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Abstract 

Scapolites from barren regional Na-Cl metasomatic assemblages (RM), iron oxide-copper-gold 

deposits (IOCG), scapolite altered metabasic rocks (IOCG-M), and from IOCG-proximal 

alteration/Na-skarns (IOCG-PS) from Norrbotten County in Northern Sweden have been 

analysed for halogen content and Cl stable isotope composition. The aim of the study was to 

constrain the source of halogens within alteration assemblages, and to investigate the possible 

fractionation of Cl isotopes between scapolite and the hydrothermal fluid. Scapolite separates 

were analyzed for Cl, Br, and major oxide concentrations using electron probe micro-analysis 

(EPMA) and micro-X-ray fluorescence (XRFM) spectrometry. Chlorine was extracted from the 

scapolite separates via pyrohydrolysis and then analysed for their stable Cl isotope compositions 

by isotope ratio mass spectrometry (IRMS).  

All samples of scapolite investigated in this study are marialitic in composition. One of the 

scapolites from the Gruvberget deposit (IOCG-PS) had a Cl/Br molar ratio of 2,363, which is the 

highest amongst all scapolites reported in the literature to date. Cl/Br molar ratios lower than 

seawater (650), were identified in two IOCG-PS scapolite samples (Cl/Br=554 and 271), as well 

as in two IOCG-M scapolites (Cl/Br=393 and 565). Three RM scapolites had Cl/Br molar ratios 

very close to, or slightly higher than, seawater values (639 to 770). Samples with Cl/Br molar 

ratios less than seawater are inferred to have halogens derived from evaporative residual brines; 

whereas samples with molar ratios higher than seawater may have halogens derived from fluids 

that have dissolved halite and/or are from magmatic systems. Considering the wide variation of 

the Cl/Br molar ratios in the IOCG-PS and IOCG-M scapolites compared to the restricted 

composition of the regional alteration (RM), it is proposed that the hydrothermal fluids interacted 

with several different protoliths to generate the IOCG alteration.  
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RM alteration scapolites had δ
37Cl values from -0.1‰ to +0.3‰, two IOCG-M scapolites had 

values of 0.2‰ and IOCG-PS scapolites had δ
37Cl values from -0.1‰ to +1.0‰. Using a 

previously published δ37Cl value from fluid inclusion leachates (-1.7‰) from the IOCG-M 

mineralisation at Pahtohavare and the δ
37Cl value of co-existing scapolite measured in this study 

(0.2‰), an empirical fluid-scapolite fractionation factor was calculated to be +1.9‰.  This large 

fractionation factor is not supported by previous predictions for monovalent chlorides and, 

assuming equilibrium, indicates that 37Cl was preferentially accommodated in the A site of the 

scapolite structure. This indicates that either the stable Cl isotope partitioning between the CaCl2-

rich brine and the scapolite may differ from currently available estimates for NaCl brines in 

equilibrium with silicate minerals, or that the scapolite and brine are not in isotopic equilibrium.   

Overall, the data in this study suggest that halogens in early scapolites were derived from 

residual brines and halite, during metamorphism of evaporites linked to the RM alteration. Later 

in the history of the Norrbotten district components of the RM alteration were recycled and 

mixed during magmatic and local metasomatic events to varying extents, resulting in the brines 

associated with IOCG alteration.  

Keywords: halogens, chlorine isotopes, isotope fractionation, scapolite, IOCG. 

1. Introduction 

The ability of the halogen elements to be incorporated in mineral structures is controlled by their 

ionic radii, electronegativity and electron affinities.  In general, F and Cl, with smaller radii and 

larger electronegativites and electron affinities, are more readily incorporated in non-halide 

minerals than Br and I. Only a few non-halide minerals can accommodate significant amounts of 

Cl in their structures, despite the abundance of Cl in some geologic environments. Some of these 
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Cl-bearing minerals, such as apatite, amphibole, biotite and scapolite, are found in alteration 

assemblages in ore deposits. Scapolite can also form as a result of metasomatic processes, 

metamorphism and as a primary phase in igneous rocks (Mora and Valley, 1989; Dong, 2005; 

Mi and Pan, 2016).  

Iron-oxide Cu-Au deposits (IOCG) are found in cratonic areas or on continental margins. These 

deposits occur in different types of host rocks, including plutonic granitoids, (meta)-andesitic 

volcanic rocks, and mainly (meta)-siliclastic and/or metabasic rocks (Williams et al., 2005). 

Fluid inclusion studies on these deposits show that the mineralising fluid is commonly a Cl-rich 

brine (e.g. Williams et al., 2005; Chiaradia et al. 2006) and the alteration assemblages associated 

with these deposits often contain Cl-rich scapolite. A variety of fluid sources have been 

suggested for the brines that form IOCG deposits including magmatic and metamorphic fluids, 

formation waters and/or mixtures of these end members (e.g. Barton and Johnson, 1996, 2000, 

Frietsch et al., 1997, Williams et al. 2005, Chiarada et al., 2006, Pollard 2000, 2006, Oliver et al., 

2004, Fisher and Kendrick, 2008; Kendrick et al., 2008a).   

A temporal and spatial association between the Kiruna type iron oxide-apatite (IOA) and IOCG 

deposits has been noted in the past (Williams et al. 2005). IOCG deposits are characterized by 

the occurrence of Cu-sulphide ± Au hydrothermal ores with abundant (> 20%) hematite or 

magnetite (e.g., Corriveau, 2007; Smith et al., 2012). These deposits are associated with 

batholitic granitoids and pervasive alkali metasomatism (Williams et al. 2005). A- to I-type 

magmatism and alkaline-carbonatite stocks may also be related to IOCG mineralisation 

(Corriveau, 2007). In the Norrbotten region, IOA deposits are restricted to the Kiruna and 

Galliväre areas, whereas the IOCG deposits are found in the Karelian greenstones and in 

volcanic rocks of Svecofennian age (Wanhainen at al., 2012).  
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Gleeson and Smith (2009) determined the halogen contents and Cl stable isotope compositions 

of fluid inclusions in quartz veins from IOA and IOCG systems in Norrbotten, Sweden. The fluid 

inclusion leachates from veins in the IOCG deposits had low δ37Cl values (-5.6‰ to -1.3‰) and 

it was suggested that the Cl in these fluids had a magmatic, and ultimately a mantle, source but 

their isotopic composition had been modified by crystallization of scapolites (and micas), which 

had progressively lowered the δ
37Cl values of the residual fluids. There are no experimental 

constraints on the direction or magnitude of chlorine isotope fractionation factors between brines 

and silicate minerals. However, theoretical calculations of equilibrium fractionation of Cl 

isotopes between solid monovalent chloride NaCl- and KCl-saturated brines and the divalent-

metal chlorides FeCl2 and MnCl2, (which may serve as a proxy for the fractionation behavior of 

structurally bound Cl- in micas and amphiboles) indicate that 37Cl is partitioned into the divalent 

chloride (Schauble et al. 2003).  The magnitude of the calculated fractionation ranges from 2 to 

3‰ at 25 °C to <1‰ at hydrothermal temperatures of 300 to 350 °C. These calculations suggest 

that there should only be a small partitioning of the 37Cl isotope into amphiboles or micas 

relative to monovalent chloride brines (e.g.  NaCl, KCl). The Cl isotope fractionation between 

brines and scapolite is unknown, but given that Cl in scapolite is mostly bonded to the 

monovalent cation Na+, the theoretical expectation is that scapolite would have less of an affinity 

for 37Cl than amphiboles or micas. This is due to the control of the Cl oxidation state and its bond 

partners on calculated fractionation factors (Schauble et al., 2003). 

Kusebauch et al. (2015) reported δ
37Cl values of -0.7 to 0.0‰ and or Cl/Br molar ratios of 250 to 

143 for scapolites from the Bamble sector, SE Norway. This study discounted the presence of 

meta-evaporites or mantle sources in the halogen compositions of the fluids in the Bamble sector 

based on halogen ratios; and instead concluded that the halogens in the scapolites of the Bamble 
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sector have a marine pore fluid origin. Based on a Rayleigh distillation model, a fractionation 

factor fluid-scapolite of 1.0010 at 600 °C was identified to explain negative δ37Cl values 

measured in the scapolite alteration sequence.     

In this study, we have analysed the halogen concentration and the Cl isotope composition of 

scapolites from the Nunasvaara and, the Greenstone and porphyry-hosted Cu deposits at 

Pahtohavare, Kallosalmi, Sarkivaara and Gruvberget (Fig. 1). This work tests the hypothesis of 

Gleeson and Smith (2009), which proposed mantle-derived halogens in the scapolites, and also 

provides an empirical estimate of the direction and magnitude of the Cl isotope fractionation 

factor between scapolite and hydrothermal fluids at temperatures between 300-500°C. On the 

basis of the halogen content and Cl isotope data, the sources of chlorine in scapolite associated 

with regional metasomatism and ore-forming processes are discussed.   

