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Titanite occurs as a widespread accessory phase in mineralised zones and alteration associated with iron oxide-
copper gold (IOCG) and iron oxide-apatite (IOA) deposits of Norrbotten County, Sweden, and is a major host of
the REE in these deposits. In situ analyses of Sm—Nd isotope ratios in titanites previously analysed for U—Pb geo-
chronology and trace element composition confirms previous interpretations of grain scale isotopic heterogene-
ity. Initial Nd-isotope ratios expressed relative to CHUR range from ~— 3 to — 8 in IOA deposits, from ~— 1 to —9
in I0CG deposits, and from + 2 to —4 in the most Cu-rich, deformed IOCG deposits of the Nautanen Deformation
zone. Within individual I0A deposits eng varies relative to CHUR: from —3.1 to —4.0 at Valkommen
(Malmberget), from — 1.4 to —5.7 in grain cores, and —7.2 to —8.2 in grain rims rim at Gruvberget; and from
—3.0to — 6.0 in grain cores and from — 5.8 to — 7.1 in grain rims at Luossavaara. In IOCG deposits at Rakkurijdrvi
€ng Varies from —6.1. to — 7.1, and in deformed IOCG deposits at Nautanen from — 1.3 to — 2.3. These values are
consistent with the derivation of the REE, and potentially economically enriched metals, from the local volcanic
sequence, either via granitic melts, or directly by leaching by metasomatic fluids. The most Cu-rich deposits re-
flect the involvement of more basic protoliths. The age distribution of these deposits suggest IOA deposit forma-
tion during the collisional phase of the Svecofennian orogeny (~1.9-1.8 Ga), and IOCG mineralisation during this
phase and during post-orogenic collapse (~1.8-1.7 Ga), whilst model ages indicate the ultimate enrichment of
the continental crust in these metals during pre-collisional extensional and subduction-related basic magmatism.
These processes underscore the importance of continental cycles both in producing the preserved geological re-
cord of orogenic ore deposition, and in the generation of fertile continental crust, from which metals can be

mobilised by subsequent events.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

models is problematic, with both magmatic-sourced brines (e.g. Pollard,
2006) and brines of surficial and possibly metaevaporitic origin (Barton

The iron oxide-copper-gold (IOCG) and related iron oxide-apatite
(IOA; ‘Kiruna type’) class of mineral deposits (Hitzman et al., 1992;
Hitzman, 2000; Williams et al., 2005) have been the subject of intense
debate, in terms of both their classification and genetic mechanism.
Whilst IOCG deposits are unequivocally hydrothermal in origin, models
for the genesis of IOA deposits have ranged from magmatic
crystallisation (e.g. Nystrom, 1985; Nystrom and Henriquez, 1994) to
hydrothermal processes (e.g Parak, 1975) and metasomatic replace-
ment (e.g. Bookstrom, 1995; Blake, 1990), although evidence is now
mounting to support a hydrothermal origin (Barton, 2014). For both
I0A and I0CG deposits the origin of mineralising fluids in hydrothermal
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and Johnson, 1996, 2000; Barton, 2014) both implicated. Again, evi-
dence is now mounting to suggest mixing of a range of fluid sources
(Kendrick et al., 2007; Kendrick et al., 2008; Gleeson and Smith,
2010). A critical part of these models must be to identify the source of
metals, but studies in this area have been relatively limited. Gleason et
al. (2000) showed that for IOCG/IOA systems ranging from Protoerozoic
to Palaeogene in age the source of Nd determined from radioisotope
systematics was in each case the pre-existing host igneous rocks rather
than any specialised magmatic source. Mathur et al. (2002) used initial
Os isotope ratios in magnetite to argue for contrasting metal sources
in iron oxide-apatite (host sedimentary rocks) versus IOCG deposits
(Cretaceous intrusive rocks) in the Chilean Iron Belt.

The IOA and I0CG deposits have also been highlighted in studies of
the relationship of ore deposition to orogenic cycles, alongside ‘orogen-
ic’ gold deposits (Goldfarb et al., 2010), because of an apparent
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correlation in the temporal distribution of deposits with the inferred re-
cord of supercontinent amalgamation (Groves et al., 2010). This is in
contrast to deposits formed at ocean-continent subduction zones, nota-
bly porphyry copper and molybdenum systems, that show a temporal
distribution strongly biased to the Cainozoic and Mesozoic (Groves et
al., 2010). This has been attributed to the poor preservation potential
for high crustal level metal deposits, such as porphyry coppers (Kesler
and Wilkinson, 2008), whereas deposits in collision settings have a
much higher preservation potential (Goldfarb et al., 2010). A similar ar-
gument has been developed in the investigation of the growth of the
continental crust as recorded by peaks in the frequency of crystallisation
ages of magmatic rocks (Condie, 1998), where an apparent correlation
with inferred periods of supercontinent formation may reflect the in-
creased preservation potential of rocks in collisional settings
(Hawkesworth et al., 2009; Condie and Aster, 2010). In contrast, in arc
settings facing an open ocean, tectonic erosion of the forearc and its ac-
cumulated sediments tends to proceed at rates approaching that of the
magmatic flux forming new crust, resulting in no net growth of crust
(Clift and Hartley, 2007). Groves et al. (2010) suggested that Precambri-
an examples of [IOCG deposits formed 100-200 Ma after supercontinent
assembly in extensional intra-cratonic environments related to
anorogenic magmatism, whilst the IOA deposits formed in convergent
margins prior to supercontinent assembly. Subcontinental lithospheric
mantle (SCLM), fertilised during earlier subduction, was envisioned as
a basic magma source, which drove crustal melting and was a potential
source of metals for IOCG deposits. It also provided a bouyant medium,
which resisted delamination and hence prevented uplift and erosion in
districts where near-surface deposits are preserved. Richards and
Mumin (2013) argued that the restriction of porphyry type systems to
Phanerozoic rocks, and IOCG/IOA systems largely to the Precambrian

reflected global changes in the ocean sulphate content and geothermal
gradients at the end of the Precambrian. This led to a shift from S-poor
arc magmas (and hence S-poor I0CG deposits) to S-rich arc magmas
(and S-rich porphyry deposits) in the Phanerozoic. However, this hy-
pothesis is critically dependent on a subdivision of the IOCG class into
magmatic-hydrothermal systems, and systems with other fluid sources.
If the class is viewed as a whole then the Precambrian/Phanerozoic time
distinction is no longer apparent, although the apparent relationship to
periods of collisional and accretionary tectonics is (Fig. 1). All these ar-
guments critically depend on data on the temporal distribution of ore
deposits and interpretations of metal and ligand source in the deposits
themselves.

In this study we apply laser ablation multicollector ICP-MS (LA-MC-
ICPMS) to the analysis of the Sm—Nd isotope systematics of titanite,
previously analysed for U—Pb geochronology and trace element com-
position from hydrothermal alteration systems around I0CG and I0A
deposits from Norrbotten County, Sweden (Fig. 2). Titanite is intimately
associated with ore and alteration assemblages (Smith et al., 2007), and
its REE patterns (Smith et al., 2009) are very similar to those of apatite
from within the main magnetite ore body at Kirunavaara (Frietsch and
Perdahl, 1995). Neodymium isotope ratios are used to investigate the
potential REE sources in mineralisation, whilst model ages are used
alongside a compilation of age-frequency relationships for magmatic
rocks and mineral deposits from the region to examine the relationship
of mineralisation to the tectonic evolution of the Svecokarelian orogeny.

2. Geological background

The I0CG and I0A deposits of Northern Sweden were formed in the
period c.1.9 to 1.7 Ga (Romer et al,, 1994, 1996; Wanhainen et al., 2005;
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Fig. 1. (A) Compilation of IOCG deposits through time shown as histograms for frequency (open bars) and total metal resources (grey shaded bars).
Modified from Williams et al. (2005) and Groves et al. (2010). (B) Compilation of detrital zircon ages from Australia from Campbell and Allen (2008). Also shown are

inferred periods of supercontinental configuration.
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Fig. 2. Location map of Norrbotten county (inset), and simplified geological map of the study area based on Bergman et al. (2001) showing sample locations.

