
Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvlc

Online region computations for Euler diagrams with relaxed drawing
conventions

Gennaro Cordascoa, Rosario De Chiarab, Andrew Fishc,⁎

a Dipartimento di Psicologia – Seconda Università di Napoli, Italy
b Poste Italiane – Software Factory Napoli, Italy
c School of Computing, Engineering and Mathematics – University of Brighton, UK

A R T I C L E I N F O

Keywords:
Euler diagrams
Region computation
On-line algorithms
Interactive Diagram Construction

A B S T R A C T

Euler diagrams are an accessible and effective visualisation of data involving simple set-theoretic relationships.
Efficient algorithms to quickly compute the abstract regions of an Euler diagram upon curve addition and
removal have previously been developed (the single marked point approach, SMPA), but a strict set of drawing
conventions (called well-formedness conditions) were enforced, meaning that some abstract diagrams are not
representable as concrete diagrams. We present a new methodology (the multiple marked point approach,
MMPA) enabling online region computation for Euler diagrams under the relaxation of the drawing convention
that zones must be connected regions. Furthermore, we indicate how to extend the methods to deal with the
relaxation of any of the drawing conventions, with the use of concurrent line segments case being of particular
importance. We provide complexity analysis and compare the MMPA with the SMPA. We show that these
methods are theoretically no worse than other comparators, whilst our methods apply to any case, and are likely
to be faster in practise due to their online nature. The machinery developed for the concurrency case could be of
use in Euler diagram drawing techniques (in the context of the Euler Graph), and in computer graphics (e.g. the
development of an advanced variation of a winged edge data structure that deals with concurrency). The
algorithms are presented for generic curves; specialisations such as utilising fixed geometric shapes for curves
may occur in applications which can enhance capabilities for fast computations of the algorithms' input
structures. We provide an implementation of these algorithms, utilising ellipses, and provide time-based
experimental data for benchmarking purposes.

1. Introduction

Venn [38] and Euler diagrams are a well known representation of
sets and their relationships. Venn diagrams have had significant
theoretical interest from the likes of Grünbaum and Hamburger in
recent times; a detailed survey of Venn diagrams can be found in [30].
Euler diagrams are the modern incarnation of Euler circles [18], first
introduced for the purposes of syllogistic reasoning. Whilst Venn
diagrams ensure that every region determined by being inside some
contours and outside the other contours is present (i.e. is a nonempty
region of the plane), Euler diagrams generalise Venn diagrams by
relaxing this condition. This allows them to specify subset relations and
disjointness relations amongst sets without any extra cognitive load
since these semantic relationships are well-matched to the spatial
relationships of containment and disjointness, and they give rise to
free, or cheap, rides [22,31].

In a practical setting, Euler diagrams appear frequently in various

application domains. For example, they have been used in biological
areag for representing complex genetic set relations in [26], in
computer-based resource management scenarios in [14], and in the
information retrieval/visualisation context to depict the numbers of
results of collections of library database query results in [37] and in
network visualisation [28]. Euler diagrams, together with diagram-
matic inference rules, form a diagrammatic logic, and comparisons of
the effect of the choice of inference rules on automated searches for
minimal proofs within Euler diagram-based reasoning systems [33]
has been investigated. There are many variations of the basic system,
and they have also been incorporated into heterogeneous reasoning
systems [36]. More complex diagrammatic logics such as Spider [24] or
Constraint diagrams [19,25] build on the underlying Euler diagram
logic, adding more syntax in order to increase the expressiveness of the
languages.

http://dx.doi.org/10.1016/j.jvlc.2016.10.006
Received 11 October 2015; Received in revised form 28 May 2016; Accepted 19 October 2016

⁎ Corresponding author.
E-mail addresses: gennaro.cordasco@unina2.it (G. Cordasco), rosario@dechiara.eu (R. De Chiara), Andrew.Fish@brighton.ac.uk (A. Fish).

Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

1045-926X/ © 2016 Published by Elsevier Ltd.
Available online xxxx

Please cite this article as: Cordasco, G., Journal of Visual Languages and Computing (2016), http://dx.doi.org/10.1016/j.jvlc.2016.10.006

http://www.sciencedirect.com/science/journal/1045926X
http://www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2016.10.006
http://dx.doi.org/10.1016/j.jvlc.2016.10.006
http://dx.doi.org/10.1016/j.jvlc.2016.10.006

1.1. Motivation

For any computer-based application there is a natural disparity
between the concrete level information that the user perceives and
manipulates (the drawn or concrete diagrams) and the abstract
information that the system requires or manipulates (the abstract
models or abstract diagrams). This is because much of the geometric
information (e.g. the type of shape of the contours, or the actual
positions of the points of the contours) encoded is not being utilised in
the abstract model; the abstract model could be viewed as forgetting
the information that is not relevant to the semantics. Many important
computations of the system tend to be defined at this abstract level. For
instance, if one wished to present the semantics of a user-constructed
diagram then the system needs to perform computations such as to
identify the regions present in the diagram, to compute the set
intersections that they represent, and to combine these into a set-
theoretic statement. In a more general sense, an efficient method to
calculate the abstract diagrams of concrete diagrams is additionally
useful in enabling a fast comparison of semantically important features
of concrete diagrams.

In an interactive setting, where users may manipulate the concrete
diagrams, the system needs to be able to update the abstract model in
accordance with user interaction (e.g. adding a new contour). Since it is
also desirable to store the diagram created by the user, an interactive
Euler diagram based system should ideally be able to: (i) compute the
abstract information quickly; (ii) update this information upon changes
to the concrete information; (iii) store the concrete information.
Another example arises in the diagrammatic logic setting, where
computations (diagrammatic logical inference rules) occur at the
abstract level, although a user again sees a graphical interface. If a
user sees a diagram and wishes to apply a diagrammatic inference rule,
then the computation can involve computing the abstract model,
performing the appropriate inference rule and then redrawing or
updating the diagram appropriately, where it is possible to do so.
However under some sets of well-formedness conditions not all
abstract Euler diagrams are drawable, as shown in [21]. Relaxing
well-formedness conditions may enlarge the class of abstract diagrams
that are drawable. Even if one wishes to primarily focus on well-formed
diagrams, transformations between well-formed diagrams may be
realisable as sequences of intermediary diagrams that are not necessa-
rily well-formed diagrams. Fig. 1 shows an example involving the
relaxation of drawing conventions and the use of highlighting breaks in
well-formedness, whilst Fig. 2 show examples requiring the relaxation
of drawing conventions. The presentation of such examples motivates
the need to consider the relaxation of the drawing conventions in
practise, whether tools are being produced for automating drawings or
for interpreting diagrams. An example of a tool for which a solution to
the online abstraction problem was essential is FunEuler [12] (see
Fig. 3).

We envisage the use of the techniques presented here in a more

general setting, within which the manipulation of a concrete diagram
may occur. A motivating example is provided in [5], where an
experimental prototype has been implemented to evaluate the feasi-
bility of Σ Query Language (ΣQL) [4,41] techniques. The ΣQL is an
extension of SQL, attempting to address the problem of representing
spatial/temporal queries in a natural manner. In [6,7], a query system
for ΣQL is described in detail, describing query processing, refinement
and optimization. The ΣQL was designed with the intent of supporting
the development of information retrieval systems, where a tool for
building visual queries is of great significance. In ΣQL there are three
families of operators: a spatial operator, a direction operator and a
temporal operator. The spatial predicates help to specify the relation
between two objects and, in the original paper [5] they are referred to
as disjoin, meet, overlap, coveredBy and inside (see Fig. 4; the term
disjoint in more commonly used than disjoin for this relation). Such
predicates can be easily verified by using the algorithms described in
this paper (given the stated assumptions on the computation of the
intersection points): each of the polygons in the database on which the
user intends to perform queries is represented by a curve in a concrete
Euler Diagram; each of the predicates can be verified by checking the
existence of certain zones and/or the cardinality of intersection points.
For example, the disjoin (the first case from the left in Fig. 4) predicate
between generic polygons A and B can be verified by adding the
polygons in an Euler Diagram and checking whether or not the zone
A B{ , } is present; the meet (the second case in Fig. 4) predicate can be
checked by verifying that a single intersection point between A and B,
that is a tangential intersection, exists in the concrete diagram.

Therefore, the efficient computation of the abstract model from a
given concrete diagram, together with the ability to update the abstract
model upon concrete changes such as curve addition, removal,
translation and resizing represents an important challenge to be
addressed. The ability to solve this problem, whilst permitting the
relaxation of the drawing constraints (i.e. the well-formedness condi-
tions), is a significant extension, since under these relaxed constraints,
every abstract diagram has a concrete diagram representing it (and
concurrent line segments are generally considered as troublesome to
deal with). For dynamic diagrams (e.g. sequences of diagrams con-
structed during interactive user constructions or as the presentation of
evolving data sets) it permits the temporary relaxation of the chosen set
of drawing conventions imposed on diagrams within the sequence. This
enables a natural construction or presentation by assisting in the
preservation of a user's mental map.

1.2. Contribution and paper outline

In this paper, we provide a new solution to the on-line abstraction
problem: compute the abstraction of a concrete Euler diagram (i.e. a
drawn diagram), keep track of the concrete and abstract diagrams, and
enable the automatic update of the abstract diagram upon concrete
level manipulations. That is, given a concrete diagram d, consisting of a

Fig. 1. The construction of a well-formed Euler diagram as a sequence of contour additions that passes through diagrams that break drawing conventions. The highlighted regions (in
the middle image) indicate zones which are not connected (i.e. which are comprised of multiple minimal regions), in order to draw the users attention to this fact to try to reduce the
potential for human reasoning errors.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

2

collection of contours d(), (i) compute the collection of abstract zones
d() for d() and (ii) efficiently update this collection upon the

addition/removal of contours to/from d(). Since operations, such as
translation or resizing of a contour, can be simulated by addition and
removal of contour operations (e.g. the translation of a contour can be
simulated via the removal of the contour followed by the addition of a
new contour at the desired location), the algorithms are applicable in a
wider context.

The algorithms presented in [13] solved the online abstraction
problem for the well-formed diagrams of [21], adopting a single
marked point approach (SMPA) but here we provide an alternative

solution, adopting the multiple marked point approach (MMPA). This
addresses the general case in which the well-formedness conditions are
relaxed, enabling much greater utility and flexibility as well as ensuring
that any abstract diagram has a concrete realisation. We present the

Fig. 2. Consider the presentation of a dynamic set based data input source, depicting changes in the underlying data over time. Suppose that we have two populations A,B, and initially C
is a sub-population of B, but over time all of the elements of C migrate from inside B until they are all inside A. If any intermediate state is shown in which some of the members of C are
in A and some are in B, then the relaxation of drawing conventions is required. The top path shows a sequence of Euler diagrams that break WF1 (using concurrent lines), whilst the
bottom path uses generalised Euler diagrams (two curves with the same label).

Fig. 3. The FunEuler interface. Contours can be drawn by the user (in the right hand pane) to specify a structured set of queries (one for each zone presented). The icons in top left hand
pane represent functions that can be “drag and dropped” onto a region, thereby applying the function to the set of items retrieved by the associated query. Efficient identification of the
diagram's regions are essential in this context.

Fig. 4. The spatial predicates from the ΣQL [47].

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

3

algorithm using a modular approach. First of all we introduce MMPA,
enabling the relaxation of WF3, in Section 3, observing why this is a
problematic case for the SMPA. Then, additionally, we present two
independent extensions that can be used to additionally relax either
WF1, WF2 or both of them (and they could be applied to the SMPA as
well as the MMPA). This paper is a significantly expanded version of
[11], where an outline of the extension for one particular WF condition
was presented, without formal detail.