2. Geology background and previous studies 

The IOCG-type deposits of Norrbotten County, Sweden (Fig. 1) are hosted by a Paleoproterozoic 

sequence (~1.9 Ga) of Svecokarelian metavolcanic and metasedimentary rocks known as the 

Greenstone and Porphyry Groups (Carlon 2000; Bergman et al., 2001). The Karelian Greenstone 

group is composed of volcanic rocks of tholeiitic to komatiitic composition overlying the 

Archaean basement (Ekdahl, 1993). The Porphyry Group consists of basalt, trachyandesite and 

rhyodacite-rhyolite units that are intruded by the syenitic- to quartz syenitic-composition Kiruna 

porphyries. The Porphyry Group may have acquired their bulk composition as a result of 

metasomatic overprinting of an older calc-alkaline association (Martinsson, 1997). These units 

were originally assigned an age of ~1880 Ma (Romer et al., 1994), but U-Pb analyses of cores of 

titanite grains from the hanging wall to the Luossavaara ore body suggest a minimum age of 

2050 Ma (Storey et al., 2007). Albitisation and scapolitisation occurred at a regional scale, but 
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the timing of regional Na alteration is relatively poorly constrained. Smith et al. (2009) presented 

a single LA-ICPMS U-Pb age of titanite from Na-altered diorite at Nunasvaara of 1903±8 Ma – 

an age which is pre- to syn- the main iron-oxide apatite (IOA) mineralisation at Kirunavaara and 

potentially elsewhere. 

IOCG deposits are associated with high salinity brines, which are responsible for the presence of 

Na-rich alteration, albite and scapolite (Williams et al., 2005; Kendrick et al., 2007; 2008a, b; 

Gleeson and Smith 2009). The chlorine stable isotope composition and halogen concentrations 

from fluid inclusion leachates extracted from quartz veins in the region have previously been 

analysed (Gleeson and Smith, 2009). In the Norrbotten district, some mineralising fluids are Ca-

rich. This enrichment is probably due to the dissolution of limestones during the interaction of 

mineralising fluids with calc-silicate skarns in the area (Wanhainen et al. 2003, Smith et al., 

2012). The IOCG alteration, at some locations in the Norrbotten region, is also associated with 

CO2-rich hydrothermal fluids and characteristic elemental concentrations that are well 

understood (Smith et al. 2012).   

2.1 Origin of the Samples  

Scapolite is directly associated with IOCG mineralisation and also with barren regional units. 

Scapolite-bearing samples for this study were taken from regional Na-Cl metasomatic 

assemblages (RM), from scapolite altered metabasic rocks in the vicinity of iron oxide-apatite or 

iron oxide-copper-gold deposits (IOCG-M), and from intense Na-alteration zones in which the 

original character of the rock has been obscured by alteration (Na-metasomatites or proximal 

‘Na-Skarns’; IOCG-PS) (Fig. 2).  

2.1.1 Regional Na-Cl metasomatism (RM) 
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Regional Na-Cl metasomatism is developed throughout the Norrbotten area, southern Norway 

and Fennoscandinavia. In the stratigraphy, RM occurs as massive layers and structurally 

controlled disseminations, stringers and veinlets (Freitsch et al., 1997). Sodium metasomatism in 

the region has previously been interpreted to be a result of the metamorphism of evaporites in the 

volcano-sedimentary sequence (Frietsch et al., 1997). In other IOA-IOCG districts, a strong case 

has been made for the direct association of regional Na-alteration with the mobilisation of metals 

that are subsequently concentrated in mineral deposits (Barton and Johnson, 1996, 2000; Oliver 

et al., 2004). The regional metasomatic samples in this study are not associated with ore. 

Samples were taken from regional alteration assemblages at Nunasvaara, where the contact of a 

diorite intrusion with brecciated metasediments is exposed. Both the diorite and the host 

sediments are altered and contain scapolite and albite, with igneous and breccia matrices now 

dominated by actinolite and abundant accessory titanite (Fig. 2). A second group of samples 

were taken from well preserved pillow basalts on the banks of the Torneälven River. Here basalts 

are altered to scapolite-albite-actinolite-bearing assemblages, cut by veins containing scapolite, 

actinolite, chlorite and magnetite (Fig. 2). 

2.1.2 IOCG-Scapolite altered Metabasic Rocks (IOCG-M) 

More intense scapolite alteration is developed around many of the ore deposits in the region, 

typically, but not exclusively, in metabasic protoliths (e.g. Frietsch et al., 1997; Martinsson, 

2004; Edfelt et al., 2005; Smith et al., 2007). Samples of scapolite from metabasic hosts in the 

immediate vicinity of ore deposits were taken from Pahtohavare (Martinsson, 1997; Lindblom et 

al., 1996) and Kallosalmi (Wägman and Ohlsson, 2000). Pahtohavare is a previously mined Cu-

(Au) deposit hosted in folded, greenschist-facies slates and metabasic rocks (Fig. 2). Ore is 

associated with albitisation and scapolitisation in both lithologies, commonly with overprinting 
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potassic alteration. Samples were taken from altered metabasic rocks in core, and from a 

metadolerite dyke exposed in the open pit. Kallosalmi is an unmined prospect in which strongly 

Na-altered metabasic rocks host carbonate-associated Cu mineralisation. Drill core samples were 

taken from altered metabasic rocks.  

2.1.3 IOCG scapolite rich alteration/Na skarn (IOCG-PS) 

Samples were collected from Pahtohavare and Kallosalmi (described above) where intensely 

scapolitised and albitised rocks with little relict texture directly host chalcopyrite mineralisation 

(Fig. 3). Similar mineralisation was sampled at Sarkivaara (Wägman and Ohlsson, 2000) where 

intense scapolite-albite alteration hosts chalcopyrite-molybdenite mineralisation. Samples from 

Gruvberget (Martinsson and Virkkunen, 2004) were taken from altered metavolcanic rock within 

2 m of the contact with a magnetite-hematite-apatite body, with overprinting Cu mineralisation. 

The alteration consists of the development of albite and scapolite with actinolite, overprinted by 

K-feldspar alteration (Fig. 2). The rock is also associated with abundant, large (>1cm) titanite 

crystals. Scapolite and quartz rarely occur directly together, as scapolite occurs as an alteration 

phase in the wall rock, and the quartz in veins. However, the scapolite alteration in the vicinity of 

ore deposits is directly associated with chalcopyrite mineralisation, as is quartz at Pahtohavare, 

Kallosalmi and Gruvberget. Some quartz veins cut scapolite alteration but scapolite, actinolite 

and quartz have also been observed to co-exist in the same assemblage. The formation of 

scapolite and quartz is therefore, interpreted to be related to the fluids responsible for 

mineralization in these deposits.    

3. Methods and analytical techniques 
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Analyses were carried out on scapolite in thin sections and mineral separates.  In other to assess 

the possibility of variable scapolite compositions in the bulk mineral separates, different grain 

size separates from single samples (100-125µm, 125-250µm, 250-500µm) were analysed for 17 

samples (Table 1).  

3.1 Electron probe micro-analysis (EPMA)  

Electron microprobe analyses of scapolite in thin sections were carried out using a Cameca SX50 

electron microprobe at the Natural History Museum, London. Beam conditions were set at 20Kv 

and 20nA with a spot size of 1mm. Individual elements were calibrated against natural and 

synthetic mineral standards, including halite for Cl, BaF2 for F, celestine for S, jadeite for Na, 

KBr for K, wollastonite for Ca and Si, olivine for Mg, corundum for Al, and pure metal for Fe. 

Count times were typically 10 s, but were 20 s for the halogens and Na. Background count times 

were half those on the element peak. The halogens and alkalis were always analysed first to 

avoid problems of mobility under the electron beam. The data were empirically corrected for 

peak overlaps using analyses of standards following the techniques outlined in Williams (1996). 

