
Abstract 

The microexplosion evolution phenomenon of single droplets of water in pure diesel emulsion 

under Leidenfrost effect has been studied. The tested emulsions were stabilized with a blend 

of commercial surfactants with three different water contents of 9%, 12% and 15%. A high 

speed camera synchronized with backlight technique was used to capture the evolution of 

microexplosion and puffing. Three different droplet diameters of approximately 2.6mm, 2mm 

and 0.2mm were analysed. It was found that the tendency of microexplosion and puffing 

frequency was influenced by the droplet diameter. Coalescence was the dominating factor in 

inducing microexplosion in bigger droplets. It was observed that the child droplets ejected 

from the parent droplet undergoes further puffing processes.The size of the secondary droplets 

after microexplosion were also found to be slightly influenced by the parent droplet size.The 

waiting time for microexplosion and puffing were compared for different droplets size. 
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Introduction 

In spite of their preferable advantages, diesel engines are one of the foremost pollution 

contributors to the environment (Basha and Anand, 2011, Brijesh et al., 2015). One way to 

combat these drawbacks of compression ignition (CI) engines can be overcome by fuel based 

solutions, which can be readily adapted to the existing engines without any modifications. 

Emulsified fuels are considered as one of the conceivable alternative fuels for reducing the 

engine exhaust emissions (Abu-Zaid, 2004, Armas et al., 2005, Park et al., 2000, Yahaya 
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Khan et al., 2014). The most noticeable effects of such fuels are the secondary atomization 

occurring during the combustion process. The volatility difference between the base fuel and 

the dispersed water droplets (i.e) results in superheating of the water which is achieved before 
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the base fuel and  rapid vapour expansion which leads to a violent microexplosion of the 

emulsified droplets (Watanabe et al., 2010) . The presence of water aids to reduce the 

combustion temperature, therefore reducing NOx. The microexplosion phenomena results in 

the formation of smaller droplets with very high surface-to-volume ratio which results in 

better mixing with air leading to more complete combustion and lower particulate matter 

(PM) emissions. 

The microexplosion phenomenon is often quoted for countering the engine exhaust emissions 

(i.e.) reducing PM and NOx simultaneously. Therefore, understanding the microexplosion 

phenomena can help to increase the efficiency of alternative fuels, in particular with water in 

diesel emulsions. Usage of suspended droplets on thermocouple or quartz fiber has been 

studied previously to record the temperature history of the heated emulsion droplets,(i.e) 

emulsion of pyrolysis oil in diesel oil (Calabria et al., 2007) , n-dodecane and n-tetradecane in 

water emulsion (Tsue et al., 1996), kerosene and water emulsion (Watanabe et al., 2009), 

commercial diesel and water emulsion (Califano et al., 2014), and diesel- bio diesel-ethanol 

blends (Avulapati et al., 2016). One of the main demerits in these type of techniques is that 

the presence of thermocouple or the fiber wire results in the heterogeneous bubble nucleation 

on the surface of the wire (Watanabe et al., 2010). A 50µm diameter R-type thermocouple 

was used in their study. On the other hand Mura (Mura et al., 2014) concluded that the 

presence of 76.2µm diameter K-type thermocouple did not dominate the microexplosion 

process. However, the size, geometry and of heat transfer to the thermocouple from the 

droplet and its effect on the microexplosion evolution is still unclear. 
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 Also, prior studies confirmed that the microexplosion does not always occur (Califano et al., 

2014, Khan et al., 2014, Yahaya Khan et al., 2016). The droplet diameters considered for the 

purpose of visualization of the microexplosion evolution were different among the studies. 
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Emulsion fuels with the parent droplet size, studied previously by the other researchers for the 

development of microexplosion phenomenon are highlighted in the Table 1. This 

experimental work investigates the evolution of microexplosion phenomenon of water in pure 

diesel emulsion droplets. Breakup characterisation studies of child droplets are scarce and are 

limited to base fuels other than pure diesel (Avulapati et al., 2016). Such characteristics are 

also studied here by analyzing the primary and secondary droplet sizes in order to fill in this 

gap in the knowledge base. The droplets sizes studied in this experiment are within the 

comparable range of other researchers, so as to compare the present results with their works. 

