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A detailed study of the structure of the doubly mid-shell nucleus 170
66Dy104 has been carried out, following 

isomeric and β decay. We have measured the yrast band up to the spin-parity Jπ = 6+ state, the K = 2
γ -vibration band up to the 5+ state, a low-lying negative-parity band based on a 2− state that could 
be a candidate for the lowest energy octupole vibration state within this nucleus, and a candidate for 
the Kπ = 6+ two quasi-particle isomer. This state was determined to have an excitation energy of 
1643.91(23) keV and a half life of 0.99(4) μs, with a reduced hindrance for its decay to the ground-
state band an order of magnitude lower than predicted by Np Nn systematics. This is interpreted as being 
due to γ -vibrational mixing from a near degeneracy of the isomer and the 6+ state of the γ band. 
Furthermore, the parent nucleus 170Tb has been determined to have a half-life of 0.91(+18

−13) s with a 
possible spin-parity of 2−.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the most successful descriptions of the structure of 
atomic nuclei is the spherical shell model. However, despite be-
ing a powerful model for certain regions of the nuclear chart, it 
becomes impractical when moving away from closed-shell nuclei. 
Instead, it is the interplay between the macroscopic shape de-
grees of freedom and the microscopic nature of the underlying 
single-particle structure of shell-model orbitals in a deformed ba-
sis that offers an explanation for the observed nuclear structure. 
Lying precisely in the middle of the closed proton Z = 50, 82 and 
neutron N = 82, 126 shells, with Z = 66 and N = 104, 170Dy has 
become a central calibration point for tests of collective as well 
as single-particle models far from closed shells [1–4]. What speaks 
against this simplistic picture are possible deformed and spherical 
sub-shell closures and other deviations from the smooth systemat-
ics that are observed in, for example, 190W [5–7] and along the 
N = 100 isotone chain [8–13]. Indeed, some theoretical studies 
predict that the quadrupole deformation maximum occurs below 
the N = 104 mid-shell neutron number within an isotope chain [4,
3,14], while some experimental data indicate that the deformation 
increases as Z decreases below mid-shell [11–13].

One predicted property of 170Dy is the long-lived K π = 6+ two 
quasi-particle isomer [15,3,4], where K is the total angular mo-
mentum projection on the prolate symmetry axis. The structural 
and decay properties of this predicted isomer also serve as a sen-
sitive test of the structural evolution in the quadrupole deformed 
150 ≤ A ≤ 180 region. In the present work, we focus on the in-
terpretation of the reduced hindrance, fν = F 1/ν

W , which is defined 
as the reduced ratio of the experimental and Weisskopf estimated 
partial half-life of the K π = 6+ decay pathway, FW = t1/2/t1/2,W, 
where the forbiddenness of the decay, ν = |λ − �K |, is the differ-
ence between the multipolarity, λ, and the change in K between 
the initial and final state [16]. This quantity, in particular, is very 
sensitive to nuclear structure effects and depends strongly on the 
product, NpNn, of valence protons, Np, and neutrons, Nn. For a 
comprehensive discussion on this topic, see the recent reviews in 
Ref. [17,18].

The structure of 170Dy is challenging to study experimentally. 
Attempts have been made using projectile fragmentation of a lead 
beam [19]; multi-nucleon transfer reactions between 82Se and 
170Er, where a 4+ → 2+ ground-state band transition candidate 
at 163 keV was reported [20], and more recently in-flight fission 
from where an isomeric state was observed [21]. In fact, even with 
the power of the current high-intensity fragmentation facilities, the 
frontier of observed dysprosium ground states does not reach be-
yond the N = 108–110 isotopes 174–176Dy [22,21,23], illustrating 
that this region is particularly difficult to access for experimental 
measurements. In this letter we present, for the first time, a de-
tailed study of the low-lying excited-state structure of the doubly 
mid-shell nucleus 170

66Dy104. This is the highest-Z element that has 
so far yielded new structure information at the Japanese Radioac-
tive Isotope Beam Factory (RIBF).