3.2 X-ray Fluorescence Microprobe  

Bromine analyses were carried out on an XRF Microprobe (XRFM) at the University of 

Saskatchewan, using the same instrument and analytical protocols described in Pan and Dong 

(2003). Briefly, the XRF microprobe consists of a 2.0 kW X-ray generator, a concave 

(Johansson) LiF (220) (R=250 mm) monochromator, a sampler holder attached to a petrographic 

microscope, and an energy-dispersion X-ray spectrometer. The X-ray generator is operated at a 

voltage of 45 kV and a current of 20 mA. The X-ray beam (0.1 x 0.5 mm) is focused from the 

LiF monochromator, and is collimated by a conical collimator of 0.2 x 0.5 mm in dimension. A 
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calibration curve for Br was first established from four international reference materials: LKSD–

1: 11 ppm Br, LKSD–4: 49 ppm Br, NBS1646: 117 ppm Br and MAG–1: 252 ppm Br 

(Govindaraju, 1994). The calibration curve was further evaluated by using the Br contents in a 

suite of Cl-rich minerals (i.e., chlorapatite, scapolite and sodalite) determined by instrumental 

neutron activation analysis (INAA; Pan and Dong, 2003). Scapolite grains of ~100 µm in 

diameter for X-ray microprobe analyses were carefully selected under a petrographic microscope 

to minimize mineral and fluid inclusions. The counting times for samples with less than 10 ppm 

Br, was increased from 10 to 45 minutes. The precision of the method is reflected in the relative 

standard deviation, which was less than 5% for Br concentrations over 10 ppm, and 10% for 

concentrations below 10 ppm. The calculated detection limit in the analysis of single mineral 

grains is ~1 ppm Br (Pan and Dong, 2003).  

3.3 Cl extraction by Pyrohydrolysis 

Rock samples containing scapolite were crushed and sieved to sizes from 100 to 250 µm. Then 

single scapolite grains were carefully separated by hand and weighed. Before pyrohydrolysis 

each sample was cleaned by gently heating the scapolite grains in a HNO3 solution (Gleeson 

2003). After that, the samples were rinsed with deionized water and dried in the oven overnight.   

A pyrohydrolysis apparatus was built at the University of Alberta in order to extract the Cl 

contained in scapolite separates (Fig. 4). The purpose of this technique is to remove the Cl 

present in the structure of a mineral by melting a small sample mass, we used between 100 and 

150 mg of sample separate. The volatiles released during the reaction were carried by a steam 

flow to a distillation tube obtaining an aqueous solution. The pyrohydrolysis set up used was 

modified from the one described by Bonifacie et al. (2007) in order to allow for the direct 

analysis of the Cl concentration in the recovered solution by ion chromatography (IC). The 
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objective was to avoid the use of a NaOH collecting solution, as further chemical treatment is 

required to neutralize the high pH of the Cl-bearing solution, potentially leading to 

contamination. The use of a boiling reservoir and a condensation tube in the present set-up, was 

modified from the pyrohydrolysis apparatus described in Barnes and Sharp (2006). The boiling 

reservoir substitutes for a nebulizer, which is used to control the flow of water vapor in other set-

ups (i.e. Whitehead and Thomas, 1985; Magenheim et al. 1994; Bonifacie et al. 2007).  

The sample was mixed with five parts V2O5 (Whitehead and Tomas, 1985), then the mixture was 

transferred to the reaction tube, which was placed in a position coincident with the central area of 

the heating element inside the furnace to ensure the homogeneous heating and melting of the 

sample. Deionized water was heated in the boiling water reservoir, a stream of water steam 

carried the volatiles from the furnace to the condensation tube where the solution containing Cl- 

from the mineral sample is recovered. The total duration of each extraction was 1 hour, including 

a pre-heating stage from 400 ºC to 1,200 °C of 15 minutes and a melting stage of 45 minutes at 

1,200 °C.  

Chlorine in scapolites was measured by EPMA in mineral grains and by IC in pyrohydrolysis 

solutions. Based on the Cl wt % obtained by microprobe analysis, the Cl yield after 

pyrohydrolysis was calculated (Table 1). Most of the pyrohydrolyzed samples were pure 

scapolite separates with the exception of sample RM01 (73% scapolite) and three Gruvberget 

samples (PN14, PN15 and PN16) (34% scapolite) with different grain sizes. The other minerals 

in these samples are included in Table 1. With the exception of the PN16 sample, the other three 

samples have a Cl yield of over 100% (112%, 121% and 142%). Errors induced during counting 

of the scapolite separates could have affected the final yield. Two PN21 samples, had very low 

yields (24 and 38 %) that were reproduced in several pyrohydrolysis runs. In this case, the source 
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of error is likely due to a lower percentage of the scapolite grains identified in the sample rather 

than the efficiency of the Cl extraction method. The efficiency of the pyrohydrolysis extraction 

was established by using a well characterized biotite sample. This biotite was used as internal 

standard and was run three times for comparison. The recovered solution was then analysed by 

IC obtaining Cl yields between 89 and 95% (Table 2). Two types of blanks were analysed to 

detect any Cl lost. After pyrohydrolysis, the reaction tubes were rinsed with deionized water and 

then analyzed in the IC. Another blank was taken between runs from the boiling reservoir to 

assess if any Cl had flowed back from the reaction tube. Chlorine was not detected in any of the 

blank runs.  

3.4 Ion chromatography 

Chloride and bromide concentrations in the pyrohydrolysis solutions were analysed at the 

University of Alberta in the Department of Earth and Atmospheric Sciences using a Dionex 

DX600 ion chromatograph with an AS-14A analytical column. A seven ion standard, blanks and 

an internal quality control standard were run along with the samples. Replicate analyses of 

standards and unknown were also carried out. The reported data have a calculated uncertainty of 

5%. The detection limits for Br and Cl were 0.005 ppm.  

3.5 Stable Cl isotopes 

The Cl extracted from scapolite samples by pyrohydrolysis was contained in an aqueous solution 

after distillation. The Cl- in this solution was precipitated as AgCl following the procedures of 

Eggenkamp (1994) and Magenheim et al. (1994). The solution was reacted with AgNO3 to 

produce AgCl. The AgCl precipitates were retained on 0.45 µm glass filters and dried overnight. 

The AgCl samples were then reacted under vacuum with CH3I at 80 °C for 48 hours to produce 
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CH3Cl, the analytical gas. The isotopic compositions were measured on a ThermoElectron MAT 

253 mass spectrometer at the University of Texas-Austin under continuous flow. Delta values are 

reported in standard per mil notation relative to SMOC (standard mean ocean chloride). The 

precision of the method is ±0.2 ‰ (1σ) based on the long-term reproducibility of three seawater 

standards and one internal serpentinite standard; the inclusion of the latter, demonstrated that the 

pyrohydrolysis extraction results in no additional uncertainty.    

4. Results 

4.1 Major- and trace-element geochemistry of scapolites 

4.1.1 Regional Na-Cl Metasomatism (RM)  

The Na-Cl metasomatism alteration type is represented by two samples from Nunasvaara and 

three samples from the Torneälven River outcrops. Sodium oxide is high in sample RM01 (11.99 

wt.%). Samples RM07 and RM05 have Na2O concentrations of 9.27 and 9.00 wt.%, respectively 

(Table 3 and Fig.5A). Overall, the Nunasvaara and Torneälven RM scapolites are characterized 

by relatively low CaO, intermediate to low K2O (0.23 to 0.5 wt.%; Table 3, Fig.5A and B) and 

low to intermediate SO4 and Cl contents, (Fig. 6A). Sample RM07 has the highest Fe 

concentrations of all the samples analysed (Fig. 5B), but its SO4-CO3-Cl composition is 

comparable with all the other Torneälven samples (Fig. 6A). Scapolites related to regional 

alteration have similar Cl and CO3 compositions to the proximal metabasites (IOCG-M), but 

have higher SO4 contents (Fig. 6A). Scapolites from Nunasvaara have the highest Cl contents in 

the samples analyzed, ~3.50 wt.% by both XRFM and EPMA (Table 4). In the samples from 

Nunasvaara, Br was not analyzed.  
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At Torneälven River the scapolites have similar Cl concentrations (between 2.71 and 2.74 wt.% 

by EPMA, Table 4). In the Torneälven River samples, Br concentrations vary from 76 to 88 

ppm. The Torneälven River samples have similar Cl/Br molar ratios and Br concentrations (Fig. 

7). RM scapolites have Cl/Br molar ratios that range from 639 to 770 (Fig. 7). 

4.1.2 IOCG-Scapolite altered Metabasic Rocks (IOCG-M) 

This alteration type is represented by three samples from Pahtohavare. Sodium oxide 

concentrations in MB02 and MB11 are similar, 9.36 wt.% (Table 3). The IOCG Metabasic 

scapolites (IOCG-M) have intermediate CaO concentrations (8.53 to 8.83 wt.%) (Fig. 5A). The 

IOCG-M scapolites also have high K2O concentrations, but data were only collected on two 

samples (Fig. 5B). IOCG-M scapolites also have intermediate Cl concentrations (2.80 wt.%). 

Samples MB02 and MB11 have low SO3 contents characteristic of the Pahtohavare scapolites 

0.03 and 0.06 wt.%, respectively. Scapolites associated with proximal metabasites (IOCG-M) 

have low CO3 contents, which appears to be characteristic of this alteration type (Fig. 6A). 

