that incorporates a grid search of the HP space embedded
within a k-fold cross-validation regime over 1/k development
set, 1/k test set, and (k − 2)/k core training set, and can be
summarized in informal pseudo-code as shown in Algorithm 1.

7Assuming one would always want to involve cross-validation because of
the small size of the data set.



Algorithm 1 HPO nested within cross-validation nested within FO
1: for For a given feature set F = {f1, f2, ..., fm} do
2: for For each of k runs of the cross-validation do
3: Assign next development, test and core training sets;
4: for For each grid point G = {v1, v2, ..., vn} in HP space to be tested do
5: Train a model on core training set and test on development set, using HPs G and features F ;
6: Compute Acc(1)dev (definition see following section) on the development set;
7: Select Gbest with the highest Acc(1)dev;
8: end for
9: Using Gbest and F , retrain the model on combined core training and development sets;

10: Test the trained model on test set, yielding Acc(1)test;
11: end for
12: Compute Acc(1)ktest, the mean of the k Acc(1)test scores, as final score for F ;
13: end for

For clarity, the results shown in Table III are the Acc(1)ktest
scores for the complete feature set (Section V-A); also shown
are the corresponding Acc(2), Acc(3), and Acc(4) scores.

We embed the above protocol in a greedy backward
feature elimination procedure which in each iteration re-
moves the feature whose removal most improves, or minimizes
worsening of, the Acc(1)ktest score; the order in which features
are eliminated gives an idea of their relative usefulness and
informs our discussion of features in Section VII-B.

C. Models

Using the features from Section V-A, we separately trained
models of the six types below. We use the scikit-learn8 library
to implement the DT, LR, SVM and RF models. All models
output the probability vector for the prepositions, from which
the evaluation measures (see following section) are calculated.

Baseline (BL): Select most frequent spatial relation for an
object pair; back off to most frequent spatial relation overall.

Naive Bayes (NB): A very simple classifier which assumes
that each feature is conditionally independent of every other
feature given the spatial relation. We use the object label (F0,
F1) probabilities as the prior and all other features (F2-F16)
as the likelihood. The latter are modelled with a Gaussian
distribution, except for F4 and F8 (for details see [31]).

Decision Tree (DT): Classifies data in a series of decisions
based on conjunctions of features. Values for the maximum
tree depth [2, 20], minimum samples at split and leaf [1, 40]
are determined by hyper-parameter optimization (HPO).

Logistic Regression (LR): A linear classifier which models
the spatial relation probabilities with a logistic function. The
value for the inverse of regularization constant [0.1, 100.0] is
determined by HPO. The regularization is set to L1-norm and
the model uses one-versus-rest multi-class classification.

Support Vector Machine (SVM): A non-probabilistic bi-
nary linear classifier solving the multiclass case via (here) one-
versus-one classification. The RBF kernel parameters, C [0.1,
100.0] and gamma [0.001, 1.0] are determined by HPO.

Random Forests (RF): A meta-estimator comprizing mul-
tiple decision-tree classifiers fitted to sub-samples of the data,
using averaging to improve predictive accuracy and to control

8http://scikit-learn.org

overfitting. The number of estimators [10, 150], maximum
features [1, 156], maximum tree depth [2, 20], and minimum
samples at split and leaf [1, 40], are determined by HPO.

VI. EVALUATION METHODS FOR SR PREDICTION

System-level Accuracy: We use four different variants of
system-level Accuracy, denoted Acc(n), n ∈ {1, 2, 3, 4},
which return Accuracy rates for the top n outputs produced
by systems, such that a system output is considered correct if
at least one of the target (human-selected) outputs is in the top
n system outputs (for n = 1 this yields standard Accuracy).

Weighted Average Per-relation Precision: This measure,
denoted AccP , computes the weighted mean of individual per-
relation precision scores. Individual precision for a relation p
is the proportion of times that p is in the human-selected set
of reference outputs (target outputs) out of those cases where
p is returned as the top preposition by a method.

Human-assessed Measures: For the human evaluations,
we first randomly selected four of the test instances (ordered
object pairs with labels Ls, Lo for a specific image) from each
of the five test sets from our five cross-validation runs. We then
collected the outputs (top-ranked prepositions) ps,oM produced
for the 20 selected test instances by each of the three overall
best methods M , plus the baseline system, all as trained in
the corresponding run of the cross-validation, thereby creating
80 individual evaluation items (Ls, Lo, p

s,o
M ).

