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Abstract—This paper introduces a minimum viable software
product to filter large datasets of engine data recorded during
laboratory experiments of combustion engines. The aim is to sup-
port analysts in the identification and analysis of specific physical
phenomenon within hours of recorded engine experimental data.
Specifically, the tool has been designed considering the use case of
identifying Low Speed Pre-Ignition events. This work describes
the tool’s graphical user interface and its scalable architecture
based on mainstream web and big-data technologies as well
as the practical application to pre-ignition events identification.
The paper provides details on the architecture’s performance,
providing evidence of its scalability by increasing the number of
available computing workers.

Index Terms—Data Visualisation, Data Exploration, Combus-
tion Engine Experimental Data, Big-data Technologies

I. INTRODUCTION

In the engineering field data loggers collect huge amounts of
data over time. In the automotive field, engineers develop and
test engines by operating them on engine test beds [1], which
allow engines to be operated in a safe and controlled manner
for a variety of test regimes. The measurement of physical
parameters are logged using data loggers. Engine test beds
comprise of an array of sensors to continuously measure, and
record, engine status values (e.g. engine speed, pressure, and
temperature sensors) which can be used to analyse, in off-
line mode, any phenomenon and performance comparisons.
Due to the large number of sensors typically installed, the
high logging frequency required and the extended period of
test times, the data collected can be in the order of gigabytes
per experiment. An industry or a research centre usually has
many engine test beds running for 24 hours a day, hence, as
in many engineering fields (e.g., simulation field [2]), data
collected over time will generate big repositories of valuable
assets which are strategically important for industries, and can
be used to boost their competitiveness.

The analysis of this data is essential for engineers to fully
study and understand a particular phenomenon. The analysis of
the raw data itself is, currently, a difficult and time consuming
process, due to the added difficulty of the separate data loggers
splitting data over multiple directories and formats. This leads
to a requirement for a flexible tool which intuitively, visually
and interactively supports the researcher in getting insight into
collected data. An engineer must be able to dynamically filter
data according to specific formulae, to gain the correct insights
into the results. Interactivity and dynamic filtering of large-
scale datasets together require reasonable response times from

the systems, thus the need to use big-data technologies to
achieve high performances. The data collected also exhibits
variety due to the differences in engines tested, the variation
in test-bed conditions and their configurations.

This field poses different challenges, such as, data variety
and heterogeneities, big data processing, human computer
interaction (HCI) aspects, and involves multidisciplinary skills
(i.e, Big-data expert, Engineers, Computer scientists, etc.).
This paper focuses on the interactive filtering of large-scale
engine experimental datasets using mainstream big-data tech-
nologies (i.e., Apache Spark). In particular, it introduces Eng-
inXplora, a web-based front-end accessible through any web-
browser, able to filter engine datasets and visualise retrieved
results as well as analyse data through charts. The tool con-
nects in the back-end to Apache Spark facilities to filter data.
As a particular practical application area, the open engineering
research question of the identification and understanding of
LSPI events (Low Speed Pre-Ignition events) is discussed in
Section III.

The paper contributions are: a detailed description of the
scenario and its characterisation (Section III), a minimum
viable prototype with a demonstration of the tool utility via
the application of the scenario described earlier (Section IV),
and an extensible and reusable software architecture to process
large datasets (Section V) with a performance benchmark to
evaluate its scalability. The paper concludes with a summary
of the achieved results, ongoing and interesting future works.

II. RELATED WORK

This Section describes scientific literature about recent tools
to explore engine data. VISPLORE [3] is a system to visually
explore multirun engineering data. It provides a wide range of
well-known visualisations (e.g., histograms, scatter plots and
parallel coordinates). It adopts an unguided approach, sup-
porting many tasks in one system, where users are completely
free to configure the visualisations as they desire. Recently
VISPLORE authors described the challenges they encountered
in introducing this system within the automotive industry [3]:
(1) the lack of user guidance and (2) the lack of integration
with other software systems in the industry. In order to address
these issues, the authors switched to a guided approach,
specifically designing a dashboard to perform one well-defined
task, providing pre-configured visualisations, whilst permitting
expert users to re-parametrise them. Based on this reported
experience, along with our previous experience [4], in order
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to design our EnginXplora, we chose the main user task within
our scenario to be the identification of LSPI events.