Chlorine concentrations are between 2.50 and 2.80 wt.% in samples MB03 and MB10, 

respectively (Table 4). Sample MB02 (PAH88217 125-250 mm) contains some of the lowest Br 

concentrations (36 ppm) measured in this set of samples. The IOCG-M samples have a wide 

range in Cl/Br molar ratios (Fig. 7).  

4.1.3 IOCG-Proximal Scapolite-rich alteration/Na-Skarn (IOCG-PS) 

The samples of this alteration type come from four deposits: three from Kallosalmi, two from 

Pahtohavare, four from Gruvberget and one from Sarkivaara.  Sodium oxide was only measured 

in six out of the ten samples from IOCG-PS alteration and ranges from 6.23 wt.% (PN19) to 

10.45 wt.% (PN17) (Table 3). The sample with the highest Ca relative to Cl and Na is PN19 (Fig 
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5A), which belongs to the Sarkivaara deposit. IOCG-PS scapolites vary substantially in Cl and 

Ca contents. As for the Fe-K-S relationship, the IOCG-PS scapolites from Sarkivaara have the 

the highest SO3 (1.05 wt.%), low Cl concentrations (1.00 wt.%) and some of the lowest K2O 

concentrations (0.55 wt.%) represented by sample PN19 (Fig. 5B). The Gruvberget scapolites 

have intermediate to high SO4 concentrations with low CO3. Pahtohavare and Kallosalmi 

scapolites are characterized by low SO4. Within the IOCG-PS scapolites, the Kallosalmi and the 

Pahtohavare samples have the highest Cl and CO3 concentrations, respectively (Fig. 6A). 

Scapolites associated with proximal ore are divided in two compositional groups, one 

characterized by high Cl contents and the other with higher SO4 compositions (Fig. 6A).  

All IOCG-PS samples have a range of Cl compositions from 1.00 to 3.33 wt.% (Table 3). 

Chlorine concentrations in Kallosalmi (PN09, PN20 and PN21) and Pahtohavare (PN17 and 

PN18) samples are the same (3.30 ppm via XRFM; Table 4). Electron microprobe analysis 

yielded a higher value for sample PN09 (3.61 wt.%), but lower for sample PN21 (3.09 wt.%). 

Gruvberget and Sarkivaara samples have the lowest Cl concentrations by both XRFM and 

EPMA. Chlorine in sample PN19 is particularly low, at 1.00 wt.% by XRFM and 1.32 wt.% by 

EPMA.  

The most remarkable characteristic of the of IOCG-PS scapolites is the high halogen contents 

detected in two samples. Sample PN19 has the lowest Cl/Br molar ratios of the samples analyzed 

(271), contrasting with sample PN14 that has the highest (2363), which is the highest amongst all 

scapolites analyzed in this study and published elsewhere (e.g. Pan and Dong, 2003; Hammerli et 

al. 2013, 2014) (Table 4). 

4.2 Stable Cl isotope Compositions 
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A scapolite from Nunasvaara belonging to the RM alteration group (RM01) yielded a δ
37Cl value 

of -0.1‰ (Table 4). Torneälven River samples have δ
37Cl values ranging from 0.0 to +0.3‰. 

Two scapolite samples from IOCG-M alteration at Pahtohavare yielded values of +0.2‰. Ten 

scapolite samples from IOCG-PS alteration had δ
37Cl values ranging from -0.1‰ to +1.0‰; the 

lowest values are from PN15 and PN18, and the highest from PN17. Scapolite samples from 

Kallosalmi tend to be slightly enriched in 37Cl (+0.4‰ to +0.6‰) compared to Gruvberget 

scapolites (-0.1‰ to +0.3‰). The Sarkivaara sample has the second highest δ
37Cl value of the 

IOCG-PS alteration scapolites (+0.9‰). 

5. Discussion 

5.1 Chemical characteristics of scapolites 

The chemical composition of the scapolites analysed indicate that they are all variations of 

marialite with 1.0 to 3.6 wt % Cl, and 4.6 to 13.6 wt % CaO (Table 3). These ranges are 

comparable with the compositions of marialites from the Tienshan Fe Skarn deposit, China (Pan 

and Dong, 2003), the Marcona Magnetite deposit, Peru (Chen et al., 2010), and the Manto Verde 

IOCG, Chile (Benavides et al., 2007).  

The differences in major-element chemistry in combination with the halogen contents of these 

marialites can provide some constraints on their origin. In Fig. 7, the three groups of scapolites 

(RM, IOCG-M and IOCG-PS) overlap in the middle of the general trend, where three RM 

samples are located. The IOCG-PS scapolites encompass almost the entire range of chemical 

compositions found in the other two mineralisation types; however, these samples are 

characterized by higher mass percentages of Ca and K. Although the IOCG-PS scapolites do 

have higher Ca contents, Cl and Na still are the dominant anion and cation. 
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The variation in S content between alteration types (Fig. 6A and 6B) cannot be a result of 

progressive removal of S from the fluid in a rock buffered system, nor is S content inherited from 

precursor phases, so it must reflect variations in fluid composition. The intra-sample variation 

may be a result of rock buffering of fluid chemistry, but this is not reflected in the Cl-content of 

the scapolites.  

The anion contents of the group of samples investigated (Fig. 6A), represent two compositional 

trends departing from high Cl concentrations: the Cl-SO4 trend, defined by the Pahtohavare and 

Sarkivaara scapolites, and the Cl-CO3 trend represented by samples from Kallosalmi and 

Pahtohavare. The scapolites from Nunasvaara follow the Cl-SO4 trend, whereas scapolites from 

Torneälven are more related to the Cl-CO3 trend.   Overall, the range of compositions of the 

IOCG related alteration encompasses that of the regional metasomatic scapolites. Based on the 

age of the regional alteration at Nunasvaara (1903± 8 Ma) (Smith et al., 2009), it is possible that 

components from the RM scapolites may have been assimilated or recycled during the intrusion 

of the magmatic systems that are contemporaneous with IOCG mineralisation, dated at 1.88 to 

1.85 Ga (Billström and Martinsson, 2000). This possibility will be explored in the next section in 

light of the halogen contents of these scapolites. 

5.2 Origin of halogens in the Norrbotten Scapolites 

We have established from EPMA and XRFM data that overall the Cl composition of the 

scapolite separates has a range (1.0 to 3.6 wt.%) but this range is much smaller between the 

different grain size fractions of a single sample (see Table 4). Some separates from the same 

sample have similar Br concentrations, e.g. the Torneälven river samples and some samples at 

Kallosalmi and Gruvberget (Table 4) but some of the IOCG-M and IOCG-PS  have a wider 

range, (36 to 143 ppm) and (20 to 134 ppm) respectively. This results in Cl/Br molar ratios that 
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vary within a single sample in some cases. There is no evidence from the petrographic study or 

the EPMA data for zoning in single crystals, and thus, we suggest that the variation in Cl/Br 

molar ratios between splits with different grain sizes represents different scapolite generations 

within the same sample. In order to assess this possibility future studies should consider the use 

of micro-analysis of Br on scapolite separates, such as secondary ion mass spectrometry (SIMS).  

It has been suggested that the regional scapolites of Norrbotten were formed by low- to medium-

grade regional metamorphism of evaporite-bearing assemblages (Frietsch et al., 1997). 

Experiments with scapolite solid solutions at 750ºC and 4 kbar (Orville, 1975) found that the 

composition albite + halite favors the formation of marialite (Na4Al 3Si9O24Cl), which suggests 

that the occurrence of marialite-rich scapolite is correlated with high NaCl activities. As a result, 

at these pressure and temperature conditions, Ellis (1978) suggested that regional Cl-rich 

scapolite is formed from the metamorphism of evaporite beds. In addition, this interpretation has 

been confirmed by more recent studies that have also suggested that the reaction of plagioclase 

with halite and calcite during regional metamorphism can generate scapolite (Mora and Valley, 

1989; Frietsch et al; 1997). However, the redistribution of Na, Cl and other components during 

regional metamorphism and circulation of hydrothermal fluids associated with magmatic 

intrusions has also been recognized as an important process in the Norrbotten region (Frietsch et 

al., 1997 and references therein). Our data indicates that evaporitic and magmatic fluids can be 

identified in the halogen and isotopic signatures of the Norrbotten scapolites.  

Based on the halogen contents of IOCG-PS scapolites (Fig. 7), two end members are observed, 

one identified in the Sarkivaara scapolite with the lowest Cl/Br molar ratio (271) representing a 

residual evaporitic brine, and the other represented by the Gruvberget scapolites with the highest 

Cl/Br molar ratios (942 to 2,363) suggesting the influence of magmatic fluids. The scapolites 
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from these two deposits are also characterized by relatively high to intermediate SO4 and high to 

intermediate CO3 contents (Fig. 6A). The halogen compositions of IOCG-M scapolites fall  

between these two end members, but the samples with low Cl/Br molar ratios have the highest 

Br contents detected (Table 4). IOCG-M scapolites at Pahtohavare are characterized by low SO4 

and high Cl contents, with a range of low to intermediate CO3 concentrations (Fig. 6A). RM 

scapolites from the Torneälven River have low Cl/Br molar ratios (639 to 770) bracketing 

seawater (650). Although Br was not analysed in samples from Nunasvaara their SO4-Cl-CO3 

compositions are comparable with the Kallosami, Gruvberget and Pahtohavare scapolites.  