Complexity analysis enables a comparison with the existing meth-
odology (SMPA) for the well-formed diagram case. The algorithms
presented in this paper work for generic curves, whilst allowing for
specialisations such as imposing constraints on the shape of the curves.
Another advantage of our methodology is that the implementation of
the algorithms is straightforward. We provide time-based data from a
specialised implementation utilising ellipses; whilst the use of ellipses
is not required for our approach, the geometric constraints imposed
means that the identification of the intersection points is achievable
efficiently.

In detail, in Section 2, we provide preliminaries, giving background
notions required (concrete and abstract diagrams, the well-formedness
conditions and covered or split regions). Section 2.1 present concepts
required for the consideration of concurrency. In Section 3, we provide
the (MMPA) methodology for solving the abstraction problem for the
case of diagrams that have disconnected zones (see WF3 in Section 2),
and indicate how it differs from the SMPA approach for the well-
formed diagram case of [13]. We present detailed algorithms for
contour addition, whilst the technical detail of contour removal is
deferred to Section 3.2. Sections 3.3 and 3.4 deal with the cases of
relaxing WF2 and WF1 within the presented methodology. The ability
to deal with WF3 (disconnected zones) is important in order to be able
to highlight disjoint regions that represent the same set intersection,
for instance. The ability to deal with WF1b (concurrent line segments)
is particularly interesting since other related areas (c.f. Euler graph,
winged edge structures) struggle to deal with this case. In Section 4, we
relax two conditions that we incorporated into the main definition of
Euler diagrams to simplify notation (allowing multiple curves with the
same label or non-simple curves), adopting the name generalised Euler
diagrams is one permits the relaxation of these conditions. Then, in
Section 5, we provide a result relating the number of split points and
crossing points to the number of minimal regions present in any
diagram, yielding a simple check if a diagram contains disconnected
zones from this information. To provide an indication of the efficiency
of the algorithms in practise, a prototype tool has been developed
which realises the algorithms presented. The interface permits the use
of ellipses for contours, within the context of an application for
resource management, and we present details and benchmarking in
Section 6. Discussions of related work, conclusions and further work
are provided in Sections 7 and 8.

Fig. 5 gives an overview of the conditions imposed in diagrams, the
problem addressed and the structure of the paper.

2. Preliminaries

We provide a definition of Euler diagrams, separating the abstract
and concrete models as usual, together with the set of well-formedness
conditions considered. For readability purposes, we incorporate some
of the well-formedness conditions of [21] and [20] into the basic
definition of an Euler diagram in this paper. This enables us to reduce
the notation used for the main body of work. To demonstrate that the
methods extend to the cases where these conditions are relaxed, in
Section 4 we deal with these ‘generalised Euler diagrams’. Specifically,
we incorporate the simplicity of contours (no self-intersection) and
uniqueness of contour labels into the main definition of concrete Euler
diagrams. In this case, there is a natural correspondence between
concrete contour identifiers and labels, and adopting this view sepa-
rates the concerns over labels used for semantics and those used for

contour identification; this makes the conceptual transition to the
generalised case with non-unique labels, in Section 4, simpler.

Definition 1. A concrete Euler diagram is a pair d = 〈 , 〉 where:

1. is a set of labelled simple closed curves, called (concrete) contours,
in the plane, with labels drawn from some given alphabet , and.

2. is the collection of (concrete) zones z determined by being inside a
set of contours X ⊆z and outside the rest of the contours. That is,

z int c ext c= ⋂ () ∩ ⋂ (),c X c X∈ ∈ −z z

for each X ⊆z , provided this region is non-empty.

Here int(c) and ext(c) denote the interior and the exterior of c,
respectively (these are the sets of points in the two regions of

c− { }2), and the set Xz is called the zone descriptor for z. A minimal
region of d is a connected component of c− ⋃c

2
∈ .

We say d iswell-formed if the following well-formedness conditions
(WFCs) hold: .WF1 Transverse intersections: Contours that
intersect do so transversely.This can be subdivided into:WF1a: No
tangential intersections.WF1b No concurrency (distinct contours meet
at a discrete set of points).WF2 No multiple points: At most two
contours can intersect at any given point.WF3 Connected concrete
zones: Each concrete zone is a minimal region.

We include the set of zones in Definition 1, despite being derivable
from the set of contours, since their explicit expression is helpful in the
presentation of the algorithms, and to make the connection between
the concrete and abstract definitions more transparent. An abstract
Euler diagram (see Definition 2) is an abstraction (see Definition 3) of a
concrete diagram. We overload the term zone, using it for the concrete
zones, which are regions of the plane, as well as for abstract zones,
which are the sets of containing contours of that region (or the labels of
those contours); the context determines which is meant. Let X denote
the powerset of set X.

Definition 2. An abstract Euler diagram is a pair: d C d Z d= 〈 (), ()〉
where: C d() is a finite set of labels, called (abstract) contours, drawn
from some alphabet . The set of (abstract) zones of d is
Z d C d() ⊆ (), where z C d⋃ = ()z Z d∈ () .

Definition 3. Let d be a concrete Euler diagram and d′ an abstract
Euler diagram. If there is a label-preserving bijection between d() and
C d(′) that induces a bijection between d() and Z d(′), then d is said to
be a realisation of d′, and d′ is the abstraction of d. An abstract Euler
diagram d′ is drawable if there is a realisation of d′ as a concrete Euler
diagram d.

By convention, each concrete Euler diagram contains a zone o,
called the outer zone, which is exterior to all the contours (that is,
X = ∅o). The left of Fig. 6 shows a concrete Euler diagram containing
four contours with contour identifiers (equivalently, labels) depicted
utilising some arrows that are not part of the diagram. The zone
descriptors for the concrete zones are graphically depicted in the right
hand side of the figure; these sets can be viewed as the abstract zone
set. Fig. 7 shows examples of violation of the well-formedness condi-
tions.

We need terminology relating to the important operations of the
addition and removal of the contours of an Euler diagram.

Definition 4. Let d = 〈 , 〉 be a concrete Euler diagram with A ∉
and B ∈ . Let d A+ and d B− denote the concrete Euler diagrams
obtained by the addition of a new contour A to d and the removal of
contour B from d, respectively. A region r of d is a union of minimal
regions; it is: (i) a covered region (or is covered by A) if r int A⊂ () in
d A+ ; (ii) split by A (a split region) if r int A∩ () ≠ ∅ and r ext A∩ () ≠ ∅
(i.e. r is partially covered by A). Analogously, a zone z of d is a covered
zone (respectively a split zone) when it is covered (respectively partially
covered) by A.

Fig. 8 shows an example of contour addition. We observe that the
zone described by C{ } is split by the contour A but neither of its two

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

4

minimal regions is split by A. Analogously, for contour removal, we say
that a zone z is: (i) covered by B if r int B⊂ () in d; (ii) split by a contour
B in d if the zone z of d B− is split by the addition of contour B.

2.1. Refining intersection point types for the concurrency case

We extend the concepts of intersection or crossing points, devel-
oping new concepts of split points to deal with the relaxation of the
well-formedness conditions. Fig. 11 shows examples demonstrating the
idea, and we formalise these concepts in the following. First of all, we
need a basic topological notion of ‘local’, intuitively considering a small
region around a point of interest, by choosing a small value for ϵ in
Definition 5.

Definition 5. Let x be a point on an Euler Diagram d (i.e. a point on
any curve in d()). An ϵ- neighbourhood of x, for ϵ > 0, is
B x a x a() = { ∈ : | − | < ϵ}ϵ

2 , a ball of radius ϵ around x.
We need to distinguish between points of intersection between

curves (formerly called intersection points) that cross, either tangen-
tially or transversely, which will be called crossing points (see
Definition 6), and points of the curves that are the ends of part of
shared segments of the curves (i.e. concurrent arcs), named split
points. The crossing multiplicity of any point x on an Euler
Diagram will be the maximal number of non-concurrent arcs that pass
through x (see Definition 9). Fig. 8 shows Cross(A)and the set of eight

crossing points of d A+ , each of which has multiplicity 2.

Definition 6. A point of intersection x between two curves c1 and c2 is
called a crossing point if there is an ϵ > 0 such that there are no other
points of intersection between c1 and c2 within an ϵ-neighbourhood of
x. Let d be a diagram and A d∉ (). If x is a crossing point between
contour A and any contour in d(), then it is called a crossing point of
A with d. The set of all of crossing points of A with d is denoted by
Cross(A). The set of crossing points of d, Cross(d), is the union of all of
the crossing points between its contours.

In Definitions 9 and 10 we identify points on the set of curves in a
diagram at which concurrent arcs separate, and define the splitting
number of any such a point to account for the variations in the vertex
degree of the associated graph of the diagram at points for which the
concurrent arcs separate, when applying Euler's formula in Section 5.
We first provide terminology to distinguish different types of local
concurrency at a point x: total local concurrency where two contours
coincide along a segment (an interval) through x, or local partial
concurrency where they coincide along one segment approaching x but
they separate at x. If they locally meet only at a discrete set of points
they are called locally non-concurrent. We also need the concept of a
contour cj being locally concurrent within a set of contours I ,
intuitively meaning that cj is always locally concurrent with some
c ∈i I , but the ci can vary..

Definition 7. Let x be a point of an Euler Diagram. Two contours ci1

Fig. 5. An overview figure, indicating the online abstraction problem which generalises the static abstraction problem of computing the abstract model of a concrete diagram; it requires
the tracking of both abstract and concrete diagrams, whilst enabling abstract model update in accordance with concrete model changes. We recall the single marked point approach
(SMPA) in Section 3 that works for well-formed Euler diagrams, but this method does not work if the well-formedness conditions are relaxed. So we introduce a new method, the
multiple marked point approach (MMPA) that does works for the relaxation of WF3 in Section 3.1. We also demonstrate how to adapt the algorithms to relax WF2 and WF1, with
methods that can be applied independently or together. Finally, we demonstrate that the approach works when generalising the notion of Euler diagrams.

Fig. 6. (a) A well-formed concrete Euler diagram, with contour identifiers (or labels); (b) a depiction of the zone descriptors. The concrete Euler diagram is a realisation of the abstract
Euler diagram A B C D A C D A B A C〈{ , , , }, {∅, { }, { }, { }, { , }, { , }}〉.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

5

and ci2 are:

1. locally non-concurrent at x if there exists ϵ > 0 such that
B x c c() ∩ ∩i iϵ 1 2 is a discrete set, and locally concurrent otherwise.

2. locally completely concurrent at x if there exists ϵ > 0 such that
B x c B x c() ∩ = () ∩i iϵ ϵ1 2.

3. locally partially concurrent at x if there exists ϵ > 0 such that
B x c c() ∩ ∩i iϵ 1 2 is a radius of B x()ϵ (i.e. it is comprised of a line from
the centre x to the boundary of the ball).

A contour cj is locally concurrent within a set I of contours if there
exists ϵ > 0 such that B x c B x c() ∩ ⊆ () ∩ ⋃j i I iϵ ϵ ∈ . Similarly, an inter-
section of contours c c∩j j1 2 is locally concurrent within a set I of
contours if there exists ϵ > 0 such that
B x c c B x c() ∩ (∩) ⊆ () ∩ ⋃j j i I iϵ ϵ ∈1 2 .