We recruited four native speakers as evaluators and assigned
20 evaluation items to each of them. The assignment ensured
that each evaluator saw each method and each image/object-
pair combination the same number of times. We achieved this
via a Latin Square experimental design, using five sequenced
4x4 Latin Squares, so that evaluator Ei evaluates the ith row
of every square. For details, see Kow & Belz, 2012 [47].

We presented the evaluation items to each evaluator in
randomized order using an interface almost identical to the
left half of Figure 2, apart from the fact that we displayed
the preposition selected by the given method instead of the
empty slot (so evaluators were assessing simple ‘Ls est ps,oM

Lo’ phrases, e.g. le chien est devant la personne). This was
shown alongside two questions: ‘Is this statement true?’ (YES,
NO, UNSURE), and ‘Is this a good way to describe the spatial
relationship between the two objects?’ (VERY GOOD, GOOD,



OK, NOT VERY GOOD, BAD). Evaluators were first shown a
page of instructions with examples and three practice items.

Results for this evaluation method are reported in Sec-
tion VII-C below. A separate set of human evaluation results
using a similar experimental design, but for the fully realized,
complete image descriptions, is reported in Section IX-F.

VII. PRIMARY RESULTS

The primary results were obtained with the ML set-up de-
scribed in Section V-B, with k = 5 and dividing the data into
k non-overlapping subsets by means of stratified sampling,
rather than random sampling, to ensure approximately equal
representation of spatial relation classes [48].

TABLE III
Acc(n) RESULTS FOR ALL ML METHODS ON DS-F DATA; STATISTICAL

SIGNIFICANCE OF DIFFERENCES INDICATED IN SECOND COLUMN (FROM
ONE-WAY ANOVA WITH POST-HOC TUKEY HSD TEST).

Method Tukey Group Acc(1) Acc(2) Acc(3) Acc(4)
BL D 66.4 79.7 88.3 92.9
NB D 68.5 83.8 90.8 94.7
DT C 75.2 87.9 93.0 95.2
LR C 77.1 90.9 95.4 97.8
SVM B 79.7 91.9 96.0 97.9
RF A 82.4 92.2 96.4 98.0

A. Results Using All Features

Table III shows Acc(n) results for models trained on the set
of all features. The RF model has the highest scores for n = 1
(the main results), and for higher values of n although with
decreasing margins. The LR model is far behind for n = 1,
but catches up at n = 4. Baseline results remain behind by
a substantial margin, and NB and DT scores are lower than
those of the best methods for all n. Other than that, results
increase in the order shown in the table.

Table IV shows the corresponding set of relation-level AccP
scores in order of relation frequency (second column); the ac-
tual (system-level) AccP results are shown in the bottom row.
Note that the system-level AccP score for SVM is strongly
affected by the relation-level AccP score for a cote de, a very
high frequency item. Generally, the higher frequency relations
are predicted with higher precision, but higher frequency is not
necessary for good generalization, as demonstrated by dans
(74 occurrences) and autour de (42) for which the overall
best and fourth best AccP scores, respectively, are obtained.
It seems likely that some relations are harder to identify than
others from 2D images in our domain. In each row in the table,
the best score for the relation indicated in the first column is
highlighted in bold. The RF method has the best AccP score
for 10 of the relations; NB has three of the best (although
one is joint best and the other two, for a l’exterieur de and
par dela are very low); LR and SVM have two each.

B. Feature Elimination

Table V shows results from greedy backward feature elimina-
tion which excludes the least useful feature in each iteration
(Section V-B). We let the procedure continue until all but

TABLE IV
RELATION-LEVEL AccP RESULTS (SYSTEM-LEVEL RESULTS IN BOTTOM

ROW) ON DS-F DATA, SHOWN IN ORDER OF SR FREQUENCY (n) IN
ANNOTATIONS. ‘–’ MEANS THE RELATION WAS NEVER PREDICTED BY THE

METHOD; 0 MEANS PREDICTIONS WERE WRONG EVERY TIME.