Pan and Dong (2003), reported a marialite-fluid halogen distribution coefficient (KD) of 

0.97±0.08. A KD value close to the unity indicates that the Cl/Br molar ratio of the marialite 

represents the Cl/Br molar ratio of the hydrothermal fluid. Based on this, we identify the salinity 

sources of the Norrbotten scapolites.  

Following Kesler et al., (1995) formation waters with high Cl/Br and Na/Br ratios (greater than 

seawater) have been interpreted to contain additional Cl derived from halite dissolution in upper 

crustal environments. High Cl/Br molar ratios are also typical of magmatic fluids (e.g. Sanjuan et 

al., 1990, Böhlke and Irwin, 1992; Gleeson and Turner, 2007; Kendrick et al., 2012). A 

compilation of Cl/Br molar ratios of geothermal fluids associated with magmatic sources suggest 

that values between 600 and 2000 are indicative of fluids of magmatic origin (Böhlke and Irwin, 

1992). More recently, lower Cl/Br molar ratios were measured in fluid inclusion leachates from 

the Bingham Canyon and the Butte porphyry copper deposits (Nahnybida et al., 2009) extending 

the magmatic Cl/Br molar value range down to 271. Formation waters with high Br contents and 

low Cl/Br ratios (less than seawater) are considered to have attained their salinity from a 

seawater which has undergone evaporation, resulting in the precipitation of halite, leaving the 
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residual brine enriched in Br (Walter et al., 1990; Kesler et al., 1995). Based on the Cl/Br and 

Na/Br molar ratios, both evaporated seawater and halite dissolution and/or magmatic sources 

contribute to the Cl concentration of scapolites from the three types of alteration (RM, IOCG-M 

and IOCG-PS). However, evaporative residual brines are dominant at Sarkivaara and are also 

present in some Pahtohavare scapolites (Frietsch et al., 1997). This contrasts with the halogen 

sources of the regional-scale alteration scapolites from the Bamble Sector, SE Norway, where 

both magmatic sources and remobilization of meta-evaporites were ruled out on the basis of 

Br/Cl, I/Cl ratios and stable Cl isotopes, suggesting a marine pore fluid origin (Kusebauch et al. 

2015). 

As mentioned before, the regional Na-alteration has been dated at 1903 ± 8 Ma (Smith et al., 

2009), and predates early Cu-mineralisation, dated from 1.88 to 1.85 Ga (Billström and 

Martinsson, 2000).  The RM scapolites, although from one locality, have a restricted range in 

compositions unlike the IOCG-related scapolites, which have a wide range of chemical 

compositions. The early and late Cu-mineralisations in Norrbotten are associated with magmatic 

intrusions and magmatic-hydrothermal events (Gleeson and Smith 2009). The possible 

interaction with magmatic-hydrothermal fluids derived from mafic to felsic magmas (Bergman et 

al. 2001; Kathol and Martinsson, 1999; Romer et al., 1992) in combination with water-rock 

interaction with a high diversity of protoliths may explain the wide range of chemical 

compositions found in IOCG scapolites (Figs. 5.5A and 5.5B). Magmatic hydrothermal systems 

can produce a wide range of Cl/Br molar ratios. In the case of the Bingham Canyon porphyry 

copper deposit, associated with a mantle-like halogen source, Cl/Br molar ratios range from 535 

to 952 (Kendrick et al., 2001). These suggest that pulses of hydrothermal fluid exsolved from a 

single magmatic source can have different Cl/Br molar ratios. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

22 

 

Two scapolite separates of sample PAH88217, MB02 and MB03, were available for the present 

study with Cl/Br molar ratios of 1738 and 393, respectively (Table 4). Cl stable isotope analysis 

was not performed on sample MB03 as there was not enough mineral separate. However, sample 

MB02, the scapolite separate with the lower Cl/Br molar ratio (1738), reflects a Br depleted 

source. This characteristic was useful for comparison with the fluid inclusion data in Gleeson 

and Smith (2009) for sample PAH88217, which was reported with a Cl/Br molar ratio of 5000, 

also depleted in Br. The isotopic compositions of these two Br depleted samples (mineral and 

fluid) are discussed in the next section.  

5.3 Isotopic fractionation between mineralising fluids and scapolites 

The distribution of δ37Cl values vs Cl/Br molar ratios (Fig. 8) shows that some scapolites from 

all three alteration types plot within the evaporite field. However, the data from most of the 

scapolite samples analysed in the present study plot outside both the magmatic and evaporative 

brine fields. Ten of these scapolites have Cl/Br molar ratios higher than seawater (650), 

potentially derived from halite dissolution or magmatic hydrothermal systems and do not support 

a pristine magmatic origin for the scapolite-forming fluid (Fig. 8). However, to assess the 

original δ37Cl values in the hydrothermal fluid, it is important to have an understanding of the 

chlorine isotope fractionation between the fluid and the scapolite.  

A previous study on fluid inclusion leachates obtained a range of predominantly negative δ
37Cl 

values for fluid inclusions in the Norrbotten area (Gleeson and Smith, 2009). These values range 

from -5.6 to -1.3‰ in Greenstone- and Porphyry-hosted Cu-Au deposits and between -2.4 to 

+0.5‰ for Cu-Au deposits in the Nautanen Deformation Zone (NDZ). Overall, the majority of 

the samples had δ
37Cl values ranging from -3.5 to 0‰. These authors suggested that the lowest 

values were produced by fractionation processes between the hydrothermal fluids and minerals, 
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like scapolite, in the alteration assemblages. This means that the scapolite would be enriched in 

37Cl compared to the co-existing fluid. The analysed fluid inclusions were from quartz veins 

spatially related to scapolite-bearing alteration (Gleeson and Smith, 2009). Scapolite hosted fluid 

inclusions were not identified in our study.  It is unknown if isotopic equilibrium was attained 

between the two phases; however, the presence of a scapolite-quartz-actinolite assemblage in 

sample PAH88217 (Fig. 9) suggests these phases were in textural equilibrium. The present study 

attempts to quantify the Cl isotope fractionation factor between scapolite and fluid as we have 

analysed scapolite from the alteration selvage of a quartz vein sample with a known fluid 

inclusion composition (PAH 88217; Table 1).  

If equilibrium was attained in the formation of the hydrothermal scapolite, Rayleigh fractionation 

calculations can model the evolution of fluid δ
37Cl values measured in fluid inclusions from 

IOCG deposits at Norrbotten (Gleeson and Smith, 2009). More recently, fractionation 

calculations have been used to model δ
37Cl values measured in scapolite and amphibole 

alteration minerals associated with a shear zone in the Bamble sector, SE Norway (Kusebauch et 

al. 2015). In Kusebauch et al. (2015), the initial and remaining δ37Cl values of the hydrothermal 

fluid are calculated assuming theoretical fractionation factors and measured δ
37Cl values in bulk-

rock, amphibole and scapolite. This work concludes that the observed decrease in δ
37Cl values in 

the bulk-rock with increasing distance to a shear zone can be explained by a Rayleigh 

fractionation or a combination of Rayleigh and kinetic fractionation. Unlike this study, in the 

present work, the δ37Cl value of both fluid and scapolite are available for one sample 

(PAH88217), which allows for a discussion on the potential isotopic exchange between the 

scapolite and the hydrothermal fluid. This comparison allows for a discussion on the potential 

isotopic exchange scapolite-hydrothermal fluid. 
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The fluid inclusion leachate and the scapolite pyrohydrolysis solution for sample PAH88217 

were measured in different laboratories at different times. However, a comparison between these 

two phases is plausible given that the fluid inclusion leachates, the pyrohydrolysis solutions and 

SMOC all have similar matrixes. Also, the Cl in all these solutions was precipitated as AgCl and 

then converted to CH3Cl gas following the same methods in both laboratories. Therefore, a 

significant matrix effect during the IRMS analysis is unlikely. In addition, it has been 

demonstrated that SMOC can be used as a reference standard (Godon et al., 2004) and in this 

case, SMOC was used to anchor the isotopic compositions of the hydrothermal fluid and the 

scapolite in both laboratories.   