Smith et al., 2009). They are hosted within metavolcanic rocks of the
Greenstone and Porphyry Groups, and temporally related to calc-alka-
line (potentially subduction-related) granitoids (Haparanda and
Perthite-Monzonite suites - 1.9-1.8 Ga; Skiold, 1987), and two mica
(linked to decompression melting during orogenic collapse) granites
(Lina Suite - 1.79 Ga; Skiold, 1988).

Rifting of the Archaean basement in the area and breakup of the pre-
ceding supercontinent began around 2.45 Ga, including the generation
of large basic intrusions on the craton margins. The Greenstone Group
was deposited in an extensional environment in the interval c.2.2—
1.96 Ga (Bergman et al., 2001; Weihed et al., 2005). This period of
magmatism was followed by the inception of an arc, and the eruption
of associated volcanic rocks of potentially calc-alkaline character, with
zircon U—Pb ages of ~1.8Ga, forming the porphyry group (Romer et
al., 1994). The subsequent Svecokarelian orogeny resulted from accre-
tion of this arc onto the Archaean craton in the period 1.9-1.8 Ga
(Weihed et al., 2005). New geochronological work (Storey et al., 2007;
Smith et al,, 2009) within complex, zoned titanite crystals has suggested
that the intermediate rocks of the Porphyry Group were contemporane-
ous with the latter stages of emplacement of the Greenstone Group,
possibly via remelting of basic igneous crust as part of a bimodal volca-
nic sequence, from around 2.1 Ga, rather than generated during subse-
quent subduction, although this time period has not yet been confirmed
by U—Pb analyses of zircon. The potential for resetting of zircon isotope
systematics in the environs of the Kiruna deposit via dissolution-
reprecipitation mechanisms (Putnis, 2002) is high, however, because
of the extreme fluid conditions either during, or immediately after, ore
formation (>400 °C, >2-3k bars, ~40 wt.% NaCl eq.; Broman and
Martinsson, 2000; Smith et al., 2012). Evidence for evolved magmatic
crust in the Svecofennian shield at around 2.0 Ga has been found in

detrital zircon populations (Lahtinen et al., 2002). The preservation of
older cores in titanite was possible because of the very large grain size
(2-5 cm) compared to typical host rock zircon (200-300 pm). In the pe-
riod 1.8-1.75 Ga post-orogenic granitoids of the Lina Suite were intrud-
ed and represent the final phase of continental amalgamation in this
part of the world. Iron oxide-apatite (Kirunavaara, Malmberget) and
I0CG mineralisation (Gruvberget, Rakkurijdrvi) occurred during the
Svecokarelian orogeny, and also during subsequent post-orogenic
magmatism and deformation, which resulted in metamorphic and
metasomatic overprints on earlier ores (Nautanen). The hydrothermal
activity responsible for these mineralisation events manifested as new
titanite and allanite growth, with clear distinctions in trace element
chemistry (Smith et al., 2009). The samples used in this study are briefly
described in Table 1.

3. Methods

Titanite and allanite unknowns were measured for Sm and Nd iso-
tope ratios in-situ within polished sections 100 um in thickness by
laser ablation multi-collector ICPMS (LA-MC-ICPMS) at the University
of Bristol. The thick sections were first imaged in a JEOL 5900LV scan-
ning electron microscope using backscattered-electron (BSE) detection
at the Natural History Museum, London. The BSE images were used to
guide in-situ analysis within grains and all imaged grains and the ana-
lytical sites are shown in the Electronic Appendix. The laser used was
a New-Wave UP193HE Excimer laser operating at 193 nm coupled to
a Thermo Scientific Neptune MC-ICPMS. Operating conditions can be
found in Table 2. Mass bias correction and isobaric interference of
1445m on '#*Nd were performed following the same methodology re-
ported in Mcfarlane and McCulloch (2007). Two titanite standards
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Table 1
Sample localities and descriptions.

Deposit Sample Depth® LA-ICPMS Location Sample description Titanite/allanite textural setting
number Reference® Northing Easting
I0A Deposits
Luossavaara 03LUOSSO01 LUOSS; L2 7538040 1685606 Magnetite-titanite veined and altered 0.5 cm titanite in amygdales with magnetite,
trachyandesite porphyry actinolite, calcite and albite.
Gruvberget 03GRUV22 GRUV 7515145 1719960 Potassic (epidote-actinolite-K-feldspar) altered 1 cm titanite nucleated on rutile.
metavolcanic rock
Malmberget 03VALKO1 VALK 7462074 1708551 Actinolite-feldspar-quartz-magnetite vein cutting 1 cm titanite in vein with apatite, magnetite,
(Valkommen) potassic altered metavolcanic rock minor hematite.
10CG Deposits
Rakkurijdrvi 01RAK006 183.0 RAK 7526507 1682450 Potassic alteration overprinting scapolitisation in ~ Titanite and allanite in amygdales associated
m meta-trachyandesite with apatite and biotite.
Deformed I0CG
deposits
Nautanen NAU84012 1599 NAU 7463871 1719900 Well foliated epidote-actinolite-albite schist with ~ 1-2 mm titanite aligned with schistosity,

m coarse titanite

allanite as zones and cores in epidote.

2 For drill core samples.
b Swedish national grid (RT90) reference.

(SP-REN and SP-HUL), one NIST glass (610) standard and one allanite
standard (DAI) have been previously characterised for "*>Nd/!*‘Nd
and '¥7Sm/'“Nd isotope ratios (Foster and Vance, 2006; Mcfarlane
and McCulloch, 2007). Chips of these were mounted within epoxy
resin and polished. These were used to tune the instrument and to
check that measured isotope ratios were within analytical uncertainty
of those values reported. For '**Nd/'#*Nd the values obtained using
this method for all standards are within measured uncertainty of the re-
ported values (SP-REN - 0.512252; SP-HUL - 0.512337; 610-0.511908;
DAI - 0.512560) within each session (Table 3). Furthermore, the
145Nd/"4Nd are all within measured uncertainty of the canonical
value of 0.348415 measured by TIMS (Wasserburg et al., 1981; Table
3). The more difficult measurement to assess is the '47Sm/'4*Nd,
which is dependent on homogeneity of the crystal and glass standards
as well as laser induced elemental fractionation. In this study it was
found that titanite standards were on average 3-4% higher and NIST
glass 1% higher than reported solution values, although these were
from relatively large crystal fragments. For allanite only LA-MC-ICPMS
values are reported and our measurements are around 6% lower than
those reported by Mcfarlane and McCulloch (2007). Another way to as-
sess our Sm/Nd measurements is to take crystals of a known U—Pb age
and plot them on a Sm/Nd isochron (Fig. 3). A sample from Nautanen,
containing coexisting titanite and allanite in the same thick section pre-
viously measured by LA-ICPMS, gave a concordant U—Pb age of 1777 +
20 Ma (N = 12, MSWD = 2.3; Smith et al., 2009). The same sample
measured here for Sm—Nd gave a 15 point isochron age of 1777 +

Table 2
Operating conditions for laser and MC-ICPMS used for Sm—Nd isotope ratio
measurements.

Laser MC-ICPMS

Model New-Wave Model Thermo-Scientific
UP193HE Neptune

Pulse width c.20 ns Forward 1200 W

power
Repetition 4 Hz Cones X-cones
rate

Power 70% Auxiliary gas 15 1-min~!

Fluence 5]-cm 2 He carrier gas  ¢.11-min~!

Energy 1.2 m] Ar mixer gas c1l-min~'

Spot size Variable N, mixer gas  ¢.0.03 I-min~!