Definition 8. Suppose that two contours ci1 and ci2 of an Euler
Diagram are not equal but they are locally completely concurrent at
x. Let I be the segment (or arc) of c c∩i i1 2 that contains x, and let y z,
denote the endpoints of this segment. Then I is said to be tangential or
transversal if a homotopy of I to a point would leave a tangential or
transverse intersection point, respectively.

Note that ci1 and ci2 in Definition 8 are locally partially concurrent
at y and z by definition, and y z, will be called split points. See Fig. 9 for
an example of tangential or transversal segments. These, together with
the orientation of traversal, will be used to determine if the split points
should behave as per tangential crossing points or tangential crossing
points during the algorithms, later on.

Definition 9. Let x be a point on an Euler Diagram d. A maximal
intersecting contour set for x is a maximal set of contours d⊆ ()I
such that x is a point on ci for each contour c ∈i I , and the contours in

I are pairwise locally non-concurrent.
The point x has crossing multiplicity i = | |I (or just multiplicity for

short), written m x i() = . We take m x() = 1 if x is not a crossing point.

If no pair of curves in d() intersect then I is any single contour
than contains x. In Definition 9, maximal is taken to mean that there is
no larger such set, rather than that no more contours can be added to a
given set with the required properties. These are different, as demon-
strated by Fig. 10 which shows an Euler Diagram at the top of the
figure along with two choices of contour sets intersecting at x, of size
three of the left, and two on the right. Given that there are four
contours and one cannot include B together with either C or D, we see
that three is the largest such number and A C D{ , , } is a maximal
intersecting contour set with m x() = 3. The intuition of multiplicity is

Fig. 7. Non-well-formed Euler diagrams, breaking WF1a, 1b, 2 and 3, respectively, from left to right.

Fig. 8. An example of contour addition: (a) A non well-formed diagram d B C B C B C= 〈{ , }, {∅, { }, { }, { , }}〉. The crossing points of d are shown with filled-in dots; (b) The crossing

points of A with d (i.e. those in Cross(A)) are depicted as hollow dots. The set of all hollow and filled-in dots depicts the set of crossing points of d A+ .

Fig. 9. The top left shows a pair of contours A, B, which are locally totally concurrent at
x, and locally partially concurrent at the split points y,z. The segment I between y and z is
tangential, since the effect of contracting I to a point leaves a tangential intersection
point, as shown at the bottom left. Similarly we see that the corresponding segment in the
top right diagram is transverse by considering the contracting of the segment leading to
the diagram at the bottom right.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

6

that m x i() = if there are i contours for which x is a crossing point
between any pair of those contours, and i is the maximal such integer
(i.e. there are exactly i non-concurrent contours that cross through x).

Definition 10. Let x be a point on an Euler Diagram d and I a
maximal intersecting contour set for x. Then, a maximal separating
contour set for I at x is a maximal set of contours d⊆ () −J I for
which:

1. Every curve in J passes through x.
2. No contour cj in J is locally concurrent within the set I .
3. No two distinct contours in J are locally completely concurrent at x.
4. If two distinct contours c c,j j1 2 in J are locally partially concurrent at

x, then c c∩j j1 2 is locally concurrent within the set I of contours.

The split number of point x, denoted by s(x), is C| |J , the size of the
set CJ. Each point x that has s x() > 0 is called a split point.

In Definition 10, Condition (2.) for J prevents any of the curves in

J from being concurrent with, but not separating from, the maximal
intersecting contour set I , condition (3.) prevents two contours in J

from being completely concurrent in the vicinity of x, and condition (4.)
ensures that no two of the contours in J intersect in a common
segment (i.e. are concurrent), around x, which is outside of I . Fig. 11
shows a complex Euler diagram d, in which the point x under
consideration is indicated by a grey dot, and Fig. 12 illustrates the
sets CI for d and the possible sets CJ for each CI. We see that s x() = 2.

3. Computing the abstraction of Euler diagrams

The main problem that we address is the following, with variations
according to the choice of well-formedness conditions imposed.

Abstraction Update Problem Let d = 〈 , 〉 be a concrete
Euler diagram and d C Z′ = 〈 ′, ′〉 the abstraction of d. Let A ∉ and

B ∈ . Efficiently compute the abstractions of d A+ and d B− .
In [10,13] the single marked point approach (SMPA), described

below, was presented, computing the abstraction for well-formed Euler
diagrams, following an online approach where diagrams are viewed as
a sequence of contour additions and removals. Fig. 13 shows the online
execution of 4 operations (addition or removal of a contour) starting
from an empty diagram.

In this section, we present an evolution of these algorithms,
adopting the multiple marked point approach (MMPA), described
below, permitting the relaxation of condition WF3 so that Euler
diagrams whose zones are disconnected can be processed.

First of all, we recall from [13] that the set of zones split by A, due to
the addition of a contour A to (or its removal from) a given well-formed
Euler diagram d, can be computed using the following observation;
Fig. 14 shows a schematic diagram illustrating the observation.
Observation 1. Let d be a well-formed Euler diagram and let
x x x{ , ,…, }m0 1 −1 be all of the crossing points that we meet as we
traverse the contour A from an arbitrary point on A. Then:

(i) For each i m= 0,…, − 1 each arc x x(,)i i m+1 mod splits one zone (note
that two arcs can split the same zone but one arc cannot split more
than one zone) of d.

(ii) Two consecutive arcs x x(,)i i m+1 mod and x x(,)i m i m+1 mod +2 mod split
two zones such that their zone descriptors differ by exactly one
contour (the contour which intersects with A generating the
crossing point xi m+1 mod).
For the well-formed diagram case of [13], we adopted the SMPA

where each zone z of d has a single point mp z() ∈ 2 associated to it,
where mp z() lay in the boundary of the closure of the zone z (with the
possible exception of the marker for the outer zone). These points keep
track of the zone sets, and were used to update these sets according to
their relationships with contours that are added or removed from a
diagram. In particular, the set of zones of d that are split by A are
computed by: (a) choosing a point p on A and checking if p is in the
interior or exterior of each curve of d to compute the zone descriptor of
the initial zone; (b) making use of Observation 1 to compute the
remaining zone descriptors of the split zones. Then, the zones that are
not split by A are covered by A if and only if mp z() belongs to the
interior of A.

The SMPA is illustrated in Fig. 15: each minimal region is marked
by a single marked point (an arrowed dot indicates a marked point, the
arrow indicating the minimal region which is marked); additional
marked points, or pseudo-crossing points, are used to mark the outside
zone and any contour which has no crossing points, either in d or at
some stage during its incremental construction (e.g. see the marked
point for zone B D E{ , , } in Fig. 15). However, the SMPA is not sufficient
to deal with the Euler diagrams with disconnected zones. In this case,
there are two ways of splitting a zone: (i) a zone is split when one of its
minimal regions is split by A (Observation 1 enables the discovery of
such split zones, as above); (ii) a zone is split when some of its
constituent minimal regions are covered by A and some are not. To
address case (ii) one can consider associating one marked point to each
minimal region of the diagram. Fig. 15 (c) illustrates a generalisation of
the case of [13] where each minimal region is associated with one
marked point. Then, if a zone z has no minimal regions which are split
by A (i.e. case (i) does not hold), we can analyse the relationships of the
marked points with A to classify z as split by A, covered by A, or
neither. In particular, if all of the marked points of z belong to int(A)
then z is a covered zone, whilst if some of the marked points of z belong
to int(A) while others do not, then z is a split zone, according to (ii)
above.

However, the management of marked points (taking one for each
minimal region) for non-well-formed diagrams (relaxing WF3) raises
some tricky problems such as: if a zone z becomes split upon contour
addition or removal, how can one efficiently find a marked point for
each of the minimal regions that comprise z? For example, Fig. 16

Fig. 10. The top shows a diagram and the bottom shows choices of intersecting contour
sets and the associated maximal separating contour sets. On the bottom left we have
C A C D= { , , }I , and so CJ is empty, whilst on the right we have C A B= { , }I , and so

C C D= { , }J . Neither set CI can have further contours added to it, but the C A C D= { , , }I

choice is the maximally sized set.

Fig. 11. A complex Euler diagram with 5 curves, illustrating the concepts in Definition
10. The point x under consideration is highlighted with a grey dot. We have m x() = 2 and

s x() = 2 (see Fig. 12).

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

7

shows two parallel examples which adopt the SMPA (using the
algorithm of [13]) in which only the order of contour addition has
been varied. Whilst one of these gives a valid solution, the other does
not. In detail, the first two steps (a) and (b) in the figure represent the
addition of the first two contours (E and C) to the diagram. Then two
cases are depicted: on the left we add first contour D and then contour
B, whilst on the right we first add B and then D. In the first case (on the
left) the association between the marked points and minimal regions is
correct, with the two minimal regions of zone B{ } being marked by
points z0 and z2. However, in the second case (on the right) the

association is incorrect: there are two marked points associated to the
same minimal region (top, shaded) and no marked point associated the
other minimal region (bottom, shaded). The problem is that, in general,
there is no easy (e.g. efficient) way of discriminating between the case
on the left from the case on the right (i.e. of deciding if the two
hollowed points mark the same minimal region or not). By analysing
only the relationship between a single marked point and the contours it
is possible to discriminate between zones but not between minimal
regions.

We avoid such problem by adopting the MMPA in which each zone
is associated with a set of marked points (which are primarily the set of
crossing points laying on its boundary, but possibly with some extra
marked points to deal with special cases). This approach requires the
tracking of a larger number of marked points but we accept this trade-
off against a simpler marked point management (also making imple-
mentation easier), since when a zone is split, we just need to correctly
partition the set of its marked points.

The MMPA is illustrated in Fig. 17: a set of points marks each
minimal region r, including all of the crossing points on the boundary
of r. Thus, each zone has marked point set including all of the crossing
points laying on its boundary (i.e. the boundaries of its constituent
minimal regions). In the specific case in Fig. 17, each marked point
marks one, two or four zones.

In the following we define procedures for contour addition and
contour removal, which satisfy:

Fig. 12. The top row presents the possible choices for I for diagram d in Fig. 11. The bottom row shows the corresponding choices for J for diagram d, given I ; for two of the five

cases there is a choice of two possibilities for J , shown vertically above one another.

Fig. 13. A sequence of addition and removal operations on a diagram.

Fig. 14. A schematic diagram which illustrates Observation 1. The addition of A
generates six new crossing points shown with small blobs. The point x01 is an arbitrary
point of the arc x x(,)0 1 used to compute an initial zone descriptor for the zone split by arc

x x(,)0 1 , whilst subsequent zone descriptors are computed using Observation 1. The arcs

of the contour A are depicted with different shades of grey in order to distinguish them.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

8

Theorem 1. Let d = 〈 , 〉 be an Euler diagram, satisfying WF1 and
WF2 (i.e. with WF3 relaxed). Then

(i) If A ∉ , then the procedure ContourAddition(d,A) computes
the new collection of zone descriptors for the zones ′ of
d A′ = 〈 ∪ , ′〉.

(ii) If B ∈ , then the procedure DeleteContour(d,B) computes the
new collection of zone descriptors for the zones ′ of
d B′ = 〈 − , ′〉.Moreover, both procedures:

1. compute, for each zone z z∈ ′ − { }0 , where z0 is the zone in the

exterior of all contours in d′, the set of marked points of the zone,
MP(z), that is comprised of the set of all crossing points (or pseudo -
crossing points) of d′ belonging to the closure of z. There is a single
marked point mp z()0 in the exterior of all of the curves of d′.