Although the salinity sources of the Norrbotten scapolites are diverse, as explained above, fluid 

inclusion analysis of sample PAH88217 suggest a magmatic origin (Gleeson and Smith, 2009 

and references there in). In sample PAH88217, the fluid inclusions yielded a δ37Cl value of -

1.7‰ (Gleeson and Smith, 2009) and the scapolite (sample MB02, this study) yielded a value of 

+0.2‰ (Table 4). From these two values it is possible to calculate a scapolite fluid Cl -isotope 

fractionation factor (∆37Clscp–fluid) of +1.9‰ at temperatures above 500 °C, as proposed by 

Gleeson and Smith (2009).  Although the two minerals are in textural equilibrium (Fig. 10), we 

are making the assumption that the analyzed fluid in the fluid inclusions was in isotopic 

equilibrium with the scapolite.  To assess the validity of this fractionation factor, we have used a 

Rayleigh fractionation model to determine if the low δ37Cl values measured by Gleeson and 

Smith (2009) can be reproduced.  

The Cl isotope co-evolution of fluid and scapolite can be described by a Rayleigh fractionation 

model (Fig. 10) using an equation adapted from Faure (1986): 

δ
37Clfluid = (1000+ δ37Clo-fluid)*F

(α-1) -1000   (1) 
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where δ37Clo-fluid and δ37Clfluid are the initial and final isotopic compositions of the hydrothermal 

fluid, respectively; F is the fraction of Cl left in the hydrothermal fluid after isotope fractionation 

between the scapolite and the hydrothermal fluid, and α is the observed isotope fractionation 

factor at a given temperature. Work by Sharp et al. (2007; 2013) suggests a δ
37Cl value of the 

upper mantle of -1.0 to +0.4‰, averaging -0.3‰. Although others have suggested a lower value 

(≤ -1.6‰) (Bonifacie et al., 2008), we use a value of -0.3‰ based on the arguments outlined in 

Sharp et al. (2013). The Rayleigh distillation model (Fig. 10) uses the average mantle values of -

0.3‰ for the initial composition of the fluid (δ37Clo-fluid). As depicted in Fig. 10, we obtained 

several curves representing the isotope fractionation and the progressive decrease of Cl in the 

hydrothermal fluid as consequence of Cl uptake by the mineral phase. For comparison, the 

isotope fractionation coefficients used in our study and those reported in Kusebauch et al. (2015) 

for the Bamble scapolites were modeled. Although the isotope fractionation coefficients 

considered by Kusebauch et al. (2015) reproduced upper mantle values by using the published 

values for the mantle as the isotopic composition of the initial fluid, the Rayleigh fractionation 

model applying the empirical +1.9‰ isotope fractionation value, is the only one that reproduces 

the lowest fluid inclusion δ37Cl values measured in the set of samples reported in Gleeson and 

Smith (2009).  

This large empirical fractionation factor between scapolite and fluid is not supported by the 

predictions for monovalent chlorides proposed by Schauble et al. (2003). According to these 

theoretical calculations, in the case of the scapolites, small isotope fractionations should be 

expected between a brine with high NaCl activity and scapolite at equilibrium, between 0.37 and 

0.68‰ at temperatures from 300 to 600 °C. Theoretical predictions by Schauble et al. (2003) 

were confirmed by Kusebauch et al. (2015) in scapolites from the Bamble Sector, SE Norway. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

26 

 

However, the fractionation coefficients used by Kusebauch et al. (2015) (1.0005, 1.0007 and 

1.0010) to model the Rayleigh fractionation of the hydrothermal fluid at Bamble, cannot produce 

the low δ37Cl values measured in the fluid inclusions (Fig. 10).  

There are some differences between the scapolites from Norrbotten and the Bamble Sector. For 

instance, the Norrbotten scapolites are marialites, whereas the Bamble scapolites vary from 

meionite to marialite. This compositional difference may reflect different sources of salinity and 

water-rock interaction histories. According to Kusebauch et al. (2015), the Cl identified in the 

Bamble scapolites has a marine pore fluid origin. This contrasts with the Norrbotten scapolites, 

which contain Cl from diverse sources (Gleeson and Smith, 2009; this study).  Also, at the 

Pahtohavare deposit, other Cl minerals such as amphibole and biotite have low Cl contents, well 

below 1 wt% (Alain, 2014), which contrasts with higher Cl contents reported in these minerals 

by Kusebauch et al. (2015) for the Bamble Sector. Furthermore, in our study, the scapolite 

formation is associated with CaCl2-rich and CO2-bearing fluids (Smith et al. 2009), versus the 

high Na+, Cl- and CO2 fluids identified in the Bamble scapolites (Kusebauch et al. 2015).  

Unfortunately, the theoretical isotope fractionation estimates by Schauble et al. (2003) do not 

include CaCl2-rich brines. Nonetheless, assuming equilibrium, the observed isotope fractionation 

(+1.9‰) indicates that 37Cl was preferentially accommodated in the A site of the scapolite 

structure. This suggests that the stable Cl isotope partitioning between the CaCl2-rich brine and 

the scapolite may be different to the estimates for NaCl brines in equilibrium with silicate 

minerals considered by Schauble et al. (2003).   

It is possible, however, that the relatively high empirical fractionation factor obtained here 

indicates that fluid and mineral were not in isotopic equilibrium and therefore the values from 

the Norrbotten scapolites may reflect a kinetic isotope fractionation process. However, isotopic 
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equilibrium is supported by data from other samples in this study.  For example, high δ
37Cl 

values were found in scapolites from two locations, Pahtohavare (+1.0‰) and Sarkivaara 

(+0.9‰) (Table 4). The Pahtohavare and Sarkivaara samples have Cl/Br molar ratios of 554 and 

271, respectively, which are consistent with typical Cl/Br molar ratios for evaporitic brines. If we 

use the inferred fractionation factor (+1.9‰) the calculated δ37Cl value for the hydrothermal 

fluid is around -1.0‰, consistent with a residual brine (Fig. 8).  

If the scapolite investigated in the present study and the hydrothermal fluid did not reach isotopic 

equilibrium, the low δ37Cl values identified in fluid inclusions by Gleeson and Smith (2009) 

must be explained by some other process. These may include water-rock interaction, kinetic 

isotope fractionation or an unknown source of Cl. None of these options can be assessed in light 

of the lack of experimental data that quantify the behavior of the stable Cl isotopes during water-

rock interaction. Future work should focus on fractionation experiments. However, at the present 

time the most parsimonious interpretation is that low δ37Cl values seen in fluid inclusions formed 

as a result of the preferential uptake of 37Cl into a mineral reservoir represented by scapolite, and 

possible other silicate minerals. 

6. Conclusions 

The scapolites investigated from the Norrbotten County have a predominantly marialitic 

composition. Some chemical variations are present, particularly in samples from IOCG-PS 

alteration, which are more Ca and S enriched and Na and Cl depleted than the other two 

alteration types. In contrast, IOCG-M scapolites are more Cl and Fe rich, but depleted in Ca. The 

RM scapolites have intermediate compositions. In addition, relative SO4-Cl-CO3 compositions 

and temporal correlations suggest that RM scapolites may have been incorporated or recycled 

into the later IOCG alteration. This is also confirmed by the halogen compositions of Kallosalmi, 
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Gruvberget, Pahtohavare, Nunasvaara and Torneälven scapolites. Some scapolite samples from 

Pahtohavare and the sample from the Sarkivaara deposit contain lower than seawater Cl/Br 

molar ratios (554 and 271), indicating the presence of evaporative residual brines. All the other 

scapolites have halogen signatures related to seawater, magmatic and evaporitic sources (halite 

and residual brines). 

Measured δ37Cl values in fluid inclusions (Gleeson and Smith, 2009) and spatially related 

scapolite in one of the samples allowed the calculation of an empirical isotope fractionation of 

+1.9‰ between the mineral and the fluid. This value contradicts predictions for isotope 

fractionation between a silicate mineral such as scapolite and a monovalent hydrothermal fluid 

with high NaCl activities. However, using a Rayleigh fractionation model starting with upper 

mantle values, we reproduced the lowest δ
37Cl values reported by Gleeson and Smith (2009) in 

fluid inclusions from deposits of the Norrbotten County. Conversely, if the scapolite investigated 

in the present study and the hydrothermal fluid did not reach isotopic equilibrium, the low δ
37Cl 

values identified in fluid inclusions by Gleeson and Smith (2009) must be explained by some 

other process, which may include water-rock interaction, kinetic isotope fractionation or an 

unknown source depleted in 37Cl. Our results suggest that more experimental data on 

fractionation factors for the scapolite-hydrothermal brine system are needed to test the theoretical 

predictions proposed by Schauble et al. (2003).   