[Insert Table-1] 

Reference Emulsion fuels used Parent droplet 

diameter (mm) 

(Ocampo-Barrera et al., 2001) 

(Tanaka et al., 2006) 

(Watanabe et al., 2009) 

(Morozumi and Saito, 2010) 

 (Suzuki et al., 2011) 

(Tarlet et al., 2014) 

(Califano et al., 2014) 

(Mura et al., 2014) 

Heavy fuel oil/water 

n-dodecane + n-tetradecane + n-hexadecane + water

kerosene/water 

n-hexadecane/water

kerosene/water 

sunflower oil/water 

commercial diesel/water 

sunflower oil/water 

0.83 

2 

0.7-1.3 

1.5-1.8 

0.85-0.99 

0.15-0.45 

0.7-1.1 

1 

Materials and methods 

Emulsion preparation and stability 

The Water in Diesel Emulsions (WiDE) used in this study was blended at 1500rpm for 15 

minutes using overhead stirrer. Mixtures of commercial surfactants Span-80 with an HLB 

value of 4.3 and an HLB of 11 for TWEEN 85 were used as emulsifier. Surfactants are 

necessary to lower the interfacial tension between the diesel and water to form a stable 

emulsion. The base fuel used was pure diesel without any additives. The emulsions were 
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4 

stabilized with 15% of surfactant concentration to the water content. The preparation matrix 

for the WiDE is shown in Table 2. All the prepared emulsions were found to be stable for 

almost 30 days. This was  due to the dosage of surfactant blend being sufficient to the overall 

surface of the dispersed compound to be completely covered by the surfactant molecules 

(Abdul Karim et al.). 

A Hydrophilic-Lipophilic Balance (HLB) value of 9 was used for stabilizing all the 

emulsions. It was obtained by mixing the two surfactants by the following equation 

%	� = 100 ∗ (× −��
�	)/(��
�	 − ��
�)  (1) 

Where 

HLBA = HLB value of surfactant A 

HLBB = HLB value of surfactant B 

x = Required HLB value 

% A = Quantity of surfactant A required 

% B = Quantity of surfactant B required (i.e) (% B=100- % A) 

[Insert Table-2] 

Experimental Setup 

Schematic diagram of the experimental setup for the evolution of microexplosion 

visualization is shown in Figure 1. The basic principle of the setup is same as that of Mura 

(Mura et al., 2012). A PHANTOM MIRO M310 high speed camera was used for image 

capturing. The image acquisition rate was set at 8000 fps for larger droplets and 10000 fps 

with a resolution of 640X480 for droplets with the smallest diameter. A polished flat 

aluminum plate with a small concave dint was used to place the droplet and the base plate 
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temperature was maintained at 500 +/- 2°C using a ceramic heater to obtain the Leidenfrost 

effect. The temperature was maintained throughout the experiment by a digital temperature 

controller. The water droplets distribution images were captured by using a digital microscope 

with a magnification of 1000X and the Sauter mean diameter of dispersed water droplets were 

calculated by post processing the images obtained. The light source used for backlight 

illumination purpose was of single LED type and was synchronized with the exposure time of 

the high speed camera. Also, a light source with 12 high power LEDs was used for direct 

image recording to observe the phase changes and internal features of the droplet during the 

evolution of microexplosion. The recording speed was set at 2000 fps with a resolution of 

510X510 pixels. The images were post processed using the phantom camera control software 

for measurements and calculating the waiting time of microexplosion. Approximately 2.6 mm 

and 2 mm sized droplets diameters of water in pure diesel emulsion (WiDE) were generated 

using a syringe of 0.8mm and 0.4mm orifice diameter needles. Due to the limitations in the 

generation of smaller droplets. A single bigger emulsion droplet of diameter 2.6mm was made 

to fall on the heated aluminium plate from a height, which results in immediate shattering of 

bigger droplet in to numerous smaller droplets of diameter approximately 0.2mm. It should be 

noted that if the created smaller droplets are not formed of emulsions it will not develop 

microexplosion. On the other hand if the droplets are formed only with pure diesel it will not 

under go microexplosion phenomenon, instead it will only evaporate (Khan et al., 2014). Each 

emulsion sample was tested three times under same testing conditions to ascertain the 

behaviour. The high speed camera was set to start recording the events as soon as the droplet 

touched the hot plate. This was achieved by the pre-trigger option available with camera 

control software. This facilitated the identification of the exact starting time during post 

processing of the captured images. 