2. have running time O α d α d(| | + | | + (′)log (′)), where α d(′) de-
notes the number of crossing points of d′.

3.1. The algorithms

The following algorithms are presented without reference to WF
conditions to avoid repetition of material. Initially, we consider the key

Fig. 15. Single marked point approach (SMPA): in (a) each zone of a well-formed Euler diagram is marked by a single point; (b) shows in grey the zone B C{ , } and its marked point; in

(c) a non well-formed Euler diagram (WF3 relaxed) with a zone B{ }, shown in grey, which consists of two minimal regions, therefore requiring at least two marked points.

Fig. 16. The influence of the order of contour addition on the marked points/minimal region association, using the algorithms of [13]. The dotted contour is the one that is going to be
added to the current diagram. The diagram d1 has marked points correctly allocated to the minimal regions of the diagram, whilst d2 does not.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

9

case in which they are applicable to Euler diagrams with WF3 relaxed
(but WF2 and WF1 enforced), but subsequently, in Sections 3.3 and 3.4
we indicate the alternations and insertions to these algorithms that are
required for the extension to permit the relaxation of WF2 and WF1.
This incremental approach to relaxation is intended to improve read-
ability.

Before we describe the algorithms for contour addition and
removal, we present two auxiliary algorithms,
ComputeContourRels (which computes the relationship of a con-
tour with the other contours in a diagram, and updates the marked
point set) and ComputeSplitRegions (which computes the zone
descriptors of the split zones).
Definition 11. Let d = , be a concrete Euler diagram and A a
contour which is not in . Let

• Over(A) denote the collection of all of the contours in that
properly overlap A; that is Over A c int A int c() = { ∈ | () ∩ () ≠ ∅};.

• Cont(A) denote the collection of all of the contours in that
properly contain A; that is Cont A c c Over A() = { ∈ | ∉ () and
int c int A int A() ∩ () = ()}.
For example, Fig. 8(a) shows diagram d and Fig. 8(b) shows the

addition of contour A to d. We have Over A B C Cont A() = { , }, () = ∅
and Cross(A) contains the four crossing points between A and the
contours in .

The methodology adopted makes use of the following low level
computations, and we assume that, given two contours A and B of an
Euler diagram with WF3 relaxed, we can quickly find:

1. the relationships between A and B; that is if A and B properly
overlap, or if one contains the other;

2. their crossing points (if A and B properly overlap);
3. the relationship between any given point x ∈ 2 and A; that is

whether x belongs to A int A, () or ext(A).

Placing restrictions on the geometric shapes used for contours
(which is common in some applications) can enable particularly fast
computations. For example, if each contour is a simple geometric
shape, such as a circle or an ellipse, these computations reduce to
solving a system of two quadratic equations (1.) and (2.) and a
quadratic equation (3.), which can be computed very quickly (with
different methods having different time/precision tradeoffs). In this
paper, we assume that the properties (1.) and (3.) can be calculated in
O (1), while (2.) can be calculated in O Cross A B(| (,) |). Compute A's
relationship with d and update the crossing points of d Algorithm 1: (i)
computes the relationship between the contours present in a diagram d
(with WF3 relaxed) and a contour A; (ii) updates the set of crossing
points of d according to the whether contour addition (i.e., when
A ∉) or contour removal (i.e., when A ∈) is considered.

In detail, for each contour E in A− { } (line 3), the algorithm
checks if E belongs to Cont(A)(line 4), or Over(A) (line 7). Then, for
each contour in Over(A), the collection Cross(A) is updated (lines 9–
10). This gives the contour relationships.

The set Cross d(′) is updated using Algorithm 2. Each crossing point
keeps track of the two contours involved in the intersection via the
property .contours. If A is a new contour (A ∉), then this property is
coherently updated (line 3), and each new crossing point is added to
the set of all the crossing points in d (line 4). If A was already present in
d (contour removal), then each crossing point x is removed from
Cross d(′) since x ceases to be a crossing point (lines 6–7).

We will refer to Fig. 18 to assist with the explanation of the
algorithms. Consider the addition of the dashed contour A to the
diagram in Fig. 18 without A. After the execution of Algorithm 1 we
have Cont A() = ∅, Over A B C D E() = { , , , }, whilst Cross A() is the set of
eight crossing points created by the addition of A.

algorithm 1. ComputeContourRels d A(,)

Input: An Euler Diagram d = 〈 , 〉 and a contour A.
Output: Computes the sets Cont(A), Over(A), Cross(A)and
Cross d(′). Each crossing point in Cross d(′) keeps a reference to
the contours which pass through it.

1: Cont A Over A Cross A()≔ ()≔ ()≔∅
2: Cross d Cross d(′)≔ ()
3: forall E A∈ − { } do

4
5
6
7
8
9
10
11

:
:
:
:
:
:
:
:

E properly contains A
Cont A Cont A E

A and E properly overlap
Over A Over A E

CP x x x

A E
Cross A Cross A CP

d A E CP Cross d

if then

else
if then

UpdateCrossingPoints

| ()≔ () ∪ { }

()≔ () ∪ { }
let = { , ,…, }

be the set of crossing points between and
()≔ () ∪

(, , , , (′))

r0 1 −1

⎢

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎢

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎢

⎣

⎢⎢⎢⎢⎢⎢
12: return (Cont A Over A Cross A Cross d(), (), (), (′))

algorithm 2. UpdateCrossingPoints d A E CP Cross d(, , , , (′))

Fig. 17. Multiple marked point approach (MMPA): in (a) each zone is marked by points including all of the crossing points belonging to its boundary; (b) shows, in grey, the zone B C{ , }
and its marked points; (c) a non well-formed Euler diagram (WF3 relaxed) with a zone B{ }, shown in grey, comprised of two minimal regions, utilising eight marked points.

Fig. 18. The addition of contour A splits eight minimal regions determined by the eight
arcs that comprise A. However, it splits nine zones, eight of which are the distinct zones
containing the eight minimal regions that are split. The ninth zone B{ } is split, without

splitting any of its constituent minimal regions, since one of its minimal regions is
covered by A but the other is not.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

10

Input: An Euler Diagram d = 〈 , 〉, two contours A and E, CP
a set of crossing point between A and E and Cross d(′) the cur-
rent set of all of the intersection points in d′ to be updated.
Output: The updated set Cross d(′).

1: if A ∉ then //Contour Addition

2
3
4

:
:
:

x CP
x
Cross d Cross d x

forall do∈
. contours≔{A, E}

(′) ≔ (′) ∪ { }
⎢
⎣⎢

5: else //Contour Removal

6
7

:
:

x CP
Cross d Cross d x

forall do∈
⌊ (′)≔ (′) − { }

⎢
⎣⎢

Compute the regions split by A. Algorithm 3 uses the sets output by
Algorithm 1 and calculates the collection of zone descriptors for the zones
that contain a minimal region of d A− split by A. This algorithm is used for
both contour addition (i.e., when A ∉) or for contour removal (i.e., when
A ∈), where we adopt our usual convention: if A ∈ then we refer to the
zones of d A− that are split by the addition of A, whilst if A ∉ then we
refer to the zones of d that are split by the addition of A. The crossing points
of A can be used to decompose A into a set of arcs. This algorithm computes
the zone descriptors of all of the zones of d A− that have at least one of their
minimal regions split by A.

In detail, the arcs are analysed in the sequence that they are met as one
traverses the contour (line 2); see Fig. 14 for an example. The property .zone
of a crossing point xi, contains the zone descriptor of the zone split by the arc
x x(,)i i m+1 mod . The region that is split by the first arc x x(,)0 1 is determined by
taking the set of contours that properly contain A (line 3) and then adding
the contours that properly overlap with A and which contain the arc (lines 5–
7). The property .points describes the set of points that mark a zone, and
both ends of the arc x x(,)0 1 mark zone x zone.0 (line 8). The zone x zone.0 is
then recorded as a split zone (line 9).

Each successive region that is split is calculated by computing the
difference with the previously computed region using Algorithm 4 (lines
1 − 5); this idea was presented in Observation 1. After computing each split
zone, the crossing points of A with the contours that meet A (i.e. those that
cross A at the ends of the relevant arc) are added to the collection of marked
points (denoted with the property .points) for that zone (line 6). The
collection of split zones is updated coherently (line 12 of Algorithm 3).
algorithm 3. ComputeSplitRegions d A Cont A Over A Cross A(, , (), (), ())

Input: An Euler Diagram d = 〈 , 〉, a contour A, and sets
Cont(A), Over(A) and Cross(A).
Output: Z ,s the collection of zone descriptors of the zones
having a minimal region split by A.

1: Z ≔∅s

2: Sort points in Cross(A)along the contour and let
x x x(, ,…,)m0 1 −1 be the sorting

3: x zone Cont A. ≔ ()0
4: x ≔01 any point on the arc x x(,)0 1
5: forall D Over A∈ () do //Computing the zone descriptor

for the region split by the arc x x(,)0 1

6
7

:
:

x int D
x zone x zone D

if then∈ ()
⌊ . ≔ . ∪ { }

01

0 0

⎢
⎣⎢

8: x zone points x zone points x x. . ≔ . . ∪ { , }0 0 0 1

9: Z Z x zone≔ ∪ { . }s s 0
10: forall i m= 1, 2,…, − 1 do //Computing the zone de-

scriptor for the regions split by the arcs x x(,)1 2 , …, x x(,)m−1 0

11
12

:
:

x zone x zone x
Z Z x zone

ComputeNextZone. ≔ (. ,)
≔ ∪ { . }

i i i

s s i

−1⎢
⎣⎢

13: return Zs

algorithm 4. ComputeNextZone x zone x(. ,)i i−1

Input: The zone associated with the point xi−1 and the point xi.
Output: The zone associated with the point xi.

1: C x≔ . contours − {A}i //C is the contour that with A gen-
erates xi

2: if C x zone∈ .i−1 then
3: x zone x zone C| . ≔ . − { }i i−1
4: else
5: x zone x zone C⌊ . ≔ . ∪ { }i i−1

6: x zone points x zone points x x. . ≔ . . ∪ { , }i i i i m+1 mod

7: return x zone.i

Contour addition. Algorithm 5 updates the collection of zone descriptors
upon the addition of a new contour A to a diagram d. There are two cases to
consider. Firstly, ifOver A() = ∅ then no new crossing points are created by
the addition of A, and soA forms a new connected component. Thus, A splits
only the zone described by the contours in Cont(A)(in Fig. 6 (a), contour D
splits only the outer zone, exterior to all other contours, for example).
Secondly, if Over(A)is not empty, then A splits several zones (contour A in
Fig. 18 splits several zones, for example). Algorithm 5 computes the split
zones in two steps: (i) the split zones which contain a split minimal region
are computed by Algorithm 3; (ii) the split zones which do not have any split
minimal regions are computed, together with the set of covered zones, by
analysing the relationship between the collection of marked points of the
zones and the contour A. That is, if none of the marked points for a minimal
region are in the exterior of A then that region is covered by A and a zone is
covered (respectively split) by A if all of its minimal regions are covered by A
(respectively, some but not all of its minimal regions are covered).

For instance, in Fig. 18, the zones having a minimal region split by A are
C B C B C E B E B D E B D D{∅, { }, { , }, { , , }, { , }, { , , }, { , }, { }}, whilst the

zone B{ } is split by A even though neither of its two minimal regions are
split by A since one of them is covered by A and the other is not.
algorithm 5. ContourAddition (d,A).