27 Ma (n = 15, MSWD = 0.91; Fig. 3). This gives us confidence in our
measurement, verified against independent U—Pb geochronology.
However, we do maintain caution with respect to our Sm/Nd isotope ra-
tios and therefore we have reported our values as not corrected for Sm/
Nd fractionation, but we note that for all titanite analyses the
147Sm/"4Nd could be up to 4% higher. This would affect the calculated
eNd(t) and the Tpwm,crur, but all in the same direction. For these partic-
ular samples, the resultant magnitude of this affect would be a lowering
of eNd(t) by 1 to 1.5 units and concomitant increase in Tpy by 75 to
100 Ma. For allanite the apparent Sm/Nd fractionation has an opposite
effect. It is difficult to assess accuracy based on the limited data available
for the standard. We note again that the co-existing allanite and titanite
isochron age (Fig. 3) is in agreement with the concordant U—Pb age
from these grains. In comparison, using fractionation-corrected
1476m/144Nd values in the isochron yields an age of 1614 4 25 Ma.
Therefore, we report the data both corrected and uncorrected for Sm/
Nd value in Table 4.

The internal precision of '4>Nd/'#*Nd largely reflects the concentra-
tion of Nd in the sample as well as the fact that some samples were
analysed with different spot sizes (Table 4). Variability of this ratio dur-
ing ablation was negligible and each time resolved profile was assessed
and, if it was clear that any secondary mineral or zone was intersected
or if the laser penetrated through the crystal into underlying resin,
then that part of the analysis was discarded from final calculation. In
practice, only the first part of the signal (between 1 and 10s of signal)
was sometimes removed due to the laser being started too late and
the first part of the analysis representing ingrowth of the signal due to
incomplete coupling of the laser with the analyte up until that point.
Only 3 analyses required shortening at the ends of the analyses due to
ablating into a secondary part of the crystal with a different Nd isotope
ratio. The number of integrations per analysis are listed in Table 4. Com-
paring the number of integrations per analysis with the analytical un-
certainty, there is no obvious relationship. Therefore, the uncertainty
is considered to be related to Nd concentration and/or spot size or Nd
isotope variation within each respective crystal/analysis. Within titanite
standard SP-REN, for a typical analysis using a spot size of 65 um, a cur-
rent of around 1.9 V was achieved for the '**Nd beam, resulting in an in-
ternal precision on the '**Nd/'*4Nd ratio of ¢.50 ppm (2SE). Titanite
standard SP-HUL is slightly less concentrated in Nd, giving a current of
around 1.5 V on '**Nd using identical conditions, resulting in a slightly
poorer precision of around 60 ppm (2SE) on the '*>Nd/!*4Nd ratio. In
terms of 147Sm/"#4Nd, this ratio was variable in an unpredictable fashion
in all analyses such that homogeneous parts of the crystal cannot easily
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Table 3
Sm—Nd isotope ratio data for standard reference materials measured during the analytical sessions.
Analysis 146Nd/14Nd - 2SE 13Nd/14Nd 2SE 45Nd/14Nd 2SE ENd143 2SE 147gm/144Nd  2SE
Daibosatsu Allanite
DAI-1 0.735469 0.000060 0.512566 0.000014 0.348415 0.000009 0.077579 0.000124 0.178269 0.001423
DAI-2 0.735597 0.000075 0.512573 0.000024 0.348416 0.000013 0.076651 0.000272 0.171354 0.001208
DAI-3 0.735466 0.000052 0.512567 0.000019 0.348422 0.000011 0.075539 0.000079 0.176719 0.001206
DAI-4 0.734870 0.000056 0.512577 0.000017 0.348419 0.000011 0.079513 0.000115 0.163571 0.000753
DAI-5 0.734817 0.000048 0.512560 0.000016 0.348412 0.000011 0.079976 0.000101 0.167910 0.000695
DAI-6 0.734856 0.000060 0.512578 0.000017 0.348413 0.000009 0.079143 0.000055 0.175864 0.000707
DAI-7 0.735055 0.000055 0.512564 0.000016 0.348422 0.000011 0.079592 0.000048 0.187632 0.001929
DAI-8 0.735032 0.000044 0.512553 0.000014 0.348408 0.000009 0.079325 0.000080 0.182651 0.001526
DAI-9 0.735056 0.000045 0.512573 0.000016 0.348417 0.000008 0.078950 0.000091 0.180978 0.001409
Average 0.512568 0.348416 0.078474 0.176105
2SD 0.000016 0.000009 0.003060 0.015023
DAI-1 0.735487 0.000059 0.512549 0.000017 0.348415 0.000011 0.078413 0.000102 0.249757 0.001744
DAI-2 0.735529 0.000051 0.512551 0.000016 0.348415 0.000010 0.078705 0.000106 0.250700 0.001779
DAI-3 0.735600 0.000055 0.512574 0.000015 0.348411 0.000010 0.078688 0.000092 0.249429 0.001705
DAI-4 0.734075 0.000043 0.512581 0.000017 0.348405 0.000011 0.079817 0.000046 0.148611 0.000615
DAI-5 0.734086 0.000042 0.512583 0.000017 0.348411 0.000010 0.079448 0.000029 0.149199 0.000334
DAI-6 0.734017 0.000039 0.512560 0.000017 0.348408 0.000011 0.080383 0.000101 0.150635 0.000951
Average 0.512567 0.348411 0.079242 0.199722
2SD 0.000030 0.000008 0.001539 0.110082
SP-REN Titanite
SP-REN-1 0.735330 0.000109 0.512236 0.000036 0.348411 0.000024 0.136054 0.000099 0.266011 0.000528
SP-REN-2 0.735360 0.000127 0.512250 0.000039 0.348398 0.000024 0.135994 0.000095 0.265568 0.000525
SP-REN-3 0.735385 0.000117 0.512252 0.000037 0.348398 0.000027 0.135788 0.000076 0.264774 0.000440
SP-REN-4 0.734671 0.000138 0.512223 0.000039 0.348411 0.000026 0.135239 0.000088 0.262389 0.000599
SP-REN-5 0.734701 0.000139 0.512248 0.000041 0.348416 0.000029 0.135124 0.000055 0.263374 0.000473
SP-REN-6 0.734703 0.000138 0.512250 0.000036 0.348398 0.000026 0.136805 0.000355 0.267183 0.001245
Average 0.512243 0.348405 0.135834 0.264883
2SD 0.000023 0.000016 0.001226 0.003526
SP-REN-1 0.735427 0.000144 0.512238 0.000043 0.348398 0.000027 0.135181 0.000072 0.260388 0.000544
SP-REN-2 0.735433 0.000143 0.512233 0.000041 0.348412 0.000028 0.135135 0.000091 0.259831 0.000584
SP-REN-3 0.735448 0.000143 0.512257 0.000045 0.348412 0.000029 0.135148 0.000086 0.259841 0.000604
SP-REN-4 0.734002 0.000146 0.512274 0.000047 0.348401 0.000028 0.136057 0.000070 0.267923 0.000490
SP-REN-5 0.734022 0.000147 0.512260 0.000046 0.348398 0.000028 0.136215 0.000050 0.269155 0.000431
SP-REN-6 0.733978 0.000148 0.512242 0.000047 0.348403 0.000030 0.136266 0.000051 0.269444 0.000461
Average 0.512251 0.348404 0.135667 0.264431
2SD 0.000031 0.000013 0.001131 0.009725
SP-HUL Titanite
SP-HUL-1 0.735344 0.000050 0.512316 0.000024 0.348404 0.000014 0.138311 0.000091 0.284613 0.000736
SP-HUL-2 0.735326 0.000058 0.512352 0.000023 0.348430 0.000016 0.138347 0.000086 0.284554 0.000749
SP-HUL-3 0.735334 0.000060 0.512336 0.000023 0.348395 0.000017 0.138762 0.000072 0.287377 0.000558
SP-HUL-4 0.734890 0.000062 0.512353 0.000025 0.348421 0.000016 0.138785 0.000084 0.286669 0.000625
SP-HUL-5 0.734729 0.000037 0.512335 0.000022 0.348421 0.000015 0.138878 0.000101 0.287567 0.000644
SP-HUL-6 0.734758 0.000046 0.512346 0.000024 0.348403 0.000017 0.138944 0.000048 0.288413 0.000349
Average 0.512340 0.348412 0.138671 0.286532
2SD 0.000028 0.000027 0.000546 0.003217
SP-HUL-1 0.735615 0.000106 0.512335 0.000034 0.348415 0.000024 0.138864 0.000080 0.287194 0.000503
SP-HUL-2 0.735571 0.000087 0.512350 0.000027 0.348414 0.000021 0.139570 0.000055 0.290821 0.000355
SP-HUL-3 0.735486 0.000133 0.512333 0.000039 0.348399 0.000025 0.139041 0.000037 0.289063 0.000329
SP-HUL-4 0.734065 0.000043 0.512352 0.000028 0.348413 0.000016 0.139567 0.000045 0.293248 0.000333
SP-HUL-5 0.734045 0.000041 0.512341 0.000026 0.348390 0.000018 0.139505 0.000043 0.292428 0.000391
SP-HUL-6 0.734012 0.000038 0.512325 0.000026 0.348407 0.000018 0.139386 0.000050 0.291550 0.000445
Average 0.512339 0.348406 0.139322 0.290717
2SD 0.000021 0.000020 0.000599 0.004488
NIST 610
610-1 0.735358 0.000056 0.511905 0.000023 0.348409 0.000014 0.632777 0.000468 1.594446 0.003005
610-2 0.735434 0.000044 0.511936 0.000023 0.348418 0.000013 0.635294 0.000333 1.605395 0.002778
610-3 0.735384 0.000039 0.511901 0.000025 0.348415 0.000013 0.634162 0.000303 1.603505 0.002676
610-4 0.734705 0.000056 0.511906 0.000028 0.348428 0.000016 0.633614 0.000686 1.601826 0.003082
610-5 0.734775 0.000051 0.511923 0.000022 0.348412 0.000014 0.637688 0.000532 1.620906 0.001595
610-6 0.734782 0.000047 0.511899 0.000024 0.348410 0.000015 0.638053 0.000962 1.624512 0.003264
Average 0.511912 0.348415 0.635265 1.608432
2SD 0.000029 0.000014 0.004362 0.023442
610-1 0.735427 0.000057 0.511904 0.000029 0.348414 0.000015 0.631543 0.000538 1.588923 0.001425
610-2 0.735478 0.000047 0.511934 0.000022 0.348425 0.000014 0.629670 0.000547 1.580349 0.002535
610-3 0.735410 0.000050 0.511897 0.000025 0.348398 0.000014 0.628999 0.000708 1.577071 0.002740
Average 0.511912 0.348412 0.630071 1.582114
2SD 0.000039 0.000027 0.002637 0.012240
be identified and meaning that any laser induced elemental fraction-  *3Nd/'*Nd. SP-REN (same conditions as above) typically had internal