Relation-level AccP
Spatial relation (n) BL NB DT LR SVM RF
pres de (2,808) 73.5 83.9 78.1 80.4 81.1 83.9
a cote de (1,740) 17.9 79.5 73.3 50.4 0.0 94.2
devant (1,353) 48.0 72.1 72.5 76.8 78.6 79.5
derriere (1,300) 58.9 55.6 71.2 80.4 80.8 75.9
au niveau de (1,132) 0.0 61.5 62.4 44.4 55.0 72.3
contre (718) 58.9 53.9 39.9 59.9 65.5 71.6
sous (525) 56.2 65.5 71.7 74.3 77.1 81.9
loin de (470) 58.3 40.2 60.0 70.3 75.5 83.8
sur (443) 56.2 75.1 77.5 76.5 78.1 82.3
en face de (333) 57.1 48.6 41.7 61.8 35.6 91.5
au dessus de (143) 50.2 – 50.0 76.9 50.0 50.0
le long de (83) – 0.0 – 39.3 – –
dans (74) – 41.7 33.3 56.7 95.0 76.0
a l’exterieur de (51) 14.0 36.8 – 36.1 0.0 –
par dela (47) – 10.2 – – – –
autour de (42) 0.0 38.7 63.2 65.5 83.6 87.5
aucun (28) – – 0.0 0.0 – –
System AccP (11,290) 50.2 68.5 68.7 68.0 61.8 81.6

one feature had been eliminated; for all learning methods
there was an initial improvement in the Acc(1) score (second
column in Table V) after which Acc(1) got worse again (third
column in Table V). Note we are optimizing on Acc(1); AccP
is also shown for cross-reference. FO leads to improvement
even for methods such as RF that can switch features off via
weights, although except for NB, improvement is small. For
all methods except RF, improvement in Acc(1) is paralleled
by improvement in AccP .

The elimination process also enables insights into the rela-
tive usefulness of features. For the LR and SVM models four
features can be removed before Acc(1) gets worse again, for
DT and RF seven, and for NB ten. There are patterns in the
order in which features are removed that can be observed
across ML methods. The single most useful feature is F12
(capturing the extent to which the top of the landmark object
extends into the trajector object, expressed as a proportion of
the trajector’s height) which is retained until the end by DT,
LT, SVM, and RF, and is in the last four for NB. F4 (size ratio),
F6 (normalized overlap) and F8 (angle between centroids) are
in the optimized feature set for four out of five methods.

There is evidence that F0/F1 (the trajector and landmark
class labels, interpretable as words, e.g. person, bicycle),
and F15/F16 (word vectors for these same class labels), can
substitute for each other: models tend to retain F0 if F15 has
been eliminated (and vice versa), and to retain F1 if F16 has
been eliminated (and vice versa). E.g. NB and SVM eliminate
F15 and F16 early on and retain F0 and F1 until the end; LR
eliminates F16 and F0 early on and retains F1 and F15 until
the end. There is evidence of this for all methods, without a
clear preference for getting rid of simple labels sooner than
lengthy word vectors; this indicates that for this particular task
word vectors afford no advantage over words.



TABLE V
RESULTS ON DS-F DATA FOR FEATURE OPTIMIZATION (FO) ON Acc(1), USING GREEDY BACKWARD FEATURE ELIMINATION.

Removed features in Optimized feature set (features shown Acc(1) AccP
Method order of elimination in order of continued elimination) after FO before FO after FO before FO
BL N/A (0–16) (66.4) (66.4) (50.2) (50.2)
NB 16, 15, 13, 7, 3, 11, 9, 2, 14, 10 4, 6, 5, 12, 8, 0, 1 74.2 68.5 71.2 68.5
DT 11, 3, 10, 9, 13, 5, 1 14, 0, 2, 7, 4, 8, 6, 15, 16, 12 76.6 75.2 69.5 68.7
LR 3, 2, 16, 0 14, 9, 10, 5, 13, 11, 6, 4, 8, 7, 1, 15, 12 77.7 77.1 68.2 68.0
SVM 13, 15, 16, 4 10, 9, 14, 2, 8, 6, 5, 3, 11, 1, 0, 7, 12 80.3 79.7 78.6 61.8
RF 6, 8, 9, 2, 5, 13, 14 1, 0, 3, 10, 11, 4, 7, 15, 16, 12 82.6 82.4 81.2 81.6

TABLE VI
HUMAN EVALUATION OF SR DETECTION (ON DS-F DATA): CELLS SHOW
NUMBER OF TIMES A SYSTEM RECEIVED A RATING; ∗AVERAGE RATING

FOR PERSPECTIVE ON RANK (BUT SEE IN TEXT FOR CAVEAT).
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BL 10 10 0 3 4 3 3 7 2.65
LR 16 3 1 5 3 5 5 2 3.2
SVM 15 1 4 4 3 7 5 1 3.2
RF 19 0 1 5 11 0 4 0 3.85

Among the least useful features are F13 (aspect ratio of
trajector object) which is eliminated by four out of five
methods, F2/F3 (BB sizes relative to image size), F9 (left
edge displacement), and F16 (word vector for landmark label),
the latter four features being eliminated by three out of five
methods. Feature elimination and retention patterns would
probably be more uniform if it was feasible to carry out tests
for all subsets of features; as it is, the greedy algorithm cannot
fully take account of the interactions between features.