Output: An Euler diagram d = 〈 , 〉 and a contour A such that A ∉ .
Output: ′, the collection of zone descriptors of d A′ = 〈 ∪ { }, ′〉.
1: Cont A Over A Cross A Cross d d AComputeContourRels((), (), (), (′))≔ (,)
2: if Over A() = ∅ then //A does not properly overlap any

contour present in

3
4
5

:
:
:

s Cont A s A
Z s Z
s points A s

≔ () // is the zone split by
≔{ } // is the set of zones having a minimal region split

. ≔any point in // the marked point for
s s

6: else
7: Z d A Cont A Over A Cross AComputeSplitRegions⌊ ≔ (, , (), (), ())s

8: ′≔
9: forall z Z∈ s do

10
11
12
13
14
15
16
17
18
19
20
21
22
23

:
:
:
:
:
:
:
:
:
:
:
:
:
:

s z s
n z A n
M M M

x s points

x int A x n
M M x

x ext A x s
M M x

x A x s n
M M x

s points M M
n points M M

n n

forall do
switch do
case

case

case

≔ // is the old zone
≔ ∪ { } // is the new zone

≔ ≔ ≔∅
∈ .

∈ () // the point marks
⌊ ≔ ∪ { }

∈ () // the point marks
⌊ ≔ ∪ { }

∈ // the point marks both and
⌊ ≔ ∪ { }

. ≔ ∪
. ≔ ∪
′≔ ′ ∪ { } // The new zone

is added to the collection of zones of the diagram

s n A

n n

s s

A A

s A

n A

⎢

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎢

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎢

⎣

⎢⎢⎢⎢⎢⎢⎢

24: forall z Z∈ − s do

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

11

25
26
27
28
29
30
31
32
33
34
35
36
37
38

:
:
:
:
:
:
:
:
:
:
:
:
:
:

M M M M z

A
x z points

x int A
M M x
M M x
M z A z

z

z points M

M z A

n z A
n points M

n

forall do
if then

else

if then

else

if then

≔ ≔∅ // and record the marked points of

that are in the interior and the exterior of , respectively
∈ .

∈ ()
| ≔ ∪ { }
⌊ ≔ ∪ { }

= ∅ // if is covered by then should be removed
| ′≔ ′ − { }

⌊ . ≔

≠ ∅ // if is split or covered by then a

new region should be added
≔ ∪ { }
. ≔
′≔ ′ ∪ { }

int ext int ext

int int

ext ext

ext

ext

int

int

⎢

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎢

⎣
⎢⎢⎢

⎢

⎣
⎢⎢⎢

39: return ′

In detail, when Over(A) is empty, A does not properly overlap any
of the contours in d and it does not generate any new crossing points.
In this case there is exactly one zone of d split, described by Cont(A),
and any point on A can be chosen as the marked point for both the old
zone and the new zone of d+A, which are described by Cont(A)and
Cont A A() ∪ { } respectively (lines 3–5).

Thereafter, the algorithm considers the marked points of each zone
of d which has a minimal region that is split by A (line 7). The variable s
refers to the zone in d that is split as well as the old zone that this
becomes upon the addition of A in d′, whilst the variable n refers to the
new zone that is created in d′ from s but which is also inside A. For each
such marked point x, the algorithm checks if x is a marked point for
just the old zone, just the new zone or both (lines 13 − 20) in d′
(recorded usingMs,Mn andMA respectively). The new zone n is added
to the collection of zones of the diagram (line 23). Subsequently (line
24), the algorithm checks the remaining zones (i.e. those that do not
contain any split minimal regions) looking for covered or split zones of
d. This is performed by verifying the relationship between the marked
points of the zone z Z∈ − s and A (lines 26–30). In particular, if all
of the marked points belong to int(A) (i.e., M = ∅ext) then the zone z is
covered by A and so the old zone z is removed from the diagram (lines
31–32). Moreover, if at least one marked point belongs to int(A) then
the zone z is either split or covered and so a new zone is generated and
added to the diagram (lines 35–38).

The Algorithm DeleteContour to update the zone descriptors of a
diagram d upon the removal of a contour B from d, and its description,
is presented in Section 3.2.

3.2. The contour removal algorithm

Algorithm 6 updates the zone descriptors of a diagram d upon the
removal of a contour B from d. There are two cases to consider. Firstly,
if Over B() = ∅ then B does not cross any other contour in . Thus, B
splits only the zone described by Cont(B). However, if Over B() ≠ ∅
then B splits several zones, and Algorithm 6 computes these split zones
in two steps: (i) the zones of d B− having a minimal region split by B
are computed by Algorithm 3; (ii) the split zones of d B− which do not
have any split minimal regions are computed, together with the covered
zones, by analysing the relationship between the collection of marked
points and the contour B (similar to the contour addition case).

In detail, if Over(B)is empty then we have exactly one region split,
which is contained within the zone described by Cont(B); we record the
zone descriptor in the variable s (line 3) and add s to the set of split
zones Zs (line 4). Then, for each zone containing a split minimal region,
r, the new zone n (i.e. the zone containing r whose descriptor contains
B; the terminology is chose to be consistent with the view of the

contour addition of B to d B−) is removed, whilst the old zone s (i.e.
the zone containing r whose descriptor does not contain B) is retained.
The set of marked points is also coherently updated so that s retains all
of the marked points of s and n which remain crossing points in d′
(lines 8–15).

Subsequently (lines 16–24), the zones z of d which do not have any
minimal regions split by B (i.e. by the addition of B to d B−) are
checked to see if they are covered or split zones of d B− . This is
performed by checking if B belongs to the zone descriptor of z. If so,
then z is removed from (line 18). Moreover, if z B− { } ∉ then the
zone z is covered by B, and so the zone z B− { } is added to (line 21);
otherwise the zone z is split by B. In both cases the set of marked points
are updated coherently (lines 22, 24).
algorithm 6. DeleteContour (d,B).

Input: An Euler diagram d = 〈 , 〉 and a contour B such
that B ∈ .
Output: ′, the collection of zone descriptors of
d B′ = 〈 − { }, ′〉.

1: Cont B Over B Cross B Cross d d BComputeContourRels((), (), (), (′))≔ (,)
2: if Over B() = ∅ then //B does not properly overlap any

contour in B− { }
3
4

:
:

s Cont B
Z s
≔ ()
≔{ }s

5: else
6: Z d B Cont B Over B Cross BComputeSplitRegions⌊ ≔ (, , (), (), ())s

7: ′≔
8:: for all z Z∈ s do

9
10
11
12
13
14
15

:
:
:
:
:
:
:

s z
n z B

s points s points n points
x s points

x Cross d x

s points s points x
n

forall do

if then

≔
≔ ∪ { }

. ≔ . ∪ .
∈ .

∉ (′) // does not remain a

crossing point
⌊ . ≔ . −

′≔ ′ − { }

⎢

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎢

⎣

⎢⎢⎢

16: forall z Z∈ − s do

17
18
19
20
21
22
23
24

:
:
:
:
:
:
:
:

B z z B
z

s z B
s z B

s s
s points z points

z B
s points s points z points

if then

if then

else

{ } ∈ // is covered or split by
′≔ ′ − { }

≔ − { }
∉ // is covered by

′≔ ′ ∪ { } // is added to ′
. ≔ .

// is split by
⌊ . ≔ . ∪ . // update marked points

⎢

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎢

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢
25: return ′

3.3. Relaxing the well-formedness condition WF2

We extend the algorithms to also handle crossing points with
multiplicity greater than 2 (i.e., more than two contours crossing
transversely at a given point). For Euler diagrams with WF3 relaxed,
we used Observation 1 in Section 3 to compute the set of zones split by
the addition (or removal) of a contour A. Although Observation 1 (i)
holds for Euler diagrams with WF2 also relaxed, part (ii) does not hold
if the crossing point xi m+1 mod has multiplicity greater than 2. Fig. 19
presents a schematic diagram, similar to that shown in Fig. 14, in
which there is a crossing point, x2, with multiplicity 3. Observation 2
provides the modification of the strategy to deal with diagrams that
relax WF2 (as well as WF3).
algorithm 7. UpdateCrossingPoints d A E CP Cross d(, , , , (′)) for
WF2.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

12

1: if A ∉ then //Contour Addition

2
3
4
5
6
7

:
:
:
:
:
:

x CP
x Cross d x

x
x

x
Cross d Cross d x

forall do
if then

else

∈
∈ (′) // ’s multiplicity > 2

| . contours≔x. contours ∪ {A}
// ’s multiplicity = 2

. contours≔{A, E}
(′)≔ (′) ∪ { }

⎢

⎣

⎢⎢⎢⎢⎢⎢
⎢
⎣⎢

8: else //Contour Removal

9
10
11
12

:
:
:
:

x X
x

x

Cross d Cross d x

forall do

if then

∈
. contours ≔x. contours − {A}
| . contours| < 2 // x

ceases to be an crossing point
⌊ (′)≔ (′) − { }

E⎢

⎣

⎢⎢⎢⎢⎢⎢

⎢

⎣

⎢⎢⎢⎢⎢
Observation 2. Let d be an Euler diagram with WF3 and WF2
relaxed. Let x x x{ , ,…, }m0 1 −1 be all of the crossing points that we meet as
we traverse the contour A from an arbitrary point on A. If there are
exactly ℓ ≥ 1 contours crossing A transversely at a point xi m+1 mod then
the zone descriptors of the zones that are split by the arcs x x(,)i i m+1 mod
and x x(,)i m i m+1 mod +2 mod differ by exactly ℓ contours; these are the
contours that intersect with A comprising the crossing point xi m+1 mod .

The algorithms in Section 3 are altered to deal with the relaxation of
WF2 as follows. Firstly, in Algorithm UpdateCrossingPoints each
crossing point kept track of the two contours generating it, via the
property .contours. We now require that each crossing point keeps
track of every contour that passes through it. The algorithm
UpdateCrossingPoints for WF2 below replaces Algorithm
UpdateCrossingPoints in order to deal with the relaxation of
WF2. In detail, in UpdateCrossingPoints for WF2, if A is a new
contour (A ∉), then the .contours property is coherently updated,
depending upon whether each intersection point is already present in
the diagram (lines 3–4) or has been created by the addition of A (lines
6 − 7). If A is an existing contour in d (for contour removal), we first
remove A from x.contours (line 10) and if the size of the remaining set
of contours that pass through x is smaller than 2 (line 11), then x is
removed from Cross(d) since x ceases to be a crossing point.

Secondly, we need to update Algorithm ComputeNextZone,
replacing it with Algorithm 8, called ComputeNextZone for WF2.
Region descriptions are computed (utilising Observation 2) by comput-
ing the change from the previously computed region description (see
Fig. 19).
algorithm 8. ComputeNextZone x zone x(. ,)i i−1 for WF2

1: x≔ . contoursi // is the collection of contours which pass
through xi

2: forall C A∈ − { } do // for each contour in
C A∈ − { }

3
4
5
6

:
:
:
:

C x zone
x zone x zone C

x zone x zone C

if then

else

∈ .
| . ≔ . − { }

⌊ . ≔ . ∪ { }

i

i i

i i

−1

−1

−1

⎢

⎣

⎢⎢⎢⎢
7: x zone points x zone points x x. . ≔ . . ∪ { , }i i i i m+1 mod

8: return x zone.i

The algorithms ContourAddition and DeleteContour require
no further changes in order to deal with the relaxation of WF2.