[Insert Figure -1] 
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Results and discussion 

The water droplet distribution in the emulsions was captured using a digital microscope with a 

magnification of 1000X as shown in Figure 2. The water droplet diameter measurements were 

made using the Motic Image plus 2.0  software. 

[Insert Figure -2] 
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The sizes of the measured droplets were expressed in terms of Sauter Mean Diameter (SMD) 

(D32) as follow: 

���		 = ∑� ( �� × ���	)/ ∑� ( �� × ���)			       (2) 

Where Di is the diameter of the droplet and ni is the total number of droplets having the same 

diameter. The size distribution of water droplets of the samples are depicted in Figure 3. It is 

clear from Figure 3 that WiDE-1 had a wide range of distributed water droplet diameters even 

with sizes of 7.6 to 8.4 µm. Whereas, WiDE-2 had 0.8 to 1.2 µm and WiDE-3 had 0.8 to 

1.4µm diameter droplets which were more densely populated. 

For the same surfactant dosage, the SMD of WiDE-1 was around 6 µm, 3.34 µm for WiDE-2 

and 3.65 µm WiDE-3 as shown in Figure 4. In the case of WiDE-1, a uneven size distribution 

of a wide range droplet diameters were present. Whereas, the difference between the droplet 

diameters for WiDE-2 and WiDE-3 were very small. According to Mura, in his studies on 

microexplosion of water in sunflower oil, the uneven distribution of bigger droplets leads to 

faster coalescence and eventually microexplodes. (Mura et al., 2012). 

[Insert Figure -3] 

[Insert Figure -4] 

 [Insert Table -3] 
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Physical properties of the prepared emulsions are tabulated in the Table 3. The density of the 

emulsions was found to be almost the same for all the WiDE samples and the viscosity was 

increasing with increasing water content. The surface tension of WiDE-1 was lower compared 

to the other two samples. 

Microexplosion evolution of WiDE with bigger parent droplet 

The evolution of WiDE Ø2.6 mm (approx.) size droplets is shown in Figure 5. Since no 

significant changes in the emulsion phase were observed in the early part of the experiment 

after the placing of the droplet on the surface, the image sequence shown is from 2 seconds 

onwards and was captured using the direct image recording. 

[Insert Figure -5] 

 [Insert Figure -6] 

The rate of coalescence to form larger dispersed water droplets was found to be more 

dominant (as highlighted in Figure 6) in the emulsion WiDE-1 with 9% water, hence more 

readily exploded when compared to the other two WiDE samples. The size of the 

coalescenced water droplets was in the range of 650 µm to 1000 µm for WiDE-1, 69 µm to 37 

µm for WiDE-2 and it was between 37 µm  to 105 µm in case of WiDE-3. The phase change 

for all the WiDE with Ø2.6mm is shown in Figure 6 for selected times. It is clear from these 

images that the coalescence is more dominant in case of WiDE-1 than the other two 

emulsions. Also, the coalescence leading to phase change occurred earlier than the other 

WiDE emulsions. As shown in Figure 3, WiDE-1 contains a wide range of different sized 

dispersed water droplets compared to the other two WiDE samples. This non uniform 

distribution of water droplets led to a higher coalescence rate and hence resulted in 

microexplosion. Whereas, the other two WiDE samples had narrow sized distributed water 

Page 23 of 30

 

Combustion Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 

droplets, with a minimum difference in the values of the SMD, did not undergo intensive 

coalescence resulting in only phase change with no microexplosion. Similar behaviour was 

observed for all the three trials. 

[Insert Figure -7] 

[Insert Figure -8] 

The sequence of evolution of the Ø2.0 mm is shown in Figure 7. The images shown are from 

0 second and with a time interval of 0.5 seconds. Similar behaviour occurred in the case of 

droplets with Ø2.0 mm (approx.) in which WiDE-1 developed microexplosion whereas the 

other two emulsions did not. The secondary droplets after microexplosion from WiDE-1 are 

shown in Figure 8. Further observation of the secondary droplets from a Ø2.6 mm parent 

droplet were in the average size of Ø0.22 mm with a standard deviation of 0.181 and the 

secondary droplets from the Ø2.0 mm parent droplet were around Ø0.19 mm with a standard 

deviation of 0.112. From these observations implies that the size of the secondary droplets is 

slightly influenced by the size of the parent droplet itself. However, more tests has to be 

performed to confirm this precisely. 