ExploraTool [2] is a system for the visual exploration of
engineering simulation data. In particular it uses a space
filling visualisation Ellimap (a Treemap variant) which uses
ellipses to represent groups of dataset items. ExploraTool
provides an overview of the dataset, allowing its navigation
and suggesting further facets to use in the exploration of the
dataset. It is mainly a facet-based exploration system so it
works by semi-automatically categorising simulation features.
It does not support filtering based on the numerical data but
only on the textual items’ characteristics. In contrast, this
paper provides a practical scenario where the exploration is
primarily based on the filtering of numerical data, and the
exploration through facets is initially inapplicable because the
dataset is predominantly numerical. The tool EnginXplora
reuses the idea of grouping items filtered from datasets,
but instead of using the Ellimap visualisation, which was
specifically designed to emphasize available facets and support
data exploration, it uses Euler Diagrams to specifically display
the relative sizes and relationships of (numerically) filtered
datasets, showing their intersections to give a hint as to the
items that are in common. In addition the groups of dataset
items are dynamically generated based on filters defined by
mathematical formula declared by the user.

III. SCENARIO: PRE-IGNITION EVENTS

This section introduces a live scenario of EnginXplora
exploitation to identify a specific abnormal combustion event,
technically named Low-Speed Pre-Ignition (LSPI), within a
dataset of engine experiments. An LSPI event occurs when the
charge in the combustion chamber of an engine stochastically
auto-ignites prior to the introduction of an ignition source [5].
This early combustion, coupled with a characteristic rapid heat
release, results in a knock amplitude of almost two orders
of magnitude larger than conventional knock. The underlying
cause of this pre-ignition event is still not fully understood.

During the tests, engines are constantly monitored by sen-
sors, which continuously record the physical parameters, such
as in-cylinder pressure. This stored dataset enables off-line
analysis to be performed. In particular, with regard to the LSPI
events, the aim is to analyse a huge amount of collected data
from the sensors, in order to provide a tool to support analysts
and researchers in their task of understanding the fundamental
causes of this phenomenon.

Typically in a test programme, engine performance mea-
surements are continuously recorded at a specified operating
conditions throughout the individual engine cycle and averaged
over many consecutive engine cycles. The process is repeated
for the next operating condition and so forth until a detailed
map of optimised engine operating envelope is derived. Abnor-
mal combustion is observed in some regions of the operating
map, for example, close to the engine “knock” limit or in the
special case of LSPI. These phenomena can occur sporadically
in the time series as a single instance or repetitively when
initiated by a single event. In both cases, knock and LSPI

are characterised by shock waves that produce very high in-
cylinder gas pressures within the combustion chamber. The
starting point, rate and magnitude of the pressure rise observed
during an abnormal cycle can be used to help identify a knock
or LSPI event.

IV. ENGINXPLORA GUI FOR ENGINE DATA

EnginXplora’s Graphical User Interface (GUI) is mainly
divided in three logical parts (Fig. 1): Overview of the Filters,
Filter Results View, and Item Details. This section describes
the tool GUI, its main functions of creating, removing and
altering the filters as well as the visualisation of the charts.

A. Overview of the Filters

The tool provides an initial overview of the applied filters
and their results at a glance through the Euler diagram (left
part of Fig. 1). Each circle in the diagram is a pictorial
representation of a filter. The circle pictorially encloses dataset
items, which satisfy the filter formula, and the circle area
is proportional to the number of items which satisfy the
filter. For example, Fig. 1 shows three filters labelled as:
Peak>100, Peak>120, and LSPI. The peak is the pressure
in bar measured within the engine chamber. LSPI events are
characterised by very high peak pressure. Analysts define
filters to reduce the quantity of data and try to analyse the
phenomenon (e.g., pre-ignition events in Section III).

The Overview of the Filters shows the relationship among
filters and their retrieved results. Circles can intersect each
other. Two intersecting circles represent filters which retrieve
some common items. A circle A completely inside another
circle B is a containment relationship (A ⊆ B) which means
that the filter A retrieves a subset of the results retrieved by the
filter B. For instance, in Fig. 1, the set of results retrieved with
the filter Peak>120 (one result with pressure of 162.92 [bar])
is a subset of the results retrieved with the filter Peak>100
(two results with pressure of 162.92 [bar] and 110.26 [bar]).
They are represented with two circles, where Peak>120 is
fully contained within the circle Peak>100.