3.4. Relaxing the well-formedness condition WF1

Firstly, we relax WF1a. Since tangential intersection points do not
affect the zones which are split by the corresponding arc (see Fig. 20),
we adapt the algorithm to deal with tangential intersections by simply
ignoring them. Thus the property .contours associated with each
crossing point should keep track of every contour that it crosses
transversely. In line 2 of algorithm UpdateCrossingPoints the
forall should range over only the crossing points that cross A
transversally. For this part, we assume that, given two contours A
and B, we can quickly find the type of each intersection point (i.e. if it is
a tangential intersection or a transverse crossing). The rest of the
algorithms remain unchanged.

Secondly, we relax WF1b, allowing concurrency. For this case, we
assume that, given two contours A and B of an Euler diagram, we can
quickly (i.e., in O (1) time):

1. check whether they are locally non-concurrent at a point x or not.
2. check if a concurrent arc at a point x is tangential or transversal (see

Definition 8, and Fig. 21 (left), (right) for examples of tangential and
transverse split points respectively).

3. find the split points (the points where two contours that meet in a
concurrent arc separate).

The split points play essentially the same role as the crossing points
within the extended algorithms: they are used as marking points for
zones and to compute the set of zones which are split by the addition of
a new contour A (noting that the crossing points are also still used, as
before). There are two cases to consider: (i) tangential concurrent arcs
and (ii) transversal concurrent arcs. For a tangential concurrent arc,
both of the split points of that arc do not affect the zones which are split
(see Fig. 21 left), and so we treat such points in the same manner as
tangential intersections; we refer to them as tangential split points. In
the algorithms, the property .contours associated to split points will not
contain any contour that forms a concurrent arc with A and separates
at the split point. For a transversal concurrent arc, the first split point
that we encounter as we traverse the contour A does not affect the zone

Fig. 19. A schematic diagram illustrating the need for Observation 2 when WF2 is
relaxed (c.f. Fig. 14). The addition of contour A creates two new crossing points of
multiplicity 2, x0 and x1 (shown as filled dots), and creates one intersection point, x2,
having multiplicity 3 (shown as a hollow dot). Suppose that x x(,)0 1 splits zone C{ }. Then
x x(,)1 2 splits zone B C{ , }, and x x(,)2 0 splits the zone ∅ (which differs from B C{ , } by the

absence of the two contours, B and C). The arcs of the contour A are shown using
different gradients of grey in order to distinguish them.

Fig. 20. The addition of A, yielding a diagram with WF1a relaxed. We have four
transverse crossing points (shown as filled dots) and one tangential intersection point
(shown as a hollow dot). Suppose that x x(,)0 1 splits zone D{ }. Then both of x x(,)1 2 and

x x(,)2 3 split zone B D{ , } since the intersection point x2 does not affect the zone which is

split (by the addition of A). Then x x(,)3 4 splits the zone B{ } and x x(,)4 4 splits the zone ∅,

as usual. The arcs of the contour A are shown using different gradients of grey in order to
distinguish them.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

13

which is split, whilst the corresponding second split point does affect
the zone which is split (see Fig. 21 right). Therefore, the first point will
be treated as a tangential intersection while the second one will be
treated as a transverse crossing; the first split point is tangential, whilst
the other is a transversal split point). If a point x is a crossing-split
point (see Section 5), then the property .contours associated to x will
keep track of every contour that transversely passes through x, as well
as every contour which creates a transversal split point at x.

3.5. Timing

We provide complexity analysis for the MMPA for Euler diagrams,
and indicate how the approach compares in terms of efficiency with
alternative methods.

The invocation of the procedure ComputeContourRels analyses
the relationship between A and each contour in , and so it takes time
O (| |). Moreover, for each contour E ∈ , the collection CP of crossing
points of E with A, is compared with Cross(d), the set of all of the
crossing points of the diagram prior to the addition of A, in such a way
as to: (i) compute Cross d(′); (ii) update, for each point in Cross d(′), the
collection of contours which pass through it. Therefore, we check
whether each point in Cross(A)is already present in Cross(d). Since
both Cross A| () | and α d A(−) are bounded above by α α d= (), we can
perform the check, for all of the points in Cross(A), in α αlog time.
Therefore, the whole procedure takes time O α α(| | + log), assuming
that we are using an efficient data structure to maintain the intersection
points and the contours to which they belong.

Then, if there are no intersection points (i.e., if Over A() = ∅), the
split region is computed within O (1) time. Otherwise, if the contour A
creates intersection points, then the procedure
ComputeSplitRegions computes the set, Zs, of zones having a split
region and, for each such zone it updates the set of marked points. The
sorting of the intersection points, between A and d, requires at most
O α α(log) time. The computation of the first zone descriptor requires
O (| |) steps, whilst each subsequent zone descriptor is computed in
O (1) time. Hence, the procedure ComputeSplitRegions requires
O α α(| | + log) steps.

Finally, for contour addition, lines 9–23 and 24–38, respectively,
compute the collection of marked points for zones having, and not
having, split minimal regions. Notice that even if the same point can be
checked against A several times in the switches (lines 15, 17, 19 and
27), the result of the comparison can be cached. Assuming that we have
O α() locations available to keep the result of the comparisons for

caching purposes, we can perform the two forall cycles in O α(| | +)
steps. The analysis is similar for the contour removal case. Collectively,
the algorithms ContourAddition and DeleteContour operate with-
in time O α α(| | + | | + log).

We note that the output of these algorithms are a set of zone descriptions
of cardinality . Hence the timing of any abstraction algorithm is at least
Ω (), which means that ifO α α(| | + log) is dominated byO (), then our
solution is optimal. Our analysis is based on the assumptions (1.)–(3.) of
Section 3.1 and the assumption (1.)–(3.) of Section 3.4. If this is not the case,
then the overall complexity will be worse, but it will still be dominated by
O (2)C| | , which represents the complexity of a standard graph-based approach.
Considering that: (i) in the average case, the number of zones is much
smaller than O (2)C| | ; and (ii) our algorithm follows an inductive approach
(which greatly reduces the number of comparisons required), the perfor-
mance of the algorithms is very efficient in the field (see Section 6).

4. Extensions of the algorithms

To simplify the main set-up and assist readability, we integrated two
conditions into the definition of a concrete Euler diagram that have been
considered as well-formedness conditions in some of the literature (i.e.
uniqueness of contour labels and simplicity of curves). Now, we extend the
definitions and algorithms in order to deal with these cases. In Definition 12,
we permit non-unique contour labels and allowmultiple labels to be assigned
to a single contour (this can be interpreted as placing multiple singly labelled
curves on top of each other).

Definition 12. A generalised concrete Euler diagram is a pair d η(,),
where d = 〈 , 〉 is a concrete Euler diagram, and η is a (total) labelling
function L→ (), with a set of labels. The label set of d η(,), denoted by
η d(), is η c⋃ ()c∈ . We say that a label l is a k- label of a zone descriptor Xz if

c X l η c k|{ ∈ : ∈ ()}| =i z i .
Since we utilised contour identifiers instead of labels in the Euler

diagram set-up (with an obvious correspondence for uniquely labelled
contours), we can consider the labelling function independently from the
Euler diagram. Thus we can utilise the previous methodology and algorithms
for Euler diagrams, and provide post-processing manipulation to provide an
interpretation for generalised Euler diagrams. An advantage of this approach
is that the interpretation function can be varied according to the situation
requirements (e.g. the application domain). We present two possible
interpretation functions to demonstrate this point. The interpretation of a
generalised Euler diagram is determined by a choice of the meaning of the
concept of inside for a contour label.

Definition 13. Let d η(,) be a generalised concrete Euler diagram. A

Fig. 21. The addition of A, yielding diagrams with WF1b relaxed. (left) The contour A creates two transverse crossing points, x0 and x2, and one tangential concurrent arc between
points x1 and x3 (shown as hollow dots). The points x1 or x3 do not affect the splitting of any zones. (right) The addition of contour A create three transverse crossing points, x0, x2 and x4,
and one transverse concurrent arc between points x1 and x3 (shown as hollow dots). The first split point that we meet as we traverse the contour A from point x0 is x1, and it does not
affect the splitting of any zone (i.e., the split zone is B{ } for both the arc before and the arc after the point x1); the second split point encountered, x3, does affect the zone splitting (i.e., the

split zone is ∅for the arc before x3 and C{ } for the arc after it).

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

14

point p ∈ −2 , where is viewed as a set of points, is inside label A
if: .

Interpretation 1 any path from p to a point x in the unbounded region
of the plane crosses an odd number of contours with label A,

Interpretation 2 it is in the interior of any contour with label A,

and is outside A otherwise.
This determines the abstract Euler diagram that the generalised Euler

diagram represents. Fig. 22 shows an example demonstrating distinct
abstractions as Euler diagram according to the different interpretations of
‘inside’ of a contour label.

Algorithm 9 computes the zones of the abstract Euler diagram for a
generalised Euler diagram under either Interpretation 1 or Interpretation 2.
In detail, this algorithm first computes the set of zone descriptors for the
underlying Euler diagram d (line 2), ignoring the labelling function η. For
each zone descriptor (line 3), the algorithm computes z, the abstract zone
corresponding to the concrete zone according to the interpretation function.
That is, label l is added to the set of labels of the abstract zone if and only if
the concrete zone is inside k contours with label l for Interpretation 1 or
inside any contours with label l for Interpretation 2 (lines 5 − 9). Each of
these abstract zones is recorded, together with the outside zone (lines 1 and
9).
algorithm 9. ComputeZoneSetGeneralisedED1 d()

Input A concrete generalised Euler Diagram d η(,) with
d = 〈 , 〉 an Euler diagram, η a labelling function, and I an
interpretation function returning interpretation i for
i ∈ {1, 2}.
Output Computes Z(d), the set of abstract zones under in-
terpretation i.

1: Z d()≔{∅}
2: Compute Z d() the set of zones descriptors for the underlying

diagram d
3: forall z Z d∈ () do

4
5
6
7
8
9

:
:
:
:
:
:

z
l η d

l is a k label of X
k is odd OR I d η

z z l

Z d Z d z

forall do
if then
if then

≔∅
∈ ()

−
((,) = 2)

⌊ ≔ ∪ { }

()≔ () ∪ { }

z

⎢

⎣

⎢⎢⎢⎢⎢⎢⎢

⎢

⎣
⎢⎢⎢
⎢
⎣⎢

10: return (Z(d))

Fig. 23 shows an example of the use of Interpretation 1 for
generalised Euler Diagrams.

It is easy to see that use of multiple non-unique labelling ensures that any
abstract diagram has a realisation, under either interpretation (see Lemma
1). Of course, the diagram constructed in the below proof is not necessarily a
sensible choice from a user perspective – utilising diagrams that are ‘as well-
formed as possible’ is likely to be preferable from a user comprehension
perspective.
Lemma 1. Any abstract Euler Diagram has a realisation as a
generalised Euler Diagram (under either interpretation).

Proof. Consider each zone z X Y= (,) in the abstract Euler Diagram d,
in turn. If X C C= { ,…, }n1 , construct a curve c with label set C C{ ,…, }n1
that is disjoint from the interior of all of the previous curves
constructed.□.

4.1. Extension to non-simple curves

Since the use of generalised concrete Euler diagrams ensures that any
abstract diagram has a realisation, the desire for the relaxation of simplicity
of curve may be limited, but we permit the interpretation of diagrams that
exhibit non-simple curves, where there are a finite number of self-intersec-
tion points. We provide one possible method for viewing a set of, possibly
non-simple, labelled closed curves as a generalised Euler diagram, in the
proof of Proposition 1. This enables the use of the previous methodology.
Proposition 1. Let be a set of labelled closed curves in the plane,
with a finite set of self - intersection points. Then there is a generalised
Euler diagram, d η(,), where d = (′,), with the following
properties:

• for each non - simple closed curve in there is a set of simple closed
curves in ′, determining the same set of points in the plane,

• each simple closed curve in appears in ′,
• no other curves appears in ′,
• for each curve in ′ the total function η assigns the label for the

corresponding curve in .