[Insert Figure -9] 

 [Insert Figure -10] 

Figures 9 and 10 depict the changes in the diameter of the parent droplet at half second time 

interval. For both cases there were no significant changes in the droplet diameter up to 1.5 s, 

due to the fact that the droplet might not had enough heating energy. As the time increases the 

droplet diameter started increasing due to vapour expansion inside the droplet. As the pressure 
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built up in the droplet and reached a particular point water leaves the droplets in a very fine 

mist (Ochoterena et al., 2010). Puffing is the ejection of the inner content of the emulsified 

droplet without the complete shattering of the parent droplet. At the end of every puffing 

(resulting in ejection of larger child droplets) the diameter of the parent droplet dropped and 

underwent further vapour expansion and its diameter increased as shown in the graph. The 

time taken for initial puffing and the puffing frequency of Ø2.0 mm and Ø2.6 mm WiDE 

droplets are shown in Figure 11. 

The time taken for initial puffing was found to increase with increasing water content in the 

case of Ø2.6 mm droplet diameter whereas no such trend was observed in the case of Ø2.0 

mm diameter droplets. However, it is clear from the Figure 11 that the time taken for the 

initial puffing was considerably less in the case of smaller droplet of WiDE. 

[Insert Figure -11] 

As far as the puffing frequency is concerned, it was comparatively higher for the Ø2.6 mm 

droplet than the Ø 2.0 mm. Notably, WiDE-3 with 15% water content exhibited maximum 

puffing frequency irrespective of the droplet diameters. It was found that the parent droplet 

size played an important role in the puffing frequency with the larger parent droplets 

producing high puffing frequencies. 

As highlighted in the Figure 12, the child droplets ejected from the parent droplet during 

puffing was observed to undergo further puffing. The ejected child droplet was about Ø0.568 

mm. The child droplet was ejected at 1.590s from the parent droplet and the puffing time for

the child droplet was at 1.5921s. 

[Insert Figure -12] 

Microexplosion and puffing behaviour of smaller WiDE droplets 
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10 

The microexplosion evolutions of the smaller droplets of Ø0.2 mm to Ø0.3 mm are discussed 

in this section. These droplets were generated by dropping a larger droplet from a height onto 

the hot plate which resulted in the production of smaller droplets. 

[Insert Figure -13] 

Since it was not possible to control the size or the movement of the droplets generated this 

way, only selected droplets which underwent microexplosion were considered for analysis 

excluding bouncing droplets. These images were captured at 10000 fps. The microexplosion 

behaviour of smaller droplets of WiDE-1, 2 and 3 are shown in Figure 13. 

[Insert Table - 4] 

[Insert Figure -14] 

The waiting times of the parent droplets and the size of the secondary droplets after 

microexplosion are shown in Table 4. The secondary droplets created after microexplosion of 

parent droplets were between 1/3 and 1/10 of the size of the parent droplets. Figure 14 shows 

the instantaneous images of a puffing sequence of WiDE-2, which was observed with the 

smaller parent droplet of Ø0.2 mm and resulted in child droplets of Ø0.135 mm and Ø0.138 

mm. The duration of puffing was 0.002 s. As shown in Figure 14, the diameter of the parent

droplet increased due to vapour expansion and resulted in the puffing of child droplets. The 

ejected child droplets were observed to undergo further puffing processes as shown. 

Conclusions 

Water in pure diesel emulsion (WiDE) with different parent droplet sizes were visualized for 

the microexplosion evolution and the outcomes of the observation are summarised as follows; 

• Coalescence and the size of the coalescenced water droplet was the dominant factor in

inducing the microexplosion phenomenon in the case of large droplets. 
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11 

• Puffing frequency of the WiDE droplets was found to be a function of the parent

droplet size. 

• The chid droplets ejected during puffing of parent droplets underwent further puffing

processes. 

• Unlike the large diameter droplets, the small sized (Ø0.2 mm) WiDE droplets

developed microexplosion irrespective of their water content. 