The Overview of the Filters is interactive. In particular,
every time the mouse hovers over a circle the tool shows
additional information (i.e., the number of items) in a tool
tip. All the circles and intersections are clickable.

B. Create, remove and change filters

During the data analysis, the engineer can, at any time,
create a new filter from scratch, or change or remove an
existing one. Specifically a filter is a mathematical formula,
which is applied to each item of the dataset and generates a
boolean value to decide whether the item is filtered or not.

EnginXplora provides a window called “Filter Details” to
directly specify the mathematical filter formula. Fig. 2 shows
a simple formula peak > 120 based on the peak pressure
threshold to filter out the items. The engineer can provide
a formula that involves multiple variables. For instance, the
set of events named LSPI (Fig. 1) have been filtered using
the formula casoc < caign, which involves two variables:



Fig. 1. EnginXplora’s Graphical User Interface (GUI). The tool picture shows three filters. Two filters apply a threshold on the Cylinder 1 Pressure values
which are Peak > 100 and Peak > 120, since pre-ignition events may be characterised by very high pressures. The filter labelled by LSPI applies the
formula casoc < caign. The view on the left shows a pictorial representation of the filter results through an Euler Diagram; each formula retrieves a set of
items from the dataset that is represented as a circle in the diagram. The table on the top right is showing the engine events filtered by the LSPI identifying
pre-ignition events. Among the three filtered events shown in the table, the engineer decided to further explore the first event, and she/he clicked on the first
row in order to display the cycles around the selected cycle number 39 in the interactive chart.

the Crank Angle Start Of Combustion (CASOC) and the
Crank Angle point of IGnition (CAIGN), both in degrees. A
characteristic of a LSPI event is that the combustion (CASOC)
starts before the spark plug is triggered (CAIGN), hence the
pre-ignition occurs.

In order to identify LSPI events engineers may begin with
the use of the mean and standard deviation of the peak
pressure. An example of a formula that uses mean and standard
deviation is (peak > mean + 4.7 ∗ stddev). Both mean
and stddev are reserved keywords in the system, that are
replaced with the exact values during the processing, so
within the formula they become a threshold. Both mean and
stddev, as well as other values, are pre-computed and are
available with the dataset of the experiment. The word peak
is a variable indicating the actual peak pressure value. Thus,
this filter is independently executed for each peak pressure
value in the dataset, returning for each one a boolean value to
indicate whether the value is greater than the threshold peak
pressure. The filter is executed for each value independently,
enabling the high scalability by just partitioning the dataset
items in multiple blocks distributed across multiple computing
nodes that apply the filter (see Section V for more details and
technological implementation). Finally, in order to foster the
reuse of existing filters, in the Filter Details window, the user

Fig. 2. Filter Dialog where the user enters the mathematical expression to
filter the dataset items. The formula in the example filters all the cycles where
the pressure in the engine chamber is greater than 120 [bar]. The formula will
be parsed and executed in parallel on all items of the large dataset.

can star the filter by clicking on the star icon, inserting it in
a repository of named reusable formulas.

In order to remove or change a filter, the user must click
on the labelled circle representing the filter, and click on the
trash or pencil icon to remove or edit the filter respectively.

C. Filter Results View

The Filter Results View is a table that lists the dataset
filtered items for a particular filter formula (right side of Fig.
1). Clicking on a filter (circle) or intersection within the Euler
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Fig. 3. Architecture Data flow. The test-bed engine (on the left) records data, which are stored in the HDFS file system. An analyst can send a filter query
to the WebServer via his/her browser. Then Apache Spark filters the data based on the query and returns results to the WebServer, which is responsible for
the presentation of the data.

diagram triggers the update of the list of items. Of course,
a particular filter formula can retrieve many items from the
dataset, and in the worst case it retrieves all items; hence the
list of results splits the items across multiple pages so that
only a small portion of data is shown.

D. Item Details and Chart Visualisation

After the data filtering, the next task for the analyst is to
analyse the results shown in the Filter Results View (top right
of Fig. 1). Each result can be selected by clicking on the
black eye icon. For instance, in Fig. 1, the user has selected
the engine cycle number 39. The tool has updated the chart,
showing the pressure on the y-axis and the cycles on the x-axis,
displaying ten cycles with the selected value in the middle.
The chart is configurable and a user can change the x-axis
and y-axis using the drop down lists on the chart left-side.