C. Human Evaluation Results

Table VI shows human evaluation results (method in Sec-
tion VI). Evaluators broadly agree with the automatic metrics
in terms of ranking the three systems, for both truth and
quality. The RF model stands out for producing statements that
are true in all but one case, good or very good in 80% of all
cases, and no bad ones at all. The last column shows averages
over quality ratings, but this needs to be interpreted with
caution, because the distances between the scores cannot be
assumed to be equal in all cases. We ran a non-parametric test
(Wilcoxon) which found the differences between RF, SVM,
LR and the baseline significant for truth, and between RF and
BL for quality, but a Dunn-Bonferroni correction left only the
difference between RF and BL as significant in both cases.

VIII. FURTHER ANALYSIS

A. Training on Best SRs vs. All SRs

In this section, we compare results for training on best
prepositions only vs. training on all possible prepositions. For

TABLE VII
Acc(1), Acc(2) AND Acc(3) RESULTS USING BEST PREPOSITIONS

(‘BEST’); ALL PREPOSITIONS (‘ALL’), AND A RANDOMLY SELECTED
SUBSET (‘ALL-SUB’) OF OF ‘ALL’ EQUAL IN SIZE TO ‘BEST’.

Acc(1) Acc(2) Acc(3)
DT best 51.6 71.8 83.1
DT all 67.7 81.4 91.0
DT all-sub 64.7 80.9 88.8
NB best 57.6 74.8 84.0
NB all 64.7 80.9 90.4
NB all-sub 61.2 78.8 88.3
LR best 59.3 78.8 88.8
LR all 74.9 89.2 94.2
LR all-sub 73.6 88.4 93.9

this specific set of experiments (previously reported [42]), we
used manually set hyper-parameters, a simple leave-one-out
cross-validation set-up, no feature optimization, and slightly
different versions of NB and DT, all as described in [42].9

DS-F contains more than twice the number of instances for
all possible prepositions (9,278) than for best prepositions only
(4,140); we therefore also report (under the heading DS-F-all-
sub in Table VII) results for a randomly reduced subset of the
all-prepositions data of the same size as the best-prepositions-
only data (averaged over four different random reductions).

The results in Table VII clearly show the benefit of training
on all possible prepositions compared to best only, although
it is less marked for the NB method. While results for DS-
F-all are higher than for DS-F-all-sub, and one aspect of this
is likely to be larger training set size, the DS-F-all-sub results
nevertheless show clearly that the biggest factor is training on
all possible prepositions rather than just the best (that being
the only difference between DS-F-best and DS-F-all-sub).

B. Different Quality Annotations

There is a marked difference in intra-annotator agreement for
the three annotators (see also Section IV-C): Annotator 0: κ =
0.7; Annotator 1: κ = 0.78; Annotator 2: κ = 0.83. We tested
what happens if we train on annotations of different quality, as
captured by intra-annotator agreement. We separately trained
only on the worst annotator vs. only on the best. To ensure
equal data set sizes, we reduced the larger set randomly to
match the size of the smaller set. The Acc(n) evaluation results

9We did not rerun these experiments, because the validity of the claim
being made does not depend on the learning method or data set being used.



TABLE VIII
Acc(1) AND Acc(2) RESULTS, THREE BEST METHODS TRAINED

SEPARATELY ON ANNOTATIONS OF HIGH QUALITY (‘κ = 0.83’), AND ON
ANNOTATIONS OF LOWER QUALITY (‘κ = 0.7’).