The complex geologic history of the Norrbotten district is reflected in the chemical and isotopic 

composition of its mineral alteration. Owing to the persistence of regional metamorphism and the 

recurrence of magmatic episodes, the hydrothermal fluids contain both recycled and new 

components that formed the proximal scapolites. Although halogen compositions of IOCG 

alteration appear more representative of the original hydrothermal fluids, more research has to be 
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done to better understand the evolution of the Cl isotopes in RM scapolites, and the extent of the 

Cl isotopic fractionation at high temperatures between hydrothermal fluids and Cl-bearing 

minerals. 
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Fig. 1. Location of the Norrbotten district, North Sweden. Geology from Bergman et al. (2001). 

Fig. 2. Field context of scapolitisation at Norrbotten. (A) Altered scapolite and greenschist facies 

metabasites at Torneälven River showing, scapolite veins with actinolite selvedges cutting the 

outcrop (RM). (B) Well preserved greenschist facies pillow breccia at Torneälven River. The 

matrix is intensely scapolite-albite altered. Note the pillow breccias and clasts also pervasively 

altered with actinolite on margins (RM). (C) Scapolite-altered diorite at Nunasvaara (RM). (D) 

Scapolite-albite altered metasediment in breccia. Note sedimentary laminations still preserved. 

Actinolite matrix (RM). (E) Scapolite alteration in greenschist facies of dolerite dyke rock at 

Pahtohavare (IOCG-M). (F) Magnetite-actinolite-calcite vein cutting intensely Na-altered 

metavolcanic rock at Gruvberget (IOCG-PS). 

Fig. 3. Representative textures in scapolite. (A) 04Torn1 – Scapolite in greenschist facies pillow 

basalt (RM). (B) 04Torn1 – Scapolite-actinolite-chlorite vein in metabasalt. (C) N3.4D - 

Scapolite replacing plagioclase in meta-diorite (RM). (D) PAH88097 33.95m – Scapolite-
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actinolite-biotite alteration of dolerite dyke (IOCG-M). (E) PAH88093 19.35m – Scapolite 

metasomatite associated with chalcopyrite mineralisation (IOCG-PS). (F) SAR1 – Scapolite 

metasomatite (‘Na-skarn’) associated with chalcopyrite and molybdenite mineralisation (IOCG-

PS). Act- actinolite; Scp – Scapolite; Ttn – Titanite; Plg – Plagioclase;  Mgt – Magnetite; Chl – 

Chlorite; Bt – Biotite; Py – Pyrite; Cpy – Chalcopyrite.    

Fig. 4. Schematic diagram of the pyrohydrolysis apparatus used to extract Cl from scapolites. 

Fig. 5. Distribution of major ions in scapolites. A) Cl vs. Ca/(Na+K+Ca) (a.p.f.u.).  B) Fe-S-K. 

Regional Na-Cl metasomatism (RM) alteration, IOCG-Scapolite altered metabasites (IOCG-M) 

and IOCG-Proximal Scapolite-rich alteration/Na-Skarn (IOCG-PS). 

Fig. 6. A. Ternary diagram SO4-Cl-CO3. Relative anion contents of scapolites in atomic 

proportions from formulae calculated assuming 12 (Si, Al). Carbonate was calculated by 

difference assuming a full anion site occupancy. B. Ternary diagram SO4-Cl-CO3 showing 

individual analysis in scapolite grains. IOCG deposits: IOCG-PS and IOCG-M. Fields are made 

of individual EPMA points (Table 3). 

Fig. 7. Halogen compositions: Cl/Br molar ratios vs Br concentrations. Regional Na-Cl 

Metasomatism alteration (RM), IOCG-scapolite altered metabasites (IOCG-M) and IOCG-

proximal scapolite-rich alteration/Na-Skarn (IOCG-PS). Fluid inclusion data from Gleeson and 

Smith (2009). MSW: modern seawater. 

Fig. 8. δ37Cl values vs. Cl/Br molar ratios of scapolites. Data includes regional Na-Cl 

metasomatism (RM) alteration, IOCG-Scapolite altered metabasites (IOCG-M) and IOCG-

Proximal Scapolite-rich alteration/Na-Skarn (IOCG-PS) samples. Cl/Br molar ratios and δ
37Cl 

values for magmatic sources from Jambon et al., (1995); Johnson et al., (2000); Sharp et al., 
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(2007), Nahnybida et al., (2009) and Gleeson and Smith (2009). Evaporite values from Eastoe et 

al. (2007). Halite Cl/Br molar ratios from Eggenkamp et al., (1995), Eastoe et al. (1999), Eastoe 

and Peryt, (1999), Peryt et al., (2005) and Eastoe et al. (2007). 

Fig. 9. (Top) PAH88217 18.20m – Scapolite metabasite, Pahtohavare (IOCG-M). (Bottom) 

PAH88097 33.95m – Scapolite-actinolite-quartz-biotite alteration of dolerite dyke (IOCG-M).  

Fig. 10. Rayleigh fractionation curves. Evolution of the fluid using the equation: 

δ
37Clfluid=(1000+δ37Clo-fluid)*F

(α-1) -1000 (adapted from Faure, 1986). Where, δ
37Clo-fluid and 

δ
37Clfluid are the initial and final isotopic compositions of the hydrothermal fluid, respectively; F 

is the fraction of Cl left in the hydrothermal fluid after isotope fractionation between the 

scapolite and the hydrothermal fluid, and α is the observed isotope fractionation factor at a given 

temperature. Using this equation starting with an initial upper mantle δ37Cl value of -0.3‰ 

(Sharp et al. 2013), hydrothermal fluid values identified by Gleeson and Smith (2009) are 

reproduced. 

Table 1. Summary of pyrohydrolysis results. Mineral composition of sample separates, size 

fractions, scapolite grains, Cl content of each sample and description of the pyrohydrolysis 

solution: volume recovered, Cl concentration and yield. 

Table 2. Efficiency of the pyrohydrolysis method using the internal biotite standard. 

Table 3. Average major oxide compositions by microprobe in scapolite samples. Formula 

calculations assuming 12 (Al, Si), carbonate calculated by difference assuming a full anion site 

occupancy. 

Table 4. Scapolite analysis results. Cl, Br and Na composition of scapolite samples by 

microprobe and XRFM analysis, and stable Cl isotopes.  
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Tab
le 1 
                    
ID Sample Minerals by SEM Mineraliza

tion 
Sample Scapol

ite 
Cl in  Pyrohydrolysis 

size 
fraction grains 

Scapol
ite 

Soluti
on Cl  

Yie
ld 

        (µm) % (mg) (mL) (mg
) 

% 

RM
01 03NUN29  Scp, Alb and Ksp RM 125-250 73 3.18 113 

3.8
4 

12
1 

RM
13 

04TORN1vei
nwr  Scp  RM 100-125 100 2.45 100 

1.8
0 73 

RM
07 

04 TORN 1 
vein Scp  RM 250-500 100 3.90 134 

2.8
0 72 

RM
08 

04 TORN 1 
vein Scp  RM 125-250 100 3.98 130 

2.8
0 70 

RM
05 04 TORN 2  Scp  RM 125-250 100 4.00 123 

3.9
7 99 

MB
02 PAH 88217 Scp  IOCG-M 125-250 100 4.84 118 

4.5
0 93 

MB
10 03PAH3  Scp  IOCG-M 125-250 100 3.42 90 

2.8
8 84 

PN
09 

KAL 90107 
56.38m  Scp  IOCG-PS 125-250 100 4.29 161 

3.8
6 90 

PN
21 

KAL 90106 
118.4m  Scp  IOCG-PS 100-125 100 4.82 124 

1.1
6 24 

PN
20 KAL 90106 Scp  IOCG-PS 125-250 100 4.95 126 

1.8
7 38 

PN
17 PAH 88093 Scp  IOCG-PS 100-125 100 5.02 103 

4.1
4 83 

PN
18 PAH 88093 Scp  IOCG-PS 125-250 100 3.76 100 

2.9
3 78 

PN
16 G1-1 

(Alb+An), Qz, Scp, 
Ksp, Cal IOCG-PS 100-125 34 1.14 108 

1.0
2 90 

PN
14 G1-1 

(Alb+An), Qz, Scp, 
Ksp, Cal IOCG-PS 250-500 34 1.05 100 

1.4
9 

14
2 

PN
15 G1-1 

(Alb+An), Qz, Scp, 
Ksp, Cal IOCG-PS 125-250 34 1.12 107 

1.2
5 

11
2 

PN
06 G4-1 Scp  IOCG-PS 125-250 100 3.38 100 

2.6
3 78 

PN
19 SAR1 Scp  IOCG-PS 125-250 100 2.26 111 

2.0
5 91 

Scp: scapolite, Alb: albite, Ksp: potassium feldspar, An: anorthite, Qz: quartz, Cal: calcite. RM: Regional 
Alteration Na-Cl Metasomatism, IOCG-M: IOCG-Sc altered Metabasic Rocks, IOCG-PS: IOCG-Proximal 
sc-rich alt/Na Skarn. 
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Table 2 

Sample Cstd  
(ppm) 

Mass Measured 
(g) 

Cl expect 
(mg) 

Cl by IC 
(ppm) 

Vol Recov 
(mL) 

Cl Recov 
(mg) 

Yield % 

Bt1 1900 0.1144 0.2174 1.56 124 0.1934 89 
Bt2 1900 0.1009 0.1917 1.49 118 0.1758 92 
Bt3 1900 0.1073 0.2039 1.68 115 0.1932 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Sample/an
alyte 

RM1
2 

RM0
1 

RM
08 

RM
07 

RM
05 

MB
02 

MB1
1 

PN1
7 

PN
21 

PN0
9 

PN0
6 

PN
16 

PN
19 

wt% oxide                           
F n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Na2O 
9.63 

11.9
9 

9.27 9.24 9.00 9.36 9.36 
10.4

5 
9.5

9 
10.1

3 
9.23 

8.2
9 

6.2
3 

MgO 
n.d. 0.01 0.09 0.08 0.01 0.12 0.27 n.d. n.d. 0.01 0.02 n.d. 