2. Experiment

Nuclei in the 170Dy region were produced by in-flight fission 
of a 345 MeV/u 238U beam with 10 pnA intensity, incident on a 
Be target. The beam was delivered by the accelerator complex at 
the RIBF in RIKEN [24]. The fragments were separated and iden-
tified in the BigRIPS separator and the ZeroDegree spectrometer 
[25,26] event-by-event, based on their mass-to-charge ratio (A/q) 
and atomic number (Z ). At the final focal plane of the beam line 
they were implanted in the WAS3ABi active stopper [27,28], which 
in this experiment consisted of two 40 × 60 mm2 double-sided 
silicon-strip detectors with strip widths of 1 mm in both horizon-
tal and vertical directions.

The γ rays emitted following isomer and β decay of the im-
planted nuclei were detected using EURICA (Euroball-RIKEN Clus-
ter Array) which consists of 84 HPGe crystals arranged in twelve 
clusters with a nominal distance of 22 cm from the center of 
the array [27,29]. However, during the experiment some detec-
tors were moved closer to the center to increase the total full-
energy peak detection efficiency to about 9% at a γ -ray energy of 
1 MeV. Implanted ions were correlated to β-decay events when 
occurring within 2 mm of each other. Due to the high contami-
nation of lighter fragments, a large plastic scintillator was placed 
behind WAS3ABi and used as a veto detector for fragments pass-
ing through the silicon detector. The experiment was carried out 
with two BigRIPS separator settings: 13.5 hours focusing on 170Dy 
(∼ 10000 implantations); and 45 hours focusing on 172Dy, during 
which ∼ 2500 170Tb nuclei were implanted.

3. Results

The γ -ray spectrum obtained during a time window of 0.3–6 μs 
after 170Dy implantation is shown in Fig. 1. Peaks belonging to 
fully ionized 170Dy are labeled, while unlabeled peaks have been 
identified to originate from H-like charge states of 165Tb nuclei.

The level scheme obtained in the current work is shown in 
Fig. 2. The three lowest-lying excited states can be assigned as the 
2+ , 4+ and 6+ members of the ground-state rotational band with 
energies closely following the expected I(I + 1) rotational depen-
dence. Note that the 4+ → 2+ transition confirms the observed 
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Fig. 1. Spectra of γ rays following the decay of the proposed 6+ isomer of 170Dy 
(top) and β decay of 170Tb (bottom). Transitions identified as belonging to 170Dy 
have been labeled. The time distribution associated with the sum of all transitions 
except the 71 keV is shown in the left inset of the top panel. The right insets show 
the close-up spectra of the single (white) and γ γ coincidence gated on 257 keV 
(black) γ rays in the region of the expected M1 transition at 1149 keV (center) and 
E2 transition at 1406 keV (right) between the 6+ isomer and the 6+ and 4+ states 
of the yrast band, respectively. The solid red line shows a Gaussian fit with a width 
fixed to the detector resolution (FWHM ≈ 2.5 keV) and the shaded red areas show 
the 1σ upper and lower limits of that fit. The inset of the lower panel shows the 
time distribution of the 170Tb β decay with a fit consisting of an exponential, the 
daughter and granddaughter decays on top of a constant background. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 2. Partial level scheme of 170Dy obtained in the current work. The thick 
Kπ = 6+ level at 1644 keV represents the isomeric state and dashed levels and 
γ rays represent tentative states and transitions. Red and blue arrows are transi-
tions observed from the isomer and β decay channels, respectively, while purple 
arrows are transitions observed in both. Unfilled parts of the arrows correspond to 
estimated transition strengths associated with electron conversion. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

candidate in Ref. [20]. From γ γ energy coincidences it was de-
termined that the isomeric state mainly decays via the 497 and 
386 keV transitions to two intermediate states, the lower of which 
feeds the 4+ and 2+ states of the yrast band via the 910 and 
1076 keV transitions, respectively. The higher-lying state feeds the 
proposed 6+ and 4+ states of the yrast band through transitions 
with energies of 1021 and 764 keV. Based on the systematics of 
the even-even N = 104 isotones the isomer was assigned to 6+
and from the decay pattern these two intermediate states were 
assigned to spin and parity 4+ and 5+ , respectively. This would 
suggest that the 6+ → 6+ transition has an energy of 1149 keV. 
There are three counts with that energy, one of which is coin-
cident with the 257 keV γ ray assigned as the 6+ → 4+ yrast 
transition. Besides these transitions, three other γ -rays are notable 
in the spectrum at energies of 527, 622 and 894 keV. As the latter 
is in coincidence with the 257 keV γ -ray it has been tentatively 
assigned to originate from a 6+ state. Such a state could be pop-
ulated via a 255 keV transition from the isomer state. However, 
since this is very similar in energy to the 257 keV γ -ray and both 
are expected to be in coincidence with the 894 keV γ -ray, it is 
not possible to directly observe this transition in the current ex-
periment. The other two transitions, 527 and 622 keV add up to 
1149 keV which suggests that they are in cascade via an inter-
mediate state. Since the relative intensity is significantly different 
between these states, we propose that the decay of the interme-
diate state is fragmented into more than one path. This proposi-
tion is strengthened by the observation of a 790 keV γ -ray that 
together with the 622 keV transition adds up to the 527 keV in-
tensity within error bars. We tentatively assign the intermediate 
state as being a 5− state. The negative parity assignment of this 
state is discussed in more detail below. See Fig. 2 and Table 1 for 
details of these assignments.