ation between Sm and Nd during ablation cannot be recognised and precision of 0.1% (2SE), whereas SP-HUL has less variable Sm/Nd and
corrected for. This results in a poorer internal precision than for had internal precision of around 3-400 ppm (2SE).
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Fig. 3. Sm—Nd isochron of titanite and allanite from sample at Nautanen. The main cluster of analyses with '#’Sm/*#*Nd around 0.1 are allanite and those with '4’Sm/!*4Nd > 0.3 are

titanite.

4. Results
4.1. Petrography of titanite and allanite

The titanite and allanite used in this study come from the IOA de-
posits at Kirunavaara, Malmberget and Gruvberget, and the I0CG de-
posits at Rakkurijarvi (Table 1; Smith et al, 2009) and Nautanen
(Martinsson, 2004 ). Kirunavaara consists of ~2 billion tonnes of magne-
tite-rich ore with subsidiary apatite, actinolite and hematite. The ore is
generally massive with brecciated zones at the margins (Fig. 4A). The
titanite sample comes from sodic and potassic altered intermediate
lava immediately at the contact with the ore body at Luossavaara (Fig.
4B), where titanite is hosted in formerly amygdaloidal vug space,
intergrown with magnetite and actinolite (Fig. 4C). Malmberget has
mineralogical similarities to Kirunavaara, but has been subjected to
higher grades of metamorphism, and is intensely deformed and seg-
mented into multiple ore bodies (Martinsson, 2004). Titanite was sam-
pled from the immediate hanging wall to the Valkommen ore body.
Gruvberget is a deposit transitional between I0A and I0CG types, with
Cu mineralisation overprinting a magnetite-hematite-apatite ore body.
Titanite was sample from Na-altered metavolcanic rocks within 5 m of
the main ore zone (Fig. 4D). In this case titanite occurs as BSE-dark
cores overgrowing skeletal rutile, overgrown in turn by oscillatory
zoned rims. At Rakkurijarvi chalcopyrite mineralisation occurs in the
matrix to shear zone-hosted, magnetite and lithic breccias, associated
with sodic and potassic altered trachyandesitic lavas (Fig. 4E). Allanite
and titanite were sampled from amygdaloidal vug space within the al-
tered lavas. At Nautanen allanite and titanite occur within strongly
shear foliated metavolcanic rocks (Fig. 4F), showing a range of alteration
types associated with vein-hosted chalcopyrite mineralisation
(Martinsson, 2004). The details and previous U—Pb geochronology
and trace element data for all samples are available in Smith et al.
(2009).

Both titanite and allanite come from wall rock metasomatised set-
tings that can be paragentically and geochemically linked to oxide or
sulphide ore formation (Figs. 5, 6). At both Luossavaara and Rakkurijdrvi

the studied titanites and allanites occur within amygdales within al-
tered lava, intergrown and apparently co-genetic with magnetite
(Figs. 5A, 6A) and at Rakkurijdrvi with later pyrite and chalcopyrite
(Figs. 5B, 6C, D). Titanite at Valkommen overgrows apatite and is
intergrown with magnetite (Fig. 6B). At Nautanen titanite occurs along-
side pyrite and chalcopyrite, and overgrows pyrite in places (Fig. 6E). In
general these textures indicate titanite formation was usually synchro-
nous with magnetite deposition, and followed by sulphide
mineralisation, whilst at Nautanen titanite growth was synchronous
with sulphide mineralisation.

The trace element chemistry of titanite and allanite was discussed by
Smith et al. (2009), and all data on the samples analysed here are avail-
able in that publication. The variation in trace element chemistry at
Luossavaara and Gruvberget confirms the two stage growth history
(Figs. 7, 8).The co-variation of the REE (represented by Nd) and selected
transition metals is shown in Fig. 8. Copper contents are generally low
(Fig. 8A), but both Ni and Mo (as sulphide associated metals) correlate
with the Nd content (Fig. 8B, C). The highest values are reached at
Valkommen for Ni and Gruvberget for Mo, suggesting distinctions in
metal source that are supported by Nd isotope data. Vanadium tends
to decrease with increasing REE content, except at Gruvberget again
suggesting local variations in metal association and hence potential
source.

4.2. Neodymium isotope systematics

The U—Pb systematics of titanite and allanite are summarised in
Table 4, and full details are available in Storey et al. (2007) and Smith
et al. (2009). We measured Sm—Nd isotopes within titanite and allanite
formed within the ore deposits, in paragenetic settings described above.
Examples of textural images and analytical locations are provide in Fig.
9, which also illustrates the complex internal zonation of titanite. Table
4 reports all Sm and Nd isotope ratios measured, and the locations of all
analyses are shown in the Electronic Appendix.