0.0
4 

Al2O3 
23.2

7 
21.1

4 
23.4

1 
23.1

6 
23.4

4 
23.2

2 
23.1

4 
21.8

7 
21.
83 

21.9
3 

22.6
2 

22.
99 

24.
59 
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SiO2 
55.1

4 
59.0

8 
54.5

8 
55.6

1 
54.4

1 
54.5

9 
55.1

0 
56.8

2 
56.
25 

56.6
7 

55.5
6 

53.
24 

50.
30 

SO3 
0.37 0.17 0.02 n.d. 0.02 0.03 0.06 0.02 

0.0
1 0.02 0.40 

0.7
4 

1.0
5 

Cl 
3.00 3.56 2.59 2.29 2.54 2.80 2.80 3.29 

3.2
9 

3.33 2.71 
2.1

1 
1.0

0 

CaO 
8.35 4.59 9.15 9.06 9.43 8.83 8.53 6.91 

7.2
3 

6.99 8.52 
10.
43 

13.
55 

K2O 0.50 0.46 0.26 0.23 0.26 0.38 0.58 0.66 
1.3

4 0.91 0.80 
0.6

2 
0.5

5 

FeO* 
0.04 0.04 0.18 0.25 0.17 0.30 0.46 0.07 

0.0
7 

0.05 0.18 
0.0

6 
0.0

4 

Total 
100.

30 
101.

05 
99.5

4 
99.9

5 
99.2

8 
99.6

2 
100.

28 
100.

08 
99.
62 

100.
03 

100.
02 

98.
48 

97.
36 

Cl = O 
0.68 0.80 0.58 0.52 0.57 0.63 0.63 0.74 0.7

4 
0.75 0.61 0.4

8 
0.2

3 
Corrected 
Total 

99.6
3 

100.
24 

98.9
6 

99.4
3 

98.7
1 

98.9
9 

99.6
5 

99.3
4 

98.
88 

99.2
8 

99.4
1 

98.
01 

97.
14 

                            
Formula to 12 (Al, Si) 

F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.0

0 0.00 0.00 
0.0

0 
0.0

0 

Na 2.71 3.32 2.62 2.92 2.55 2.65 2.64 2.94 
2.7

2 2.85 2.61 
2.4

0 
1.8

2 

Mg 0.00 0.00 0.02 0.02 0.00 0.03 0.06 0.00 
0.0

0 0.00 0.00 
0.0

0 
0.0

1 

Al 3.98 3.56 4.02 3.95 4.04 4.00 3.97 3.74 
3.7

6 3.75 3.89 
4.0

4 
4.3

8 

Si 8.02 8.44 7.98 8.05 7.96 8.00 8.03 8.26 
8.2

4 8.25 8.11 
7.9

6 
7.6

2 

S 0.04 0.02 0.00 0.00 0.00 0.00 0.01 0.00 
0.0

0 0.00 0.04 
0.0

8 
0.1

2 

Cl 0.74 0.86 0.64 0.57 0.63 0.69 0.69 0.81 
0.8

2 0.82 0.67 
0.5

3 
0.2

5 

Ca 1.30 0.70 1.43 1.41 1.48 1.39 1.33 1.08 
1.1

3 1.09 1.33 
1.6

7 
2.2

0 

K 0.09 0.08 0.05 0.04 0.05 0.07 0.11 0.12 
0.2

5 0.17 0.15 
0.1

2 
0.1

1 

Fe 0.01 0.00 0.02 0.03 0.02 0.04 0.06 0.01 
0.0

1 0.01 0.02 
0.0

1 
0.0

0 

CO3 0.22 0.12 0.36 0.43 0.37 0.30 0.31 0.19 
0.1

8 0.18 0.29 
0.3

8 
0.6

3 
                            

Na+K+Ca 4.10 4.11 4.10 4.38 4.08 4.11 4.08 4.14 
4.1

0 4.11 4.09 
4.1

9 
4.1

3 
                            
FeO* : total iron; n.d.: not 
detected. 
                      
 

Tabl
e 4 
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Sa
mpl
e ID 

Sample Name Location Mineralizat
ion 

Cl      
(wt.
%) 

XRF
M 

Cl      
(wt.
%)   

EPM
A 

Br      
(ppm

) 
XRF

M 

Na      
(wt.
%) 

Cl/Br 
mola

r 

Na/B
r 

mola
r 

δ
37

Cl 
(

‰
) 

RM
01 

03NUN29 125-
250mm 

Nunasvaa
ra 

RM 3.50 3.50 n.m. 11.9
9 

n.m.  -

0.

1 

RM
12 

Nun3.4d Nunasvaa
ra 

RM n.m. 3.07 n.m. 0.96 n.m.  n.

m. 

RM
07 

04 TORN 1 v. 
250-500mm 

Torneälve
n river 

RM 2.60 2.71 76 9.27 770 4,23
8 

0.

3 

RM
08 

04 TORN 1 v. 
100-250mm 

Torneälve
n river 

RM 2.60 2.71 86 n.m. 680  0.

0 

RM
05 

04 TORN 2 125-
250mm 

Torneälve
n river 

RM 2.50 2.74 88 8.97 639 3,62
2 

0.

3 

MB
02 

PAH 88217 125-
250mm 

Pahtohav
are 

IOCG-M 2.78 2.92 36 9.37 1,73
8 

9,13
4 

0.

2 

MB
03 

PAH 88217 100-
125mm 

Pahtohav
are 

IOCG-M 2.50 n.m. 143 n.m. 393  n.
m. 

MB
10 

03PAH3 125-
250mm 

Pahtohav
are 

IOCG-M 2.80 3.07 112 9.42 565 2,93
5 

0.

2 

PN2
0 

KAL 90106 125-
250mm 

Kallosalmi IOCG-PS 3.30 n.m. 55 n.m. 1,35
0 

 0.

5 

PN2
1 

KAL 90106 
118.4m 100-
125mm 

Kallosalmi IOCG-PS 3.30 3.09 55 9.59 1,35
0 

6,05
9 

0.

4 

PN0
9 

KAL 90107 
56.38m 125-
250mm  

Kallosalmi IOCG-PS 3.30 3.61 90 10.1
3 

825 3,90
9 

0.

6 

PN1
7 

PAH 88093 100-
125mm 

Pahtohav
are 

IOCG-PS 3.30 3.41 134 10.4
5 

554 2,70
9 

1.

0 

PN1
8 

PAH 88093 125-
250mm 

Pahtohav
are 

IOCG-PS 3.30 n.m. 90 n.m. 825  -

0.

1 

PN1
6 

G1-1 100-125mm Gruvberg
et 

IOCG-PS 2.10 2.17 38 n.m. 1,24
4 

 0.

1 

PN1
4 

G1-1 250-500mm Gruvberg
et 

IOCG-PS 2.10 n.m. 20 n.m. 2,36
3 

 0.

3 

PN1
5 

G1-1 125-250mm Gruvberg
et 

IOCG-PS 2.10 n.m. 38 8.29 1,24
4 

7,58
0 

-

0.

1 

PN0
6 

G4-1 125-250 mm Gruvberg
et 

IOCG-PS 2.70 2.92 65 9.23 942 4,97
1 

0.

1 

PN1
9 

SAR 1 125-
250mm 

Sarkivaar
a 

IOCG-PS 1.00 1.32 83 6.23 271 2,60
9 

0.

9 

MS
W 

Modern Seawater             650 600 0.
0 

           
RM: Regional Alteration Na-Cl Metasomatism, IOCG-M: IOCG-Sc altered Metabasic Rocks, IOCG-  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

52 

 

PS: IOCG-Proximal sc-rich alt/Na Skarn. 

n.m.: not measured    

 

 