From the β-delayed γ -ray spectrum we observe a strong tran-
sition at 790 keV that has been assigned to populate the 2+ state. 
This γ ray is in coincidence with a 1169 keV γ -ray that would 
originate from a high-energy state that is well matched in energy 
with a 1105 keV decay to an intermediate state, in turn decaying 
into the 4+ and 2+ states of the yrast band. Based on the rela-
tive intensities of the 790, 854 and 688 keV γ -rays, these states 
have been assigned to spins 2 and 3, as shown in Fig. 2. We, fur-
thermore, note that approximately 75% of the ground state band 
2+ → 0+ transition strength originates from the 861 keV J = 2
level and is, thus, only weakly populated directly from β decay. 
This means that these two J = 2 levels must be different in nature 
and, thus, we assign the 861 keV level to be the band head of a 
negative-parity band. We, furthermore, tentatively assign the other 
new states obtained from the β-decay data to share this negative-
parity property. The log f t values obtained after these assignments 
are found to be consistent with our interpretation, see Table 1. For 
the log f t calculations an estimated value of Q β = 6940(446) keV
was used [30] and the β-decay half-life of 170Tb, used to calculate 
the log f t values, was measured to be 0.91(+18

−13) s. Furthermore, 
a weak 920 keV transition is observed, believed to be originat-
ing from a 2+ state decaying into the 2+ state of the yrast band. 
There is a small excess of events in the spectrum at 992 keV, which 
would correspond to the 2+ → 0+ transition. However, due to the 
large background in this part of the spectrum, we have marked 
this transition as tentative.

The static moments of inertia deduced from the excited states 
in the yrast band are shown in Table 2. For the 2+ → 0+ transition 
a value of 41.98(9) h̄2 MeV−1 was obtained, compared to a value 
of 43.24 h̄2 MeV−1 that was calculated for the ground state in 
Ref. [31]. For the proposed γ band the moments of inertia values 
agrees well with the grounds state band, supporting the assign-
ment of these states. Note that, although the 6+ member of the 
γ band is not firmly identified, rotational energy spacings imply 
the 6+ state would anyway be within a few keV of the tentatively 
assigned state. Finally, for the negative parity states the similar val-
ues suggest that these states also form a rotational band. For a 
more detailed discussion about the yrast states, see Ref. [32].
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Table 1
Initial level energy, E i , and spin-parity, Jπi , of the levels in 170Dy. For each γ ray the energy Eγ , γ -ray branching ratio Bγ , total intensity from isomer decay, Iγ (iso) (relative 
to the total number of isomer implantations), and β decay, Iγ (β) (relative to the total number of transitions to the ground state), and final level spin-parity Jπf , reduced 
isomer-hindrance, fν , and β-decay hindrance, log f t , are listed. For the 0+ and 4+ states the log f t with uniqueness one are shown. The bold fν is the value used for the 
systematics in Fig. 3. The italic transitions are not observed directly in this experiment, but the deduced upper (lower) limit on the intensity (hindrance) is given.