In all cases, eNd(t, CHUR) in titanites and allanites from these de-
posits are slightly to highly negative (—1 to —8; Fig. 10A). Present


Image of Fig. 3

Table 4

Sm—Nd isotope data from titanite and allanite measured in-situ by laser ablation MC-ICPMS. Grain (c/r) - where applicable, ¢ - core of grain, r - rim of grain; spot size - laser spot size used for analysis; age - age of crystallisation used for correction; N -
number of integrated time slices within each run (maximum = 100) meas - measured isotope ratio uncorrected for fractionation; err 2se - measured uncertainty at 2 standard errors; (i) - isotope ratio corrected for age to initial composition at the
time of crystallisation; (TO) - corrected to initial age of crystallisation; - CHUR - Chondritic Uniform Reservoir; (DM) - Depleted Mantle; 2 stage - 2 stage model age based on Sm/Nd ratio of 0.12; corr - isotope ratio corrected for fractionation (4% Sm/Nd
fractionation).

Mineral Grain (c/r)  Spotsize  Age N Sm/"Nd  Nd/"Nd  err2se  'Nd/'"Nd(i) eNd(TO) err  Uncorrected eNd(TDM) T(DM)2  Corrected BNd/MNd(i)  eNd eNd(TDM) T(DM) 2

(um) (Ma) meas meas 2se  Sm/Nd stage Sm/Nd (T CHUR) stage

eNd(T CHUR) 1475 m/MNd
corr

Titanite VALK A 65 1900 94 0.166794 0511884 0.000042 0.509851 —-111 04 —40 -79 2515 0.160379 0.510057 —24 —6.3 2392
Titanite VALK B 65 1900 93 0.156337 0511075 0.000130 0.509897 —-134 05 —37 -7.7 2496 0.150324 0.510064 -23 —6.2 2382
Titanite VALK C 50 1900 93 0.168218 0.511642 0.000027 0.509875 —108 04 —40 -79 2518 0.161748 0.510055 —24 —6.4 2395
Titanite VALK D 50 1900 99  0.148022 0.512288 0.000029 0.509829 —150 04 —33 —72 2461 0.142329 0.510083 -19 —5.8 2352
Titanite VALK E 30 1900 100 0.149298 0512233 0.000023 0.509827 —-149 04 —-35 -75 2481 0.143556 0.510070 —2.1 —6.1 2372
Titanite VALK F 50 1900 100 0.144018 0.511491 0.000046 0.509915 —158 04 —32 —71 2452 0.138479 0.510087 -18 —5.7 2347
Titanite VALK G 50 1900 100 0.167924 0.511201 0.000040 0.509923 —106 06 —37 -7.7 2497 0.161465 0.510069 —22 —6.1 2374
Titanite VALK H 50 1900 100 0.145488 0511156 0.000033 0.509903 —-154 04 —31 -7.0 2449 0.139892 0.510090 -18 —5.7 2342
Titanite VALK 50 1900 100 0.164751 0.511071 0.000027 0.509861 —115 05 -39 —78 2508 0.158414 0.510060 —23 —6.3 2388
Titanite VALK] 50 1900 100 0.140237 0511137 0.000026 0.509877 —167 04 —3.1 -7.0 2444 0.134843 0.510090 -17 —5.7 2341
Titanite VALK K 50 1900 100 0.159309 0511132 0.000026 0.509864 —128 04 -39 —7.8 2507 0.153182 0.510058 —24 —63 2391
Titanite VALK L 50 1900 100 0.151017 0511071 0.000020 0.509858 —-145 04 —36 -75 2482 0.145209 0.510071 —21 —6.0 2371
Titanite GRUVA-c 90 2050 87 0.051296 0511113 0.000040 0.509903 —-395 12 —14 —49 2430 0.049323 0.509938 —0.9 —4.4 2390
Titanite GRUVB-r 65 1850 95 0.140074 0.510980 0.000022 0.509856 —207 07 —74 —115 2745 0.134687 0.509931 —6.1 —10.2 2645
Titanite GRUVC-c 90 2050 96 0.099973 0.511205 0.000018 0.509895 —-298 08 —46 —8.0 2673 0.096128 0.509804 —35 -7.0 2594
Titanite GRUVD-r 65 1850 95 0.154357 0511615 0.000063 0.509704 —-175 05 —77 —11.8 2765 0.148420 0.509924 —6.3 —103 2655
Titanite GRUVE-c 65 2050 98 0.117056 0.511645 0.000059 0.509728 —265 10 —57 —92 2764 0.112554 0.509753 —45 —80 2672
Titanite GRUVF-c 90 2050 100 0.089122 0511153 0.000019 0.509898 —-328 19 —47 —8.1 2681 0.085694 0.509794 —3.7 -72 2610
Titanite GRUVG-c 90 2050 100 0.105601 0.511451 0.000092 0.509823 —282 16 —44 —7.8 2660 0.101539 0.509816 —33 —6.8 2576
Titanite GRUVH-r 65 1850 100 0.167020 0.511367 0.000030 0.509766 —146 08 —77 —11.8 2767 0.160597 0.509929 —6.2 —103 2648
Titanite GRUVI-c 90 2050 100 0.087255 0511122 0.000018 0.509894 -303 25 —17 —52 2452 0.083899 0.509943 —0.8 —43 2383
Titanite GRUV]-r 65 1850 100 0.145160 0511311 0.000036 0.509783 —-193 05 —72 -113 2730 0.139577 0.509943 —59 —10.0 2627
Titanite GRUVK-r 65 1850 100 0.201937 0.511368 0.000048 0.509830 —-67 06 —81 —122 2799 0.194170 0.509924 —6.3 —103 2655
Titanite GRUVL-r 65 1850 100 0.197579 0.511096 0.000017 0.509887 -78 05 —82 —122 2802 0.189980 0.509920 —6.4 —104 2661
Titanite LUOSSA-r 90 1870 93 0.128077 0511171 0.000017 0.509902 —-222 09 —59 -10.0 2645 0.123151 0.509975 —48 —88 2553
Titanite LUOSSB-r 90 1870 100 0.103871 0.511479 0.000028 0.509756 —279 08 —58 —938 2633 0.099876 0.509972 —48 —88 2558
Titanite LUOSSC-r 65 1870 100 0.101853 0511316 0.000084 0.509788 —287 06 —62 —10.2 2663 0.097935 0.509951 —52 —92 2589
Titanite LUOSSD-r 65 1870 100 0.098323 0511787 0.000044 0.509712 —-304 05 —70 -11.0 2726 0.094541 0.509908 —6.1 —10.1 2655
Titanite LUOSSE-r 65 1870 100 0.102332 0.511425 0.000049 0.509738 —-291 05 —6.7 -10.7 2702 0.098396 0.509926 —5.7 -9.7 2628
Titanite LUOSSF-r 65 1870 96 0.103044 0.512420 0.000057 0.509678 —292 05 —69 —109 2722 0.099081 0.509913 —6.0 —10.0 2647
Titanite LUOSSG-r 65 1870 100 0.098557 0.511401 0.000024 0.509737 -304 04 —7.1 —11.1 2731 0.094766 0.509905 —6.1 —10.1 2660
Titanite LUOSSH-r 65 1870 100 0.098344 0.511089 0.000022 0.509884 —296 08 —62 —10.2 2663 0.094561 0.509950 —53 -93 2592
Titanite LUOSSI-r 65 1870 98 0.091320 0.510466 0.000032 0.509928 —322 04 —71 —11.1 2734 0.087808 0.509899 —6.3 —103 2669
Titanite L2A-r 90 1870 90 0.106458 0.510422 0.000029 0.509927 —278 04 —63 —103 2675 0.102364 0.509945 —54 —94 2599
Titanite L2B-c 90 2050 100 0.141551 0.510460 0.000038 0.509901 -198 12 —55 -89 2746 0.136106 0.509778 —41 -75 2634
Titanite 12C-c 90 2050 100 0.142010 0.510405 0.000031 0.509933 —-192 12 =50 -85 2709 0.136548 0.509802 —3.6 -7.0 2597
Titanite L2D-r 90 1870 100 0.102045 0.510386 0.000034 0.509908 —288 04 —63 —103 2671 0.098120 0.509946 —53 —93 2598