DS-F
Method Intra-annotator agreement Acc(1) Acc(2)

BL κ = 0.83 61.3% 74.4%
κ = 0.7 59.5% 71.3%

NB κ = 0.83 76.4% 87.3%
κ = 0.7 64.1% 80.2%

DT κ = 0.83 78.4% 87.5%
κ = 0.7 69.1% 83.4%

LR κ = 0.83 61.3% 74.4%
κ = 0.7 59.5% 87%

SVM κ = 0.83 86.5% 94.9%
κ = 0.7 70.6% 80.2%

RF κ = 0.83 89.1% 96.8%
κ = 0.7 77.1% 90.5%

in Table VIII paint a very clear picture: training only on the
most self-consistent annotations leads to much better results.

IX. LANGUAGE GENERATION COMPONENT

The methods described above are used within our image
description approach to generate the set of all best pairwise
spatial relations (SRs) for a given image. This set contains
more SRs than can be used in a description: two SRs for each
pair of objects, one for each ordering, both possibly of the
same type. Section IX-B describes how the first step in the
language generation component (content selection/ordering)
reduces this set to those SRs that will be realized in the image
description. Sections IX-D to IX-E describe the remaining
steps: referring expression generation (REG), aggregation, and
surface realization which outputs the final, fully realized image
description. We start with a look at related research.

A. Related Research in NLG

We previously mentioned (Section III) work in image descrip-
tion with a distinctly NLG flavor, some using template-based
techniques [29], [30], some a grammar-based approach [33],
[34] to assemble descriptions. Outside of image description,
spatial relations play a role in REG [36], [37] where the
task is often framed as a content selection problem from
known symbolic representations of objects and scene, and the
aim is to uniquely identify the referent. In fact, the kinds of
descriptions we generate (see below) can be seen as strings of
one or more relational referring expressions; the importance of
such REs in the context of reference production is discussed
e.g. by van Deemter [49, pp. 145–147]. Viethen and Dale
[36] provide evidence that relations are frequently used in
referring even where not necessary for identification. Krahmer
and van Deemter observe that if relations are important and
frequently used, then this may call into question the validity
of the incremental generation algorithm, perhaps the most
influential in REG, because it does not readily accommodate
relations [50, p. 184].

The steps we perform in our NLG component are readily
recognisable as a traditional NLG pipeline [51] with standard

symbolic NLG techniques. Our strategies for realization of
spatial relations and their two objects produce combinations of
the pattern NPsubj is preposition NPobj , although we leave out
the copula in some cases, and aggregation sometimes results
in elided subject NPs and coordinated object NPs. This is the
pattern identified by both [10] and [14] as the most frequent
syntactic realization of location expressions, with the trajector
assuming subject, and the landmark object, position.

B. Content Selection and Ordering

We distinguish two cases: images with two identified objects
and images with three. In the former case, the SR set contains
just two SRs of which we select one in a simpler process
as described at the end of this section. For images with three
annotated objects, there are six SRs; for example, for the image
in Figure 1, the SR set might be the following:
{next to(bicycle1, bicycle2), in front of(bicycle1, person),
next to(bicycle2, bicycle1), next to(bicycle2, person), be-
hind(person, bicycle1), next to(person, bicycle2)}

The task now is to select and order the subset of SRs that will
be expressed in the description. We make two assumptions: (i)
that we will want to include just one SR with the same two
arguments, e.g. have either in front of(bicycle1, person),
or behind(person, bicycle1), but not both; and (ii) while each
object must appear in at least one SR, it does not have to
appear in more than one. On this basis, we apply one of the
following six content selection/ordering strategies.

Random Chaining (RC): Randomly choose the first SR
p1,2(L1, L2), then keep choosing the next SR randomly from
among those that have L2 as their first argument and do not
have a previous first argument as their second, until no SRs
match the constraints. For example, this strategy might select
the following SR subset given the candidate SR set above:
{in front of(bicycle1, person), next to(person, bicycle2)}
Random Fanning (RF): Randomly choose an object Obj1,
then select all SRs p1,i(L1, Li), in random order. E.g. for the
above SR set:
{ next to(bicycle1, bicycle2), in front of(bicycle1, person) }
Biggest-first Chaining (BFC): Select the two objects Obj1
and Obj2 that have the biggest and second biggest bounding
box (BB) areas, respectively. Select SR p1,2(L1, L2), then
keep choosing the next SR p2,i(L2, Li) such that Obji is the
next biggest object and Li has not been a first argument yet.
E.g. for the above SR set:
{ next to(bicycle2, bicycle1), in front of(bicycle1, person) }
Biggest-first Fanning (BFF): Select the object Obj1 with the
biggest BB area, then select all SRs p1,i(L1, Li), in order of
Li BB area sizes. E.g. for the above SR set:
{ next to(bicycle2, bicycle1), next to(bicycle2, person) }
Human-centric Biggest-first Chaining (HCBFC): Select the
two objects Obj1 and Obj2 that have the biggest and second
biggest BB areas, respectively, among objects with a person
label while available. Choose SR p1,2(L1, L2), then keep