• The size of the child droplets after microexplosion was almost less than 1/10 of the

size of the parent droplet for large droplets (Ø2.6 and Ø2.0 mm) and between 1/3 and 

1/10 of the size of the smaller parent droplet. The present testing conditions implies 

that the size of the secondary droplets is slightly influenced by the size of the parent 

droplet itself. However, further tests has to be performed to confirm this precisely. 
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Table Caption 

Table 1. Droplet sizes and emulsion fuels on previous studies 

Table 2.The preparation matrix for the WiDE 

Table 3.Physical properties of WiDE 

Table 4. Waiting time of smaller droplets of WiDE 

Table 1 

Reference Emulsion fuels used Parent droplet 

diameter (mm) 

(Ocampo-Barrera et al., 2001) 

(Tanaka et al., 2006) 

(Watanabe et al., 2009) 

(Morozumi and Saito, 2010) 

 (Suzuki et al., 2011) 

(Tarlet et al., 2014) 

(Califano et al., 2014) 

(Mura et al., 2014) 

Heavy fuel oil/water 

n-dodecane + n-tetradecane + n-hexadecane + water

kerosene/water 

n-hexadecane/water

kerosene/water 

sunflower oil/water 

commercial diesel/water 

sunflower oil/water 

0.83 

2 

0.7-1.3 

1.5-1.8 

0.85-0.99 

0.15-0.45 

0.7-1.1 

1 

Table 2 

Volume of 

surfactant 

Sample ID Amount of H2O 

(ml) 

Volume (ml) 

15% from H2O 

Diesel Surfactant 

WiDE-1 9 89.65 1.35 

WIDE-2 12 86.20 1.8 

WIDE-3 15 82.75 2.25 
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Table 3 

Sample ID Density @ 20°C 

(g/m
3
)

Viscosity @ 40°C 

(m pas) 

Surface tension @ 20°C 

(mN/m) 

Pure diesel 0.84376 2.7396 ----- 

WiDE-1 0.86109 3.4223 27.47 

WiDE-2 0.86052 3.6863 32.27 

WiDE-3 0.87140 4.6791 31.11 

Table 4 

Sample 

ID 

Droplet diameter 

(mm) 

Microexplosion time 

(s) 

Average diameter of secondary 

droplets after microexplosion (mm) 

WiDE-1 
0.17 0.196 0.053 

WiDE-2 
0.23 0.152 0.031 

WiDE-3 
0.30 0.233 0.030 
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Figure 1. Microexplosion visualization schematic diagram 

338x190mm (96 x 96 DPI) 
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Figure 2. Images of WiDE, from left to right, with 9%, 12% and 15% water content 

338x190mm (96 x 96 DPI) 
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Figure 3. The size distribution of water droplets of WiDE samples 

338x190mm (96 x 96 DPI) 
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Figure 3. The size distribution of water droplets of WiDE samples 

338x190mm (96 x 96 DPI) 
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Figure 3. The size distribution of water droplets of WiDE samples 

338x190mm (96 x 96 DPI) 
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Figure 4. Sauter mean diameter (SMD) of WiDE vs water content 

338x190mm (96 x 96 DPI) 
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Figure 5. Evolution of ɸ2.6mm droplets WiDE-1, 2 and 3 at every 0.5s time interval 

338x190mm (96 x 96 DPI) 
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Figure 6. Images showing the phase change of emulsions with 9%, 12%, and 15% water content with time 
interval  

338x190mm (96 x 96 DPI) 
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Figure 7. Evolution of ɸ2.0mm droplets WiDE-1, 2 and 3 at every 0.5s time interval 

338x190mm (96 x 96 DPI) 

Page 9 of 30

 

Combustion Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 8. Secondary droplets after microexplosion of ɸ2.6mm and ɸ2.0mm WiDE-1 parent droplets 

338x190mm (96 x 96 DPI) 
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Figure 9. Change in diameter of ɸ2.6 mm WiDE droplets at every 0.5s interval 

338x190mm (96 x 96 DPI) 
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Figure 10. Change in diameter of ɸ2.0 mm WiDE droplets at every 0.5s interval 

338x190mm (96 x 96 DPI) 
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Figure 11. Time taken for initial puffing and the puffing frequency of ɸ2.6 mm and ɸ2.6 mm WiDE droplets 

338x190mm (96 x 96 DPI) 
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Figure 12. Puffing of a child droplet of ɸ0.5681 mm ejected from of parent droplet of ɸ2.6 mm 

338x190mm (96 x 96 DPI) 
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Figure 13. Microexplosion of smaller parent WiDE droplets and secondary droplets 

338x190mm (96 x 96 DPI) 
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Figure 14. Puffing sequence of a parent droplet of diameter ɸ0.224mm, resulting in ejection of child droplets 

338x190mm (96 x 96 DPI) 
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