E i (keV) Jπi Eγ (keV) Bγ Iγ (iso) (%) Iγ (β) (%) Jπf fν log f t

0 0+ >7.2 (1U)
71.46(15) (2+) 71.45(15) 100 9.2(24) 9.2(27) 0+ >5.85
237.32(18) (4+) 165.84(11) 100 58(5) 15.1(33) (2+) 8.00(31) (1U)
494.29(28) (6+) 256.9(29) 100 9.0(28) (4+)

861.35(21) (2−) 789.93(15) 100 6.1(21) 74(9) (2+) 5.09(31)
925.23(30) (3−) 687.72(33) 64(28) 10.4(35) (4+) 5.9(4)

853.7(5) 36(20) 5.9(29) (2+)

991.8(4) (2+) 920.2(4) 80(40) 9.7(35) (2+) 5.72(22)
992.1(7) 22(18) 2.8(21) 0+

1116.53(29) (5−) 621.8(4) 100 4.4(19) (6+)

1147.21(21) (4+) 909.79(18) 66(14) 29(5) (4+)

1075.68(30) 34(9) 2.9(15) (2+)

1257.77(20) (5+) 764(4) 14(6) 5.3(21) (6+)

1020.5(10) 86(8) 33.2(19) (4+)

1388.8(5) (6+) 894.5(5) 100 3.3(17) (6+)

1643.92(22) (6+) 255 <3.6 <3.2 (6+) >160
386.33(15) 33(5) 30(4) (5+) 196(11)
496.64(14) 49(7) 44(5) (4+) 79(6)
527.28(22) 15.2(35) 13.7(30) (5−) 1660(130)
1148.9(7) 2.3(16) 2.0(15) (6+) 80(12)
1406 <2.4 <2.1 (4+) >57

2030.4(4) (2−) 1104.5(6) 32(17) 8(4) (3−) 5.08(22)
1169.31(35) 68(26) 16(5) (2−)
Table 2
Rotational frequencies, h̄ω, and static moments of inertia, J 0, for sequential com-
binations of spin and parity Jπ2 and Jπ1 .

Jπ2 , Jπ1 h̄ω (MeV) J 0 (h̄2 MeV−1)

Ground state band
6+,4+ 0.128 42.82(5)
4+,2+ 0.0820 42.20(5)
2+,0+ 0.0292 41.98(9)

γ vibrational band
6+,5+ 0.130 45.82(10)
5+,4+ 0.110 45.22(12)
4+,2+ 0.0768 45.05(13)

2− band
5−,3− 0.0950 47.05(11)
3−,2− 0.0630 46.963(29)

4. Discussion

In the following discussion, we will assume that the 1149 keV 
decay is of pure M1 character. An E2 mixing, even as large as 
δM1/E2 = −1.80+6

−7 as observed in the corresponding 174Yb isomer 
[33], could influence the K -hindrance to the yrast band, but most 
likely not to the extent that it would change the conclusions. For 
the decay into the γ -vibrational band and the K π = 2− , however, 
such a mixing would strongly influence the hindrance and as it is 
not directly measured in the present work our discussion will fo-
cus on the ground-state band component. To obtain an estimate 
of the E2 strength to the yrast band, we have looked for the ex-
pected 1406 keV γ ray, but it was not observed. From the current 
data, an upper limit of 4 × 10−8 W.u. is obtained for this transi-
tion branch, which corresponds to a reduced hindrance of fν > 57, 
compared to 6.8 (178W), 42 (176Hf), and 327 (174Yb) across the 
heavier N = 104 isotones. Recent calculations using the triaxial 
projected shell model show a strong correlation between the iso-
mer hindrance and the properties of the γ band [34].

In particular, we note the energy systematics of the γ bands, 
see Fig. 3. While the K π = 2+ band head of 172Er was not observed 
in Ref. [35] it is expected to be at an energy close to 920 keV 
Fig. 3. In the left panel, experimental (filled circles) and theoretical (filled squares) 
energy systematics of the Kπ = 6+ isomeric, and experimental 2+

γ states for N =
104 (open circles) from Z = 66 (Dy) to Z = 74 (W). Note that the lowest Kπ = 6+
state in 176Hf is of a mixed two-neutron and two-proton configuration [17] whereas 
the calculations are for the pure two-neutron configuration. The right panel shows 
the reduced M1 hindrance ( fν ) against the product of valence protons and neutrons 
(Np Nn) for known Kπ = 6+ to ground state band Jπ = 6+ M1 transitions in this 
region: 170Dy, 172Er, 174Yb, 172–178Hf and 178W (filled circles). The N = 104 isotones 
have been labeled and the solid line shows the extrapolated fν trend. Data points 
from the current work are marked in red. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

[35]. One interesting feature is the steady increase in the K π = 2+
band-head energies from W to Yb, with a sudden drop at Er. This 
also happens to be the point where the hindrance breaks out of 
the NpNn extrapolation. The hindrance of the K π = 6+ isomers 
could be influenced by members of the K π = 2+ γ band, both 
directly from the proximity of the two Jπ = 6+ states, as discussed 
in Ref. [34] and the general effect of low-lying γ vibrations being 
a signal of increased γ softness and, hence, more K mixing.