Fig. 3. Aggregation rules (ε = the null string).

choosing the next SR p2,i(L2, Li) such that Obji is the next
biggest object, is of type person if available, and Li has not
been a first argument yet. E.g. for the above SR set:

{ next to(person, bicycle2), next to(bicycle2, bicycle1) }
Human-centric Biggest-first Fanning (HCBFF: Select Obj1
with the biggest BB area from among all objects with a person
label while available, then select all SRs p1,i(L1, Li), in order
of the Obji BB area sizes, adding those where Li is a person
label first. E.g. for the above SR set:

{ next to(person, bicycle2), behind(person, bicycle1) }
If the image has only two objects, then for the random content
selection/ordering strategies we select one of the two SRs at
random; for the biggest-first strategies we select the SR with
the bigger Obj1 BB area, and if they are equal then the SR
with the bigger Obj2 BB area; for the human-centric strategies
we select the SR that has a person as Obj1, and if both do
then the SR with the bigger Obj1 BB area, and if those are
equal in size, then the SR with the bigger Obj2 BB area. The
ultimate back-off is always random selection.

C. Aggregation

The aggregation strategies apply when there is a shared first
argument or if there is a shared first argument and spatial
relation. This can only happen for the fanning strategies. The
two aggregation rules we use can most easily be explained
graphically as shown in Figure 3.

After aggregation, e.g. the SR sets created by Biggest-
first Fanning (BFF) and Human-centric Biggest-first Fanning
(HCBFF) look as follows:

BFF: {next to(bicycle2, and(bicycle1, person))}
HCBFF: {and(next to(person, bicycle2), behind(ε,

bicycle1))}

D. Referring Expressions

For referring expression generation (REG), we process the SRs
in order, overwriting first and/or second arguments as required
by the rules below; ‘mention’ here means ‘is an argument in
an SR already processed’. We use the following REG rules
(based on previous work [52]):

1) First argument in the current SR is the second argument
in the last SR: relative pronoun, e.g. who.

2) First mention of object O and first mention of any object
of O’s type TO: indefinite determiner and noun, e.g. a
bicycle.

3) First mention of object O and there have been mentions
of n − 1 other objects of O’s type TO: indefinite de-
terminer, ordinate numeral nth, and noun, e.g. a second
bicycle.

4) Non-first mention of object O and there have been
no mentions of other objects of O’s type TO: definite
determiner and noun, e.g. the bicycle.

5) Non-first mention of object O, there have been mentions
of other objects of O’s type TO, and O is the nth object
to be mentioned: definite determiner, ordinate numeral
nth, noun, e.g. the first bicycle.

Note that the aggregation rules (previous section), as a side
effect, address one aspect of REG, namely ellipsis, by setting
a repeated first argument to the null string ε. After REG, the
two examples from above look as follows:

BFF: {next to(a bicycle, and(a second bicycle, a person))}
HCBFF: {and(next to(a person, a bicycle), behind(ε, a sec-

ond bicycle))}

E. Surface Realization

The surface realization stage lexicalizes the spatial relations
and inserts copulas where required (e.g. after relative pro-
nouns) after which it linearizes the SR trees left to right. The
final steps are morphological processing, agreement checking,
upper/lower-casing, and formatting. After surface realization,
the final realizations of all SR sets from above look as follows:

RC: a bicycle in front of a person who is next to a second
bicycle

RF: a bicycle next to a second bicycle and in front of a
person

BFC: a bicycle next to a second bicycle which is in front of
a person

BFF: a bicycle next to a second bicycle and a person
HCBFC: a person behind a bicycle which is next to a second

bicycle
HCBFF: a person next to a bicycle and behind a second bicycle

F. Evaluation

We use the same basic experimental design as for the other
human evaluations (Section VI). However, this time we could
not use items from previous test sets for evaluation, because
those correspond to object pairs, not images. Instead we
randomly selected six unseen images from those with four
bounding boxes in the VOC’08 data set, but where one of
the bounding boxes is very small and labeled ‘difficult.’ As
this usually means highly truncated or barely visible, we can
ignore the difficult object, and treat the image as having three
annotated objects (the image in Figure 1 is an example).
For each image (6) and each of our three best optimized
spatial-relation identification methods (LR, SVM, RF) plus the
baseline (4), we generated a description with each description
generation strategy (6), resulting in a total of 144 (6x4x6)
descriptions to be evaluated. Using six native speakers as eval-
uators, and four sequenced 6x6 Latin squares, we presented



each image description alongside evaluation questions in a
way very similar to Figure 2: the image with three bounding
boxes to the left, the image description underneath, and the
evaluation questions in the right half of the screen.