Proof. Suppose that A is the label of a non-simple curve c with a finite
set of self-intersections points. Then the complement of c in 2 is a
union of finite set of open, bounded regions r r,…, n1 of the plane,
together with an open unbounded region r. Replace the curve c by a
finite set of simple closed curves, c c,…, n1 , each labelled A, which bound
r r,…, n1 , respectively.

The set of points in c c∪ … ∪ n1 is equal to the set of points in c.□.

Fig. 22. A generalised Euler diagram which has different abstractions (i.e. different abstract zone sets) depending upon the interpretation chosen. Interpretation 1 (left) effectively
interprets any contour label as a union of regions with holes, whilst Interpretation 2 (right) effectively interprets any contour label as a union of regions without holes. For example, on
the left the interior of label A is the annulus formed by the two contours labelled A, whilst on the right it is the disc formed from the outer contour labelled A (shown shaded).

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

15

5. Identifying disconnected zones

Since the algorithm to enable the computation of the abstraction of
Euler diagrams proposed in [10,13] solves the abstraction problem
only for well-formed diagrams, a method for identifying disconnected
zones (WF3), when WF1 and WF2 are preserved, was developed. Here,
we presented an evolution of the algorithm to enable the computation
of the abstraction of any given Euler diagram (or generalised Euler
diagram). However, it is always important to know whether or not a
concrete diagram satisfies a certain well-formedness condition, whose
imposition is intended to reduce errors of comprehension. Therefore,
we want to be able to check if each diagram is well-formed, so that we
can highlight the information of how the diagram fails the well-
formedness conditions, for a user of a software tool, for instance. The
preservation of some well-formed conditions (e.g., no self-intersection,
unique labelling, WF1 and WF2) upon contour addition or removal is
easily checked: contours must not generate self intersections; the label
of the newly added contour must be new; each intersection of the new
contour with existing contours should create a new intersection point
which is a transverse crossing that is distinct from the existing
intersection points; the number of intersection points must be finite
(no concurrency). On the other hand, identifying disconnected zones,
when WF1 and WF2 are not preserved, is not easy; we provide a result
to enable the identification of disconnected zones in this general case.
Definition 14. Let d = 〈 , 〉 be a Euler diagram. Then, we:

• denote the number of crossing points of d with multiplicity i by

α d()i , and the total number of crossing points of d by
α d α d() = ∑ (),i

n
i=2 where n is the maximum multiplicity of any

crossing point in d.

• denote the number of split points of d having split number j by
β d()j , and the total number of split points of d by β d β d() = ∑ ()j

m j
=1 ,

where m is the maximum split number in d.

• call a point which is both a crossing point and a split point a
crossing-split point. Let γ d()i

j denote the number of points that are
crossing points with multiplicity i and split points with split number
j. Let γ d γ d() = ∑ ()i j

m
i
j

=1 be the number of crossing-split points

having multiplicity i, γ d γ d() = ∑ ()j
i
n

i
j

=2 be the number of cross-
ing-split points having split number j, and

∑ ∑ ∑ ∑ ∑
∑

γ d γ d γ d γ d

γ d

() = () = () = ()

= ()

i

n
i i

n

j

m
i
j

j

m

i

n
i
j

j

m j

=2 =2 =1 =1 =2

=1

be the total number of crossing-split points of d.

• partition d() into the connected components of d (i.e. the maximal
sets of intersecting contours), and denote the number of compo-
nents of d by δ d().
In [13] a relationship between the number of zones, the number of

crossing points (previously called intersection points) and the number
of connected components of a well-formed diagram d was presented;
this can be used to check if a diagram has disconnected zones (i.e d fails
WF3).

Theorem 2 (restated from [15]). Let d = 〈 , 〉 be obtained by
adding or removing a contour from a well - formed Euler diagram. If

Fig. 23. An example demonstrating the application of the algorithm to interpret a generalised Euler diagram. We start with a generalised Euler diagram with three contours, two of
which are labelled A and the other B. We view this as an Euler diagram, assigning unique identifiers to each of the curves; here we use A1 and A2 as identifiers for the contours labelled by
A to aid readability (top right). This enables us to compute the zone descriptors for each concrete zone, utilising the unique identifiers (bottom right). Then, for each zone descriptor, we
can check if the concrete zone is inside each label by checking if there is an odd number of contours in the zone descriptor in which the label appears, following Interpretation 1. Then one
replaces the zone descriptor by the corresponding label set (bottom left). For example the zone descriptor A A1 2 is replaced by ∅ since both A1 and A2 identify curves labelled by A.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

16

d satisfies WF1 and WF2 then d is well - formed iff
α d δ d| | = () + () + 1.

An example, with computations demonstrating the result of
Theorem 2, is provided in Fig. 24.

However since, in this paper, we allow points of tangential
intersection or multiple contours crossing at a point, the above result
does not apply. Therefore, we provide an extended result which relates
the number of minimal regions of an Euler diagram to the number of
crossing points, their multiplicity, the number of split points, their split
number, and the number of connected components of the diagram.
This result enables the identification of diagrams passing or failing the
well-formedness condition without needing to compute the associated
graphs.
Lemma 2. Let x be a split point of a diagram d. Then the vertex
degree of x in G(d), the graph of the diagram, is

C C m x s x2| | + | | = 2 () + ()I J .

Proof. Firstly, suppose that x is an crossing-split point. Then the
summand C2| |I arises from maximal number of curves crossing at x (i.e.
the crossing number m x C() = | |I), whilst the splitting number s(x)
counts the number of extra distinct segments of curves that become
concurrent with the contours involved in the intersection point at x.

Secondly, if x is not an crossing point then, since x is a split point by
hypothesis, we have that CI is a single contour. Therefore, C2| |I counts
the two edges at x corresponding to that contour, whilst s(x) counts the
number of extra distinct segments of curves that separate from any
concurrency with that single contour at x.□.

We make use of the following Theorem, paraphrased from [43],
pages 66–67.
Theorem 3 (Euler's Formula). Let G be a connected plane graph.
Then v e f k− + = 1 + where v is the number of vertices, e is the
number of edges, f is the number of faces, and k is the number of
components of G.

Theorem 4. Let d = 〈 , 〉 be an Euler diagram with r minimal
regions. Then r δ d i α d jβ d= 1 + () + ∑ (− 1) () + ∑ ()i

n
i j

m j
=2

1
2 =1 .

Proof. We partition the set of vertices of G(d) into crossing points,
split points, and crossing-split points (where these are strict terms) and
vertices identifying single contour components. That is, we partition
V G d(()) into V V V, ,α β γ and Vδ where:

• Vα is the set of vertices with v V∈x α corresponding to point x of d with
m x() > 1 and s x() = 0,

• Vβ is the set of vertices with v V∈x β corresponding to point x of d
with m x() = 1 and s x() > 0,

• Vγ is the set of vertices with v V∈x γ corresponding to point x of d with
m x() > 1 and s x() > 0,

• Vδ is the set of vertices with v V∈x δ corresponding to point x of d with

m x() = 1 and s x() = 0, where x belongs to a component that consists
of a single contour.

Each vertex

• v V∈x α with m v i() =x has deg v i() = 2x (where deg is the degree of the
vertex),

• v V∈x β with s v j() =x has deg v j() = + 2x by Lemma 2,

• v V∈x γ with m v i() =x and s v j() =x has deg v i j() = 2 +x by Lemma 2,

Except for the edges incident with vertices in Vδ, each edge of G(d)
joins distinct vertices, and so we have:

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

e i α d γ d j β d γ d

i j γ d V

iα d iγ d j β d j γ d

iγ d jγ d V

iα d j β d γ d V

iα d j β d γ d V

= 1
2

2 (() − ()) + (+ 2)(() − ())

+ + 1
2

(2 +) () + |

| = 1
2

(2 () − 2 ()) + ((+ 2) () − (+ 2) ())

+ + 1
2

2 () + () + |

| = 1
2

2 () + (+ 2) () − () + |

| = () + 1
2

(+ 2) () − () + | |.

i

n

i i
j

m
j j

i

n

j

m

i
j

δ

i

n

i i
j

m
j j

i

n

i
j

m
j

δ

i

n

i
j

m
j

j

m
j

δ

i

n

i
j

m
j

j

m
j

δ

=2 =1

=2 =1

=2 =1

=2 =1

=2 =1 =1

=2 =1 =1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Since d is a plane graph, by Euler's formula we have
v e f k− + = 1 + , where: f is the number of faces in d which is equal
to r, the number of minimal regions in the diagram;
v α d β d γ d V= () + () − () + | |δ ; k is the number of components of d,
which is equal to δ d(). Therefore,

∑ ∑ ∑

∑ ∑

f k v e δ d α d β d γ d V

iα d j β d γ d V

δ d i α d jβ d

= 1 + − + = 1 + () − (() + () − () + | |)

+ () + 1
2

(+ 2) () − () + |

| = 1 + () + (− 1) () + 1
2

()

δ

i

n

i
j

m
j

j

m
j

δ

i

n

i
j

m
j

=2 =1 =1

=2 =1

as required.□
We notice that Theorem 4 generalises the result in Theorem 2.

Indeed, when the diagram satisfies WF1 and WF2, there are no split
points and every crossing point has multiplicity 2. Thus, one can
identify and highlight occurrences of the failure of the relevant WF
conditions, which can be useful in conjunction with the main algo-

Fig. 24. Single contour components are shown dashed, and crossing points are highlighted: (a) 6 crossing points and 1 connected component, so α d() = 6, δ d() = 1 and | | = 8; (b) 2
crossing points and 2 connected components, so α d() = 2, δ d() = 2 and | | = 5; (c) 4 crossing points and 3 connected components, so α d() = 4, δ d() = 3 and | | = 8.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

17

rithms and well as for presentation within an interactive environment.
We can view diagram d as a graph G(d) whose vertices are the

crossing points and the split points of d, provided that we add an
additional vertex at any point of each contour that does not intersect
with any other contour in d, and whose edges are the connecting
segments of the contours. For the case of connected diagrams, this was
called the graph of the diagram in [8].

6. Implementation and benchmarking with ellipses

The algorithms presented in this paper were designed in generality,
not placing restrictions on the types of curves used (e.g. in terms of
geometric shape). In some application areas, such restrictions are
imposed, and in [10], arbitrarily rotated ellipse-based Euler Diagrams
were used in a visual interface for information classification. Within
this application context, a Java library that hosts the data structures
and the algorithms presented in this paper have been constructed. We
provide a performance evaluation of the implementation in order to
indicate the potential practical utility of the algorithms. However, we
note that the library was implemented for demonstration purposes,
without particular attention paid to performance, and an improved
implementation (particularly if context specific) would be very likely to
achieve higher speed.

Benchmark setting. The benchmark was designed with the inten-
tion of assessing the performance of the library in the context of an
interactive application, making good use of the on-line nature of the
algorithms. Each run of the test begins with the generation of a random
diagram containing arbitrarily placed, rotated and scaled ellipses that
will create numerous intersection points. Then an “interactive phase” is
performed, simulating a user's interactions with the diagram by
iteratively adding a random ellipse (random orientation, size and
placement) and removing a random ellipse. This mimics three types
of user interactions: adding a new ellipse, deleting an ellipse, modifying
an ellipse (which can be viewed as a removal followed by an addition).
We performed ≈200 tests with diagrams containing between 2 and 20
ellipses.