V. SYSTEM ARCHITECTURE

This Section describes the EnginXplora architecture shown
in Fig. 3. The engineer runs one or multiple experiments on
the test-bed engine, which records the data from the engine
sensors (e.g., pressure) and stores it on the file system. There is
no de-facto standard on how to store engine experimental data
into files (e.g., file format, number of files); this is dependent
upon the data logger and the logging software used during
the experiments, each having its own standard. Hence, native
files are saved in their own format and their own ad-hoc
naming conventions. The measured physical quantities are
often similar, in that they include the same sensor type and
locations, but, they can be displayed in different formats.

The architecture is able to load and read data from Matlab
files (*.mat), one of the most commonly used raw formats
in commercial engine data logging systems. These files can
be enormous; to give an example, a logging of all sensors’
data for 18 seconds at 2000 rpm (considered low speed
testing) takes around 30MB on the file system. An engine
can run for several hours with various configurations and test
conditions, generating large-scale datasets. To study a physical
phenomenon these large-scale datasets must be analysed, a
non-trivial task on a general purpose computer.

A Data lake is a repository that stores a massive quantity
of data in raw native format [6]. This is an emerging trend
in the context of big-data where data remains in its original
format and has to be read and processed many times. Hence,

the system proposed in this paper follows the data lake,
experimental data remains in raw formats within the repository
and the tool never changes them. The tool, when needed, stores
the additional metadata provided by engineers or computed
results in separate metadata files in open format (i.e., XML).

In order to support large-scale experimental data analysis,
the architecture runs on a cluster configured with Hadoop
and Apache Spark. In particular, the engineer must copy the
experimental files on the Hadoop Distributed File System
(HDFS) of the Intranet HPC resources. HDFS [7], [8] is a
fault-tolerant file system able to store huge amounts of data
and is particularly suitable to be used with Apache Spark.

The architecture is based on mainstream open source tech-
nologies, so it can run both on a private cluster or an external
third party High Performance Computing (HPC) service (e.g.,
Amazon Web Services). The use case described in this paper
assumes that the HPC resources are accessible through the
Intranet for two main reasons: data confidentiality and the
cost to transfer the large-scale data from the private laboratory
to the on-line service. Data confidentiality is an important
legal aspect, which must be considered when determining
the technology used. Research laboratories often run engine
experiments for external third party companies, so they are
sometimes unable to transfer externally the confidential data
out of the internal infrastructures. Once transferred on the
HDFS, the files are available for processing through the tool.

Any authorized engineer can use the web browser installed
on his/her workstation to access to the engine experimental
data through the tool GUI (Fig. 1). This can be done in the
same Intranet or also through an Internet connection because
the architecture has been designed to leave and process the
data on the server-side using the cluster facilities. In addition,
the GUI shows only a small subset of the available data
and generated analysis results, using the pagination on the
tables of data and exploiting the information seeking mantra
[9] “overview first, zoom and filter, then details-on-demand”
as described in other recent works [2], [4], [10]. The tool’s
web-side uses standard Web 2.0 technologies (i.e., HTML,
JavaScript, JSON, SVG, WebComponents), extensively de-
scribed in literature exploiting Restful services (for more
further details, see the architecture of ExploraTool architecture
presented in [2]).
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A. Parallel Data Processing

The software stack installed on the cluster is depicted in
Fig. 5. At the bottom level there is the hardware, such as
physical storage to store the engine data in raw format. These
raw files are managed by the HDFS and upon it there is the
Apache Spark core. In this paper, the raw data are Matlab files
containing huge arrays and matrices of data recorded from
the engine sensors. A central Apache Spark concept is the
Resilient Distributed Dataset (RDD), which is a collection of
data items partitioned across the cluster nodes. Spark RDD
is optimised for in-memory processing especially for iterative
computations, resulting in faster performance than the Hadoop
Map/Reduce. Hence, each cluster computing node (worker
node) will have and process a piece of dataset items in parallel.

Fig. 3 shows the process and sequence of steps performed
when the user creates a new filter by providing a filter formula.
The filtering engine receives the filtering inputs, provided by
the users through the GUI and process data accordingly.