Under the assumption that the 〈6+
i |6+

γ 〉 mixing matrix elements 
are similar and small, the ratio between the hindrances, FW, and 
square of the excitation energy differences, �E2, should stay con-
stant. For the closest neighbor, 172Er, the 6+

γ is, unfortunately, not 
known, but can be determined by extrapolation of the known en-
ergies to be close to 1390 keV [35]. Together with the tentative 6+

γ

state in 170Dy, this gives a �E(170Dy)2/�E(172Er)2 = 2552/1102 ≈
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5.4. Comparing this to the value of FW(170Dy)/FW(172Er) = 3.1 ·
109/0.55 · 109 ≈ 5.6, we find that there is indeed a remark-
able similarity in the band-mixing effects of these nuclei. On the 
other hand, comparing these values for 178W, that has a sim-
ilar level structure to 170Dy and is known to be γ soft, we 
get the numbers �E(170Dy)2/�E(178W)2 = 2552/1282 ≈ 4.0 and 
FW(170Dy)/FW(178W) = 3.1 · 109/0.35 · 106 ≈ 9200. From this we 
can conclude that although the large Np Nn value should predict 
a very hindered decay in 170Dy [15], the near degeneracy between 
the K π = 6+ state and the 6+ state of the γ -vibrational band plays 
the key role in reducing the actual hindrance.

Potential energy surface calculations, similar to those reported 
in Ref. [15,11], were performed for the ground state and K π = 6+ , 
5/2−[512] ⊗ 7/2−[514] two-neutron configurations, including β6
deformation [11]. While the deformation parameters were cho-
sen to minimize the potential energy, the neutron–neutron pairing 
strength was adjusted according to systematics of similar nuclei in 
this region. It is already known that a factor of 1.115 adjustment is 
needed for calculating the multi quasi-particle states in 178W [36]. 
Using the same method as in Ref. [36], a factor of 1.05 and 1.06 
was obtained for 172Er and 166Dy, respectively. However, due to the 
absence of experimental odd-even mass differences, this method 
can not be used for more neutron-rich nuclei. Furthermore, it has 
been pointed out [37] that the pairing strength to reproduce the 
measured excitation energies of the K π = 6+ states in the N = 104
chain is larger than that needed to reproduce the mass difference. 
Thus, in this work, we have adopted an adjustment factor of 1.1 
for the entire chain, increasing the energies of the states with ap-
proximately 300 keV and giving a satisfactory reproduction of the 
experimental data, as shown in Fig. 3.

The interpretation of the low-K states is less straightforward 
than the high-K ones as they are created through an interplay of 
several different configurations and have a tendency to be collec-
tive. The log f t values in Table 1 suggest a Jπ = 2− ground state 
in 170Tb. In this case π7/2−[523] ⊗ π3/2+[411] is populated as 
a pure two-proton configuration, where the 2− coupling is ener-
getically favored. The excitation energy of 861 keV for the first 
Jπ = 2− state is the lowest in all N = 104 isotones, which may 
be indicative of an octupole character. This is also consistent with 
the assignment of the Jπ = 2− band head at 1148 keV in 162Dy 
expected to be the dominant component of the Jπ = 2− octupole 
vibration, [38,39].

5. Summary

In summary, a detailed study of the structure of the doubly 
mid-shell valence maximum nucleus 170

66Dy104 has been carried 
out. From the γ -ray spectra following isomeric and β decay sev-
eral states of this nucleus were observed. We have identified the 
yrast band up to the Jπ = 6+ state, the γ -vibration band up to 
the 5+ state with a tentative 6+ state, a low-lying negative-parity 
state that could be a candidate for the lowest energy octupole de-
formed state, and the K π = 6+ two quasi-particle isomer. The 6+
isomer was observed with a reduced hindrance an order of magni-
tude smaller than originally predicted, which has been attributed 
to γ -vibrational mixing.
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