(continued on next page)
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Table 4 (continued)

Mineral Grain (c/r)  Spotsize  Age N Sm/"Nd  '"Nd/"*Nd  err2se  Nd/"*Nd(i) eNd(T0) err  Uncorrected eNd(TDM) T(DM)2  Corrected BNd/"Nd(i) eNd eNd(TDM) T(DM) 2

(um) (Ma) meas meas 2se  Sm/Nd stage Sm/Nd (T CHUR) stage

eNd(T CHUR) 1475m/"“Nd
corr

Titanite L2E-c 130 2050 100 0.120588 0.510305 0.000028 0.509902 —230 1.8 —32 —6.6 2565 0.115950 0.509885 —19 —54 2470
Titanite L2F-c 130 2050 100 0.118604 0.510299 0.000029 0.509884 —246 0.6 —43 —-7.7 2653 0.114043 0.509827 —3.1 —6.5 2559
Titanite L2G-r 90 1870 100 0.099819 0.510590 0.000043 0.509922 —294 03 —6.4 —10.4 2677 0.095979 0.509941 —54 —94 2605
Titanite L2H-c 130 2050 100 0.113216 0.510316 0.000033 0.509901 —257 0.7 -39 —74 2626 0.108862 0.509842 —2.8 —6.2 2536
Titanite L[21-c 130 2050 100 0.113927 0.511194 0.000034 0.510228 —246 09 —3.0 —6.5 2554 0.109545 0.509889 —19 —53 2464
Titanite L2]-r 90 1870 100 0.098240 0.511290 0.000032 0.510216 —299 03 —6.5 —10.5 2687 0.094461 0.509933 —5.6 —9.6 2617
Titanite L2K-r 90 1870 100 0.103130 0.511234 0.000039 0.510268 —285 03 —6.2 —10.2 2664 0.099164 0.509951 —52 —9.2 2590
Titanite L2L-c 130 2050 90 0.127645 0.511314 0.000046 0.510249 —224 05 —45 —-79 2667 0.122735 0.509823 —3.2 —6.6 2566
Titanite L2M-c 130 2050 100 0.113208 0.511424 0.000046 0.510228 —256 1.6 -39 —73 2619 0.108854 0.509847 —2.7 —6.2 2529
Titanite L2N-c 130 2050 100 0.153698 0.511241 0.000033 0.510232 —164 09 —53 —8.38 2734 0.147786 0.509792 —38 —72 2612
Titanite L20-c 130 2050 100 0.124966 0.511273 0.000031 0.510219 —235 09 —48 —-83 2694 0.120160 0.509803 —3.6 —-7.0 2595
Titanite L2P-c 130 2050 40 0.203127 0.511400 0.000039 0.510246 —4.1 1.1 —6.0 —95 2786 0.195314 0.509784 -39 —74 2625
Titanite L[2Q-c 130 2050 100 0.123302 0.511423 0.000047 0.510224 —240 05 —49 —83 2697 0.118560 0.509801 —3.6 —-7.1 2599
Titanite L2R-r 90 1870 100 0.097912 0.511257 0.000036 0.510272 —30.1 04 —6.5 —10.6 2692 0.094146 0.509930 —5.6 —9.6 2621
Titanite RAKA 40 1850 100 0.044230 0.511288 0.000051 0.510241 —422 06 —6.2 —103 2649 0.042529 0.509949 —5.8 —9.9 2618
Titanite RAKB 40 1850 100 0.040658 0.514096 0.000073 0.510254 —43.1 0.6 —6.2 —10.3 2651 0.039095 0.509946 —5.8 —-9.9 2622
Titanite RAKC 40 1850 100 0.045930 0.514101 0.000281 0.510107 —423 0.7 —6.7 —10.8 2690 0.044163 0.509923 —6.3 —10.4 2657
Titanite RAKD 40 1850 100 0.038785 0.513993 0.000060 0.510240 —434 06 —6.1 —10.2 2642 0.037293 0.509951 —57 —9.8 2614
Titanite RAKE 40 1850 100 0.039341 0.513924 0.000082 0.510217 —438 0.7 —6.6 —10.7 2680 0.037827 0.509926 —6.2 —10.3 2652
Titanite RAKF 40 1850 100 0.033147 0.510305 0.000028 0.509902 —453 0.5 —6.7 —10.8 2689 0.031873 0.509917 —6.4 —10.5 2665
Titanite RAKG 40 1850 100 0.034062 0.510299 0.000029 0.509884 —455 06 —71 —11.1 2715 0.032752 0.509900 —6.7 —10.8 2691
Titanite RAKH 40 1850 100 0.054885 0.510590 0.000043 0.509922 —398 038 —6.3 —104 2659 0.052774 0.509947 —5.8 —9.9 2620
Titanite RAKI 40 1850 100 0.034097 0.510316 0.000033 0.509901 —451 0.6 —6.7 —10.8 2691 0.032785 0.509917 —6.4 —10.5 2666
Allanite NAU A 40 1780 100 0.082556 0.511194 0.000034 0.510228 —280 07 —21 —64 2278 0.079380 0.510265 —14 —57 2222
Allanite NAU B 40 1780 100 0.091732 0.511290 0.000032 0.510216 —26.1 0.6 —23 —6.6 2296 0.088203 0.510257 —1.5 —5.8 2233
Allanite NAU C 40 1780 100 0.082470 0.511234 0.000039 0.510268 —272 08 —13 —5.6 2217 0.079298 0.510305 —0.6 —49 2160
Allanite NAU D 40 1780 65 0.090918 0.511314 0.000046 0.510249 —257 09 —1.7 —6.0 2246 0.087421 0.510290 —0.9 —52 2183
Allanite NAU E 40 1780 100 0.102158 0.511424 0.000046 0.510228 —235 09 —21 —64 2278 0.098229 0.510274 —1.2 —55 2208
Allanite NAU F 40 1780 100 0.086190 0.511241 0.000033 0.510232 —271 06 —2.0 —6.3 2271 0.082875 0.510271 —13 —55 2212
Allanite NAU G 40 1780 100 0.090027 0.511273 0.000031 0.510219 —265 0.6 —23 —6.6 2291 0.086565 0.510260 —1.5 —5.8 2230
Allanite NAUH 40 1780 100 0.098584 0.511400 0.000039 0.510246 —240 08 —1.8 —6.0 2251 0.094792 0.510290 —0.9 —52 2183
Allanite NAUI 40 1780 100 0.102433 0.511423 0.000047 0.510224 —235 09 —22 —6.5 2284 0.098493 0.510270 —13 —5.6 2214
Allanite NAU]J 40 1780 100 0.084085 0.511257 0.000036 0.510272 —268 0.7 —1.2 —5.5 2210 0.080851 0.510310 —0.5 —4.8 2153
Allanite NAU K 40 1780 100 0.089436 0.511288 0.000051 0.510241 —262 1.0 —1.8 —6.1 2257 0.085996 0.510282 —-1.0 —53 2196
Titanite NAUL 90 1780 100 0.328114 0.514096 0.000073 0.510254 28.6 14 —1.6 —59 2238 0.349057 0.510009 —64 —11 2013
Titanite NAUM 90 1780 100 0.341159 0.514101 0.000281 0.510107 28.7 55 —4.5 —8.8 2462 0.362935 0.509852 —9.5 —14 2228
Titanite NAUN 130 1780 100 0.320530 0.513993 0.000060 0.510240 26.6 1.2 —-1.9 —6.1 2259 0.340990 0.510001 —6.6 —11 2039
Titanite NAUO 90 1780 60 0.316595 0.513924 0.000082 0.510217 25.2 1.6 —23 —6.6 2295 0.336803 0.509980 —7.0 —11 2077

y6C1

20€1-2821 (2102) 18 smalnay A30j0aD 210 / s ‘d'W ‘21015 'qD



C.D. Storey, M.P. Smith / Ore Geology Reviews 81 (2017) 1287-1302 1295

E O\ RAK 004 &
6885 — 69.00 m

Fig. 4. Examples of mineralisation and the occurrence of titanite and allanite in samples from Norrbotten. (A) Hanging wall metavolcanic breccias cemented by magnetite, Kirunavaara. (B)
Contact zone of the Luossavaara ore body. Veins of magnetite cut amygdaloidal trachy-andesite. Sample 03LUOSSO1 was taken from this outcrop. (C) Cut slab photograph of 03LUOSS01
showing amygdales infilled with actinolite, magnetite and titanite. (D) Magnetite-actinolite vein cutting K—Na altered metavolcanic rock, Gruvberget. Up to 3 cm long titanite occurs
within the alteration zone (see Figs. 7D, 9A). (E) Chalcopyrite cemented magnetite breccia, Rakkurijdrvi. (F) Magnetite-scapolite schist from the Nautanen Deformation Zone (NDZ).