Apache Spark has well-known facilities to automatically
split textual based big data files, allowing different types of
partition schemes, such as the split by lines or by structured
records. Engine experimental data are binary mat files con-
taining arrays or matrices of measures. Apache Spark does not
have a library to parse mat files and split them in partitions.
JMATRW1 is a custom open source library released with
LGPLv3 license, specifically designed and developed for this
work to read a binary mat file and split its content in multiple
partitions to create an Apache Spark RDD. A textual splitting
can not be used because 1) the mat files are binary files so
there is no available concept of textual lines or records, 2)
the mat files have a variable length header portion at their

1JMATRW to read, parse and split *.mat files has released open source
with LGPLv3 license on GITHUB https://github.com/donpir/JMATRW.

beginning that must be removed and must not be in any of
the partition, 3) the file can not be randomly partitioned, but
it must be partitioned to have consistent blocks of double
values, avoiding the splitting of value bytes into two parts.
The JMATRW library has been written using Scala and Java
programming languages.

Once the RDD has been created with the partitioned array
(Fig. 5), each worker receives a partition of the dataset and
the mathematical formula provided by the user through the
Filter Window Details (Fig. 2) to run against each dataset item
in the partition. Thus, workers run the same actions on their
received dataset partition. Hence, each worker filters the data
in its partition generating another partition with the array of
filtered double numbers. All the resulting partitions together
make the filtered results.

Hadoop Distributed File System (HDFS)

Apache Spark (Core Engine)

Data Filtering Framework

JMATRW Library

Custom Spark RDD 

Math Expressions
Parser & Filters

Engine Experimental Data Analyser

Engine data in raw format

Fig. 5. Stack of software deployed on the cluster. The top two layers have
been specifically designed to run the filtering of engine data.



B. Performance Evaluation

This Section reports on the architecture’s performance
benchmark to evaluate the architecture’s scalability. Each
performance test takes as input the mat input file that contains
the array of numbers, the filter to run over this dataset and
the number of computing workers to use. The output is the
time taken to filter data items. For the benchmark, the file
sizes have been increased by a power of two, starting from
2MB up to 1GB. Filtering on each file has been executed in
serial and in parallel with two, three and four Apache Spark
workers. Each test has been executed ten times, measuring the
test execution time, and calculating the mean of the ten runs.

2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB

Serial Execution 1,28 2,45 4,86 9,79 19,19 38,82 77,84 154,44 305,58 616,85

1 Worker 5,24 5,57 6,29 7,63 10,74 16,73 28,02 52,929 99,02 193,22

2 Workers 7,16 7,04 8,67 9,72 11,93 11,10 17,92 31,03 57,01 106,71

4 Workers 9,00 7,10 9,56 10,11 13,83 13,72 12,71 20,61 36,71 68,20
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Fig. 6. Benchmark data of a filter execution over datasets with different
sizes from 2MB up to 1GB. Both scales are logarithmic.

Fig. 6 shows the effect of doubling the number of workers
on execution time. The use of an additional worker has an
execution cost due to their initialisation and the transfer of
data chunks. This has significant effect for small files (i.e.,
less than 16MB), where the serial execution is faster than the
use of at least one worker. Due to the initialization costs, we
see that doubling the number of workers does not quite reduce
the execution time by half. However, the benefits of increasing
the number of workers overshadows the initialization costs as
the file size increases.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a web-based tool to filter large datasets
of combustion engine experimental data. The practical appli-
cation (see scenario in Section III) is the identification of pre-
ignition events. Due to the quantity and type of data recorded
during the experiments, its processing (filtering) requires the
use of big data technologies. The software architecture adopted
uses Apache Spark in the back end to process and filter data.
This work explained the software architecture, which uses
Apache Spark in the back-end to process data and apply
the filter. The performance benchmark compared different
configurations, using different input sizes and numbers of
computing workers.

Despite the fact the the tool has been designed to process
engine data, its applicability to a variety of different contexts
where numerical data must be filtered and analysed through
charts (e.g., financial data) is evident. This work represents the
first brick for a web-based tool to support the analysis of large

engine datasets and open questions remain. An open issue
is the heterogeneity of data and formats recorded from the
different engine test beds, which will be considered in future
work by exploiting techniques experimented within other fields
[11].

The identification and analysis of pre-ignition events in
engine data is one of a plethora of phenomenon that could
be examined. In terms of future work, the goal is the further
exploration of a LSPI identification and analysis case study.
The aim is to have a predictive tool to help identify under
what conditions LSPI events may occur. Finally, it would
be interesting to expand the filtering to include in-cylinder
optical diagnostics taken during engine testing, alongside the
numerical data gathered from current test bed sensors, for a
more thorough analysis.
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