This time the evaluation questions were as follows:
1) Is the description correct (true)? 5=HIGHLY COR-

RECT, 4=CORRECT, 3=OK, 2=NOT VERY CORRECT,
1=HIGHLY INCORRECT

2) How complete a description of the objects in bound-
ing boxes is this? 5=VERY COMPLETE, 4=COMPLETE,
3=OK, 2=NOT VERY COMPLETE, 1=VERY INCOM-
PLETE

3) Is it a natural-sounding description? 5=VERY NATURAL,
4=NATURAL, 3=OK, 2=NOT VERY NATURAL, 1=VERY
UNNATURAL

We looked at how evaluators’ scores ranked the four SR
detection methods within descriptions generated by the same
NLG strategy, and then averaged rank for each SR detection
method over all NLG strategies, giving the results in the
second and third row in Table IX, respectively.

Models are ranked identically for correctness and complete-
ness (and identically to the last two evaluations), but ranks
are almost inverted for naturalness. The corresponding average
ratings for each SR detection method show very similar trends.
A non-parametric test (Wilcoxon with Dunn-Bonferroni cor-
rection) showed significance for the difference between RF
and BL, and between RF and SVM, for correctness.

Results were inconclusive for evaluating different NLG
strategies; some trends were that the chaining strategies are all
ranked more highly on average than the fanning strategies in
terms of naturalness; biggest-first may be an advantage over
other methods in terms of correctness; and person-first and
biggest-first may be best and worst, respectively, for complete-
ness. Overall average ratings are highest for naturalness (3.73),
followed by completeness (3.34), and correctness (3.18).

X. DISCUSSION

A. Contributions and Limitations
In producing our results, we gained some insights into the
relative utility of different ML methods, annotation strategies,
and features for the task of spatial relation (SR) detection.
The optimized RF model achieves the highest SR detection
accuracy rates (up to 89.1%) as well as the highest human
scores. Moreover, the optimized RF model does similarly well
across all but one SR that it makes predictions for, including
less frequent ones, i.e. high performance is not achieved at the
price of specializing on high-frequency items.

There are some clear conclusions for data annotation: (1) it
is worth ensuring high levels of self-consistency in annotators;
and (2) it is better to ask annotators to provide all possible
solutions, than just the best one. Although there is likely to
be variation in what different annotators consider ‘best’, our
results show that having several annotators does not make up
for not having variation explicitly included in the annotations.

In terms of features, we found that distributed word vector
representations offer no advantage over the words themselves

in our context. The single most useful feature was F12 which
captures the extent to which the top of the landmark object
extends into the trajector object, expressed as a proportion of
the trajector’s height.10 Why F4 (size ratio), F6 (normalized
overlap) and F8 (angle between centroids) are useful features
seems clear; as for F12, its value is positive if the top of the
landmark is higher than the bottom of the trajector, and neg-
ative otherwise, and its magnitude increases with the distance
between the two edges (greater negative values indicating
greater vertical distance between the bounding boxes, and
greater positive values indicating greater vertical overlap). It
seems likely that this helps with above/below and relations
involving a notion of physical proximity/distance, but perhaps
most importantly with in front of/behind type 3D relations
(especially because F12 is normalized by trajector height). The
latter are particularly hard to detect in a 2D setup.

We cannot claim that we capture all aspects, or even all
important aspects, of every picture: we focus on SRs and do
not address object attributes, scene background or activities.
Nevertheless, good average completeness ratings (between OK
and GOOD) for the best methods indicate that our descriptions
capture a lot of the important content a lot of the time.