day Nd isotope ratios are distinct between the core and rim of complex-
ly zoned grains from the hanging wall of the IOA deposit at Luossavaara
and in titanite from the IOCG deposit at Gruvberget, consistent with LA-
ICPMS U—Pb systematics and trace element data, and supporting inter-
pretations of a pre-Svecofennian age for the Porphyry Group volcanic
rocks (Storey et al., 2007; Fig. 9A, B). Also plotted on Fig. 10A are
whole rock analyses of the associated volcanics, granitoids and Archae-
an basement. The mineral analyses overlap the whole rock values. This
indicates that the source of metals in the alteration assemblages, and by
inference in the deposits themselves, was closely linked to the source of
the magmas, and that the metals were potentially derived from those
granitoids. It is also clear that there is a range in €Nd for a given suite
of whole rocks and also from individual minerals within separate de-
posits. This implies that there was not one source and that they were
most likely generated from hydrothermal fluids with Nd derived from
crust of two (or more) discrete sources. Based on the available Sm—Nd
isotope data (compiled by Bergman et al. (2001)) and local geology, the
candidates for Nd sources within the magmatic rocks (granitoids) and

the ore deposits are the Archaean basement and the mafic to intermedi-
ate rocks of the Greenstone and Porphyry Groups, or earlier mafic
magmatism.

5. Discussion
5.1. Genesis of the deposits

As discussed above a number of models of the formation of IOA de-
posits invoke immiscibility between silicate and iron oxide melts with
the deposits at Kiurnavaara and Luossavaara being cited as key examples
of this (e.g. Nystrom, 1985; Nystrom and Henriquez, 1994). However,
many authors argue against this (Bookstrom, 1995; Parak, 1975), and
textural evidence has been cited from the early stages of magnetite
mineralisation at Rakkurijdrvi to show that hydrothermal magnetite
mineralisation can directly replace igneous silicate rocks (Smith et al.,
2007; Fig. 5C). Barton (2014) concluded that the geologic evidence is in-
compatible with the involvement of oxide melts in IOA and I0CG deposit
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Fig. 5. Association of titanite and allanite with the ore mineral assemblage. (A) Transmitted, plane polarized light (PPL) image of amygdale developed in trachy-andesite lava, Rakkurijdrvi.
The amygdale infill is magnetite, epidote/allanite and calcite. (B) Reflected PPL image of (A) showing magnetite, and later association of pyrite and chalcopyrite with epidote. (C)
Transmitted PPL image of magnetite-chlorite cemented breccia from Rakkurijarvi, showing titanite associated with magnetite in matrix. (D) Transmitted PPL image of scapolite-
actinolite schist from Nautanen (Sample NAU84012 159.8-159.89 m), showing titanite, epidote and allanite associated with interstitial pyrite and chalcopyrite. Act - Actinolite; Alb -
Albite; Qtz - Quartz; Ep - Epidote; All - Allanite; Cc - calcite; Mgt — Magnetite; Py — Pyrite; Cpy — Chalcopyrite; Chl - chlorite; Ttn - titanite; Scp - Scapolite.

genesis and points to solely hydrothermal origins. In Norrbotten, Gleeson
and Smith (2010) and Smith et al. (2012) concluded that mineralising
brines capable of transporting significant Fe were formed from a mixture
of magmatic and external brine sources (basinal brines or evaporate
dissolution), and were modified by an extensive water-rock interaction
history resulting in the regional Na alteration observed in the area
(Frietsch and Perdahl, 1995). These studies are consistent with IOA de-
posit formation via metal leaching by regional hydrothermal circulation,
driven by the intrusion of the Haparanda and Perthite-Monzonite Suite
granitoids, involving highly saline fluids derived from both magmatic
and evaporate-related brine sources, followed by magnetite deposition
either in breccias or via host rock replacement in structurally favourable
sites. Such models are consistent with work elsewhere, notably the
Clonclurry district Australia (Oliver et al., 2004). Copper mineralisation
in the district is distinct from the IOA deposits, with chalcopyrite
mineralisation typically syn- to post-magnetite deposition. Iron oxide-
copper-gold type mineralisation is spatially associated with magnetite-
apatite mineralisation at sites including Rakkurijdrvi and Gruvberget.
However, fluid inclusion studies (Broman and Martinsson, 2000; Smith
et al., 2012) indicate distinctions in fluid chemistry between I0A and
I0CG deposits. In sulphide mineralised deposits, sulphur isotope studies
are consistent with hydrothermal fluid interaction with a wide range of
country rocks (Frietsch et al,, 1995) and halogen chemistry from both
deposit types is again consistent with mixing of brines of different
sources. The Cu deposits associated with the Nautanen Deformation
Zone are significantly later than the other deposits (~1.7-1.8Ga), and
are the most Cu-rich of the area. The features of the deposit along the
NDZ, including the Aitik deposit, are consistent with modification of initial
I0CG-type mineralisation by subsequent aqueous-carbonic fluids during
deformation (Broman and Martinsson, 2000; Wanhainen et al., 2003;
Smith etal,, 2012). None of these models have as yet addressed the source
of metals.

5.2. Metal sources during mineralisation

The I0A deposits of the Kiruna district formed synchronously with
local subduction granitoids (Smith et al., 2009), and Nd isotope ratios
are consistent with derivation of the REE from those granitoids. A corre-
lation between the Ni, Cu and REE concentration in titanite from
Norrbotten was noted by Smith et al. (2009). Smith et al. (2012) argued
that the primary, hydrothermal, Cu transport in the IOCG deposits of the
district was by chloride complexes, although bisulphide may have been
important in remobilisation of the ores at Nautanen and Aitik, and it has
now been demonstrated that REE transport is also most likely as chlo-
ride complexes (Migdisov et al., 2009; Williams-Jones et al.,, 2013). De-
pleted mantle model ages indicate that the granitoids themselves
derived Nd from melting of basic rocks formed around 2.5 Ga with
minor contributions from older (c.2.8 Ga) Archaean basement (Figs.
10, 11). It is also possible that the Nd isotope signature of the granitoids
may be derived from mixing of Archaean materials with juvenile
magmas derived from enriched sources, although little basic
magmatism of post-Greenstone group age is exposed in the area. Neo-
dymium in the IOA deposits was derived from similar sources, either di-
rectly from magmatic-hydrothermal processes, or more likely from
regional fluid circulation through the Svecokarelian rocks and
Svecofennian granitoids with contributions from multiple fluid sources
(Frietsch et al.,, 1997; Gleeson and Smith, 2010). The initial phase of
I0CG mineralisation in the area occurred after this, during continental
collision and amalgamation with a potentially slightly wider range of
Nd sources and leaching from a range of host rocks (Fig. 10B, C). It is no-
table that the most Cu and Au-rich deposit in this study (the modified
I0CG deposits at Nautanen) show the highest eNd values, and hence
the greatest metal input from the most juvenile crust. None the less,
these still exhibit negative eNd, cyur) suggesting significant crustal res-
idence times for the metal source (Fig. 10A), probably derived by
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Fig. 6. Back scattered electron images of internal textures of titanite and allanite. (A) Backscattered electron (BSE) image of titanite associated with magnetite from Luossavaara
(03LUOSS01). (B) Titanite overgrowing magnetite and apatite, Valkommen (03VALKO1). (C) Amygdale infilled with titanite, apatite and biotite, Rakkurijdrvi (01RAK006 183.0 m). (D)
BSE image of allanite from vug in altered trachy-andesite, Rakkurijdarvi (01RAKO006 183.0 m). (E) Titanite intergrown with pyrite, Nautanen NAU84012 159.8-159.89 m. Mineral
abbreviations as in Fig. 5, plus Ap - apatite. Lozenge shapes in each case are ablation pits from U—Pb analyses carried out prior to Sm—Nd isotope analyses.

leaching of the Greenstone group mafic volcanics. Although Nd isotope
systematics cannot directly trace the source of ore metals (Fe, Cu), the
variation in REE source inferred here suggests that a similar variation
in the source of ore metals may account for differences in metal content
between deposits. Overall the data are consistent with previous studies
of IOCG and I0OA deposits, which indicated that metals were derived
from local host rocks of a range of ages, rather than a single, specialised
magmatic source (Gleason et al., 2000).

5.3. Relation of metal source and mineralising processes to the continental
cycle

Relation of the timing and metal source within the Kiruna district re-
quires a brief review of the evolution of the Fennoscandian shield
through this time period. The amalgamation of cratons at the end of
the Neoarchaean (c.2.7 to 2.5 Ga ago) resulted in the accretion of

mafic volcanics as greenstones on to the margin of the gneissic Archae-
an craton core (Weihed et al., 2005). This was followed by the initiation
of rifting of the supercontinent/supercraton, manifested as global mafic
magmatism in the time period 2.5-2.4 Ga (Kullerud et al., 2006; Davies
and Heaman, 2014) and earliest possible ages of the Greenstone Group
of northern Sweden (Weihed et al., 2005). Breakup of the superconti-
nent so that plates began to drift, with a resultant return to magmatism
atarcs, began at around 2.2 Ga ago (Kullerud et al., 2006). The formation
of evolved volcanic rocks in northern Sweden, the Porphyry Group,
proceeded around 2.1 Ga ago (Storey et al., 2007). Subsequent amal-
gamation of plates into a supercontinental configuration (i.e. Nuna/Co-
lumbia) was achieved between 1.9 and 1.3 Ga ago (Evans and Mitchell,
2011).

The imprint in northern Sweden of this amalgamation is the
Svecokarelian orogeny and magmatism, in an arc to post-collisional set-
ting, which occurred between 1.9 and 1.8 Ga ago. The period involved
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subduction, followed by accretion of a series of microcontinental blocks
and island arcs (Weihed et al., 2005). At the same time, hydrothermal
activity related to the magmatism mobilised and concentrated iron,
copper and gold into economic deposits. As we have shown for the
REE's, the ultimate source of the metals in subduction granitoids and re-
lated deposits is likely to be pre-existing mafic igneous rocks related to
accreted Archaean greenstones, the early rifting phase, and the Green-
stone Group, (Figs. 10, 11). Older Archaean model ages suggest that
some remelting of evolved gneissic material from the core of the craton
occurred, resulting in a range of model ages. The major magmatic arc
and collisional belt, the Svecokarelian orogeny, provided energy and
fluid sources for remobilisation of metals from this mafic juvenile
crust and, as the plates were organised into a supercontinental
configuration, the preservation potential of both magmatism and

mineralisation was much higher than at other times (Hawkesworth et
al., 2009). Thus, the major peak of global IOCG deposits during this pe-
riod (Groves et al., 2010) can be explained in the context of a supercon-
tinent cycle. A number of authors have argued that primary mafic melts
are not especially enriched in Cu, but that formation of cumulates
enriched in Cu, which are deeply buried during arc building, are the like-
ly source for subsequent hydrous, oxidized melts (Richards, 2009; Lee et
al.,, 2012). This is consistent with a two-stage model for the source and
final liberation of metals and implies a time lag between source em-
placement and liberation of ¢.5-600 Ma during a period of subsequent
crustal thickening and arc magmatism (Figs. 10, 11). A similar incuba-
tion period has been suggested for the formation of evolved crust re-
corded by the Hf isotope composition of zircons (Lancaster et al.,
2011). If the incubation time for bulk continental crust (time from
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mantle separation to crystallisation in an evolved melt) is the same as
that for enriched Cu sources (from mantle separation to mineralisation)
then it is likely that a similar tectonic process is responsible. This sup-
ports the proposed link between supercontinent formation, continental
crust and economic metal preservation.

The conclusion that metals in ICOG and IOA systems were derived
from mafic crust generated in early phases of tectonic activity is not in-
consistent with previous attempts to link metal and ligand source with
tectonic setting (Groves et al., 2010) and secular changes in subduction
systems (Richards and Mumin, 2013). Both would have metal sources in
previously enriched sub-continental lithospheric mantle. However, the
conclusion that the temporal peak of these deposits around 1.8 Ga in
Fennoscandia is related to increased preservation potential in arc-accre-
tion and post-collisional settings, is at odds with Richards and Mumin's
(2013) conclusion that igneous-related I0CG systems are restricted to
the Proterozoic because of a major change in ocean sulphate chemistry
at the end of the Precambrian. It is not clear that any of these deposits
exclusively involved magmatic fluids (e.g. Kendrick et al., 2007; Smith
et al., 2012; Barton, 2014). Equally, the major Phanerozoic systems
occur in the Andes (Groves et al., 2010), where they are in ocean-facing
arc settings which will give them a similar erosion potential, and hence
half-life in the geological record, as porphyry Cu-systems. The critical
factors seem to be a potential source of high Cl concentrations (be
they magmatic or sedimentary) and, as shown here, the presence of
lithosphere fertilised by mantle melts either during an earlier phase of
subduction, or during previous rift or plume related magmatism.

6. Conclusions

The age distribution of igneous rocks within the Fennoscandian
shield shows that early Palaeoproterozoic events were dominated by
basic and ultramafic magmas generated in oceanic and extensional set-
tings. Evolved igneous rocks do not occur until the onset of accretion of
the supercontinent Nuna/Columbia, nor do IOCG type mineral deposits.
However, Nd isotope data indicate that the subduction and orogenic
grantioids are not the sole source of Nd, and by inference other metals,

for the IOCG mineralisation, but pre-existing, more basic sources are im-
plicated. The results imply that fertile mafic crust was incubated under
and on the margins of the Archaean craton in the early
Palaeoproterozoic. However, mineralisation did not occur, or at least
was not preserved, until an arc was initiated at the margin during a pe-
riod of continental amalgamation, i.e. ocean closure, and hence provid-
ed a heat and fluid source for mobilisation and concentration of the
metals.

The tectonic setting of IOCG mineralisation is such that Mesozoic and
Cainozoic examples occur dominantly in ocean-facing continental arc
settings (the Andes; Groves et al., 2010), whilst those in the older geo-
logical record are dominantly in collisional and post-orogenic settings.
This strongly indicates that the history of mineralisation for this style
of deposit is affected by a preservation bias. However, Nd isotope data
also show unequivocally that the formation of metal-enriched crust
via basic magmatism in pre-orogenic settings was critical in the forma-
tion of economic mineral resources. Undoubtedly mineralising process-
es occurred throughout the period of supercontinent/craton dispersion
(Weihed et al., 2005), but renewed continental collision provided both
heat, and magmatic and hydrothermal fluid sources, for remobilisation
of metals from older, juvenile crust in tectonic settings with high poten-
tial for subsequent long term preservation. The incubation time for eco-
nomic mineralisation is the same as for bulk continental crust, thus
arguing for related processes and according well with the superconti-
nent cycle.
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