We perform content selection from the complete set of SRs,
selecting one SR each for the object pairs we know about,
and assign trajector (Figure) and landmark (Ground) roles
almost as a side effect of determining syntactic structure. The
evidence from cognitive linguistics suggests that in human
scene description, linguistic goals drive schematization and
configuration of just the main scene components, including
assignment of Figure role (an object that is moving or con-
ceptually movable) and Ground role (an object conceived of,
perhaps provisorily, as stationary) [10, p. 167]. While what
we do seems sufficient in our context, in descriptions of
images that have region annotations covering the entire image,
these strategies would not suffice and something like Talmy’s
primary breakup of a spatial scene may have to be performed
early on, perhaps learnt from data, to account for how language
“mark[s] out one portion within a scene for primary focus and
[...] characterize[s] its spatial disposition in terms of a second
portion [...] and sometimes also a third [...]” [9, p. 182].

B. Language Structures Space

Herskovits [10], [12] and others have argued persuasively
that image description by humans is driven by linguistic
goals and subject to language-specific constraints to the point
of language-induced percepts, meaning that there are things
we perceive only because it suits the requirements of our
language. It is language that structures space, not vice versa.
This implies that work on automatic detection of relationships
between objects in images should be linguistically informed, if
only to define relationships in such a way that they correspond
clearly to linguistic entities. This surely is important whether
the aim is to generate human-like image descriptions, or sim-
ply to create descriptions that are useful for, or are rated highly,

10We are grateful to David Hogg for suggesting F8, F9, F10 and F11.



TABLE IX
EVALUATORS’ SCORES FOR THREE BEST SR DETECTION METHODS PLUS BASELINE, WITHIN DESCRIPTIONS GENERATED BY SAME NLG STRATEGY.

Description correct? Description complete? Description natural?
SR detection method RF LR SVM BL RF LR SVM BL RF LR SVM BL
Avg rank per NLG meth 1.4 2.2 3.4 3.2 1.7 2.5 2.9 2.9 2.7 3 2 1.8
Averate rating 3.67 3.33 2.83 2.86 3.61 3.28 3.19 3.25 3.72 3.58 3.78 3.83

by humans. In this context it seems a missed opportunity for
recent research on relationship detection in images [16], [17]
to use sets of relationships that have very little linguistic or
cognitive grounding—at the least such relationships will not
be ideal as inputs to language generation.

C. Using Human-Authored Image Descriptions
Our methods do not learn or evaluate from human-authored
language. Automatic image description work, strongly reliant
as it currently is on supervised machine learning methods,
tends to start by gathering human-authored image descriptions,
applying ML methods to learning from such human examples,
and evaluating the machine-generated descriptions against the
human-authored ones using some text similarity metric such
as BLEU [53]. What is entirely lacking in this set-up is any
kind of extrinsic context [54]. Descriptions are deemed of high
quality in proportion to their similarity to the human-authored
descriptions, but the question what they are good for is not
addressed. Similarly, in the human evaluations of our fully re-
alized image descriptions reported in Section IX-F, evaluators
were simply asked whether a description was correct/natural-
sounding/complete. They were not told what the intended
purpose or application context was for the descriptions. This
may suffice for simple descriptions anchored in SRs. More
generally, the application contexts in which one might wish to
use (high quality) automatically generated image descriptions
differ so greatly in terms of required focus, level of detail,
style, etc. that it is surely impossible to say whether an image
description is a good one without a specified extrinsic context,
such as an application which it is supposed to be good for.

XI. CONCLUDING COMMENTS

The questions from the beginning of this paper were: (1)
to what level of accuracy can spatial relations (SRs) be
determined by ML methods; (2) to what extent do human
authors agree when determining SRs from still images; and (3)
what level of quality can be achieved with image descriptions
anchored in SRs. Regarding (1), our best method (random
forests) achieved a highest accuracy rate of 89.1% (when
trained on high-quality annotations) which is far higher than
our previous best results of 75% [42], and higher than best
accuracy results of 80% reported in comparable work [38].

Regarding (2), our annotators achieved average pairwise
kappa scores of 0.67, which is good, especially considering
that one of the annotators had substantially lower agreement
scores than the others, and that kappa is a relatively conser-
vative estimate of agreement.

Regarding (3), our complete image descriptions were judged
highly by evaluators which is perhaps surprising considering

they consist solely of referring expressions for objects and
prepositions describing the SRs between them. However, as
mentioned in the discussion of limitations in the preceding
section, such results need to come with the caveat that for
a true measure of quality, evaluation of automatic image de-
scription methods needs to incorporate an application context,
a specification of what the generated descriptions are for.
There is currently no common method for this in the image
description field, something we hope to address in future
research.
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