Results. In Fig. 25 we show the number of operations per second
achieved in the interactive phase. The two plots refer to the same set of
random diagrams but display the results of the number of operations
per second versus the number of ellipses (right) and the number of
intersection points (left). The number of intersections is important to
measure because the number of ellipses essentially places an upper
bound on the number of zones in the diagram, whilst the number of
intersections captures some information about the complexity of the
interaction of the curves. The intention for the library was that it
should be capable of obtaining interactive performances suitable for
human usage. Therefore, within the plots, we emphasize a limit of 20
operations per second, which represents a reasonable refresh rate for
the interactivity; the plot on the right shows that this target rate is
easily achieved with diagrams containing up to 10 ellipses.

7. Related work

An important problem that has received much attention is that of
the generation problem: given an abstract Euler diagram, decide if
there is a concrete diagram which realises the abstract diagram, and if
so to produce a drawing of it. The solutions to this problem vary
according to the set of well-formedness conditions imposed. In [21], a
diagram was called well-formed if it satisfied all of the WF conditions,
and a decision procedure and generation algorithm was provided in
this case. In other Euler-based generation works [8,26,29,32,34,39],
some of these conditions have been relaxed, the basic definitions
varied, and such diagrams have been used in the applications described
earlier.

In [13], the Euler diagram abstraction problem was solved for well-
formed Euler diagrams utilising the single marked point approach in

which each zone was tracked via a single marked point. The algorithms
applied to weakly reducible diagrams (diagrams obtainable via a
sequence of curve additions and removals), and had running time
O (| | + | | log | |). In [10] we presented the design and the implemen-
tation, in Java, of a library, called EulerVC, which realises these
concepts and algorithms for well-formed Euler Diagrams.
Furthermore, we utilised this library to develop an application for
interactive Euler diagram manipulation for the purposes of resource
management, allowing users to interactively draw and modify Euler
Diagrams which permit the storage and retrieval of Internet book-
marks, for example.

The relationship of the Euler diagram abstraction problem with
arrangements of Jordan curves in the plane [16,17] was discussed in
[10]. We note that in our approach we do not need to store or
manipulate graphs, but we work directly with the diagrams using their
intersection points and the domain specific data structures, and we
obtain a methodology with a straightforward means of implementation.

In [40], an application is presented that interprets an Euler
Diagram sketched with a pen or a mouse, and calculates the abstract
diagram (this application has been generalised in [35] to Euler
Diagrams augmented with graphs). The authors claim complexity that
is asymptotically similar to ours, but this claim is not substantiated,
with the paper not providing details of how, given two regions ra and
rb, the system actually computes whether r r∩a b is empty or not. A
possible method that would be effective with the generality that they
describe is a pixel based inspection of the drawing (commonly available
in programming languages) but which has the drawback of being
dependent on the resolution of the image. Our methodology has the
added advantage of being more general in that it is not dependent on
the image of the contours, but only on their analytical representation.
Clark [9] made use of java-area operations to compute the set of zones
of a diagram. For each subset of curves, the corresponding area is
determined to be present if the area of intersection of the curves is non-
empty.

In [42], a methodology is provided which takes as input a set of
polygons (i.e. regions determined by sets of non-overlapping curves,
which play the role of contours) and outputs a set of non-overlapping
polygons (described by the input set), which essentially play the role of
minimal regions; this enables the computation of polygon operations
such as union, intersection, difference and clipping. A graph based
representation is constructed which consists of a binary tree structure,
encapsulating the structure of non-overlapping contours, together with
a winged-edge data structure [2] (a data representation used to
describe polygon models in computer graphics) which captures the
set of polygons as a graph (indicating the intersection points) and
provides a simple means of traversing the faces of that graph. Their
algorithm “corrects” input containing degeneracies (e.g. zero area
contours, or coincident edges, meaning concurrency), whereas we wish
to develop a method that explicitly considers them. For ‘diagrams’ that
consist of more than one connected component, they compare each
output contour with the others to determine if one is inside the area of
another or if they co-exist within the same area, and they record these
contour relationships in the hierarchical tree structure of the contours.
Our approach (utilising marked points) removes the need to compute
these graph structures and then to operate on them, whilst providing a
means to explicitly capture the ‘singularities’ that may occur within
certain contexts or application domains.

In [3], they prove that the Grünbaum encoding uniquely identifies
simple Venn diagrams (i.e. they are well-formed) which are monotone
and polar symmetric, and develop an algorithm utilising a matrix
representation to enumerate the monotone simple symmetric 7-Venn
diagrams. The codes considered in the paper rely upon numbering the
curves (adopting certain conventions based on the curve segment in
other and inner faces to fix the choices) and for a given curve recording
the sequence of curve numbers that are given as one traverses the
curve. Our methodology applies to a much wider class of diagrams, but

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

18

investigating the computation of encodings from the data structures
utilised in our algorithms is an interesting line of future investigation.
In [27], they extended the work of [4], producing exhaustive lists of
simple monotone Venn diagrams that have some symmetry (non-trivial
isometry) when drawn on the sphere, and they also prove that the
Grünbaum encoding can be used to efficiently identify any monotone
Venn diagram. In [1], they developed the foundations for a theory of
ED codes (for a particular class of EDs), which could be viewed both as
a generalisation/extension of Gauss codes used to encode knot
diagrams, as well as a kind of high level abstraction of our basic
methodological approach.

8. Conclusion

Euler diagrams, and their generalisations and extensions (e.g.
mixed Euler diagram-graph representations), are a common form of
representation used for information visualisation when there is an
underlying set-relation based requirement. Various Euler diagram
generation techniques for automatically creating a drawing of the
requirements (usually in the form of an abstract diagram), together
with beautification processes to improve the aesthetic quality of the
output, have been developed.

The use of Euler diagram based representations is not limited to the
presentation of information, however, and they can be used as the basis
of the front-end of interactive interfaces. Whilst users may require
facilities to create diagrams (e.g. by sketching, by use of pre-defined
shapes, by automatic generation), if the users are performing opera-
tions that relate to the regions of diagram then identifying those
regions quickly (i.e. solving the abstraction problem) is essential in
order to enhance response rate. Furthermore, if the diagrams are
editable (e.g. if users can modify diagrams by adding, removing or
translating curves, say), then the online abstraction problem is the
natural problem to address.

Region-based operations have been used in: (i) visual querying –

using the set of contours of an Euler diagram to represent query terms
and then clicking on a region represents running a query that is the
associated Boolean expression over those terms; (ii) visual classifica-
tion - using the set of contours of an Euler diagram to represent a non-
hierarchical classification structure (e.g. providing a view of a file
system or tag structure) and then drag and drop of an item (a file, say)
into a region provides an immediate classification (placement in file
structure or assignment of a set of tags, say); (iii) visual workflows -
extending the visual query and classification approaches above to
permit the drag and drop of icons representing operations that can
be performed on files within the specified classification structure, and

the composition of such operations (e.g. to select all items with a set of
tags expressed by a region of the diagram, to zip them all into one file
and then automatically open an email client with the zipped file as an
attachment).

Whilst dealing with well-formed diagrams (whether generating or
interpreting) is likely to be preferable from a human perspective (after
all, they were introduced with an aim of reducing diagram interpreta-
tion errors), there are situations where this is not even achievable (e.g.
due to the conditions being so restrictive that certain abstract diagrams
cannot be drawn under those conditions), and there may be occasions
in which users prefer violation of some of the well-formedness
conditions (e.g. in order to be able to draw a diagram with certain
symmetries or using fixed geometric shapes, or simply because of
aesthetic preference). Therefore, extending methods to permit the
relaxation of the drawing conventions (i.e. the well-formedness condi-
tions) is an important task. Furthermore, within an interactive tool
setting, if relaxations of the well-formedness conditions are permitted
then there may be a need to highlight the areas where these conditions
are violated. In particular, if a zone is not connected, being comprised
of multiple minimal regions, then the ability to highlight the regions
may be required (e.g. in a setting where items are displayed in the
regions, then it is desirable to facilitate the visual assessment of the set
of all items presented in the regions that comprise the zone).

The previously defined SMPA approach solved the online abstrac-
tion problem for well-formed Euler diagrams, but it does not naturally
extend to diagrams that permit zones to be disconnected. In this paper,
we introduce the MMPA approach which enables this case to be dealt
with (but it comes with some additional computational overheads).
Furthermore, we provide independent extensions to enable the relaxa-
tion of the other well-formedness conditions. We present these as
extensions of the MMPA but they could equally well be incorporated
into the SMPA approach instead. The complexity analysis presented
demonstrates that this approach is no worse than other approaches in
the worst case, whilst for generally occurring cases (where the number
of regions is less than 2n for n curves) the approach will fare better, and
in particular the online nature of the algorithm can have massive
computational savings over an offline approach.

As part of the algorithm extensions discussed, we permit the
important capability of dealing with concurrency, including the devel-
opment of foundational underlying theory for a deeper study of
concurrency in this setting. This theory could be used in other settings,
such as in the context of Euler graphs (the underlying graph of the
diagram) used within automatic diagram generation settings.
Furthermore, abstracting the data sets stored as part of the approach
would provide an alternative data structure, somewhat reminiscent of a

Fig. 25. The performances of the algorithm in a real setting in terms of operation per seconds (so the more operations per second, the better the performance). The horizontal black line
represents the interactivity limit of 20 operations per second.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

19

winged edge data structure used in computer graphics, but which is
able to deal effectively with concurrency, for instance. To ensure the
ability to represent any abstract diagram, we also present a straightfor-
ward method of interpreting generalised Euler diagrams, where multi-
ple curves can have the same label or where curves with self-intersec-
tion are permitted.

The algorithms presented in this paper work for general diagrams,
for any generic form of curve, but we assume that certain operations
(e.g. computing intersection points and types) can be performed
quickly (i.e. in constant time) within the complexity analysis. The
practical running time may vary according to the forms of curve used,
of course. For instance, fixing the geometric shapes to be (arbitrarily
rotated) ellipses can lead to faster reaction times than for generic
curves since one can take account of the geometric shape when
computing the intersections and their types, for instance.

From a practical perspective, the implementation of geometric
algorithms is a widely explored field with many interesting problems
[23], although most of these problems are bound to the use of limited
precision in calculation. The algorithms presented in this paper are
available in a Java library, although to simplify implementation, and to
improve the efficiency, it restricts the geometric shape of contours to be
arbitrarily rotated ellipses. It is available as an open source project on
GitHub [15]. The library, together with the use of ellipses, permits the
manipulation of items placed within the zones of the diagram. It also
provides facilities to allow querying of the diagram for the set of zones
and the position of the items within the zones.

The library is easily extensible in order to be able to handle different
types of contours, provided they can be represented in parametric
form, thereby enabling an easy implementation of operations such as
choosing a point on a contour, or checking the contour relationships of
intersection and containment.

Acknowledgements

We thank all of the anonymous reviewers of different versions of
this paper for helping to enhance the quality of the final publication.
We acknowledge EPSRC grant EP/J010898/1 Automatic Diagram
Generation. No data was produced that could be usefully archived.

References

[1] P. Bottoni, G. Costagliola and A. Fish, Euler diagram encodings, in: Proceedings of
Diagrams '12, LNAI 752, 2012, pp. 148–162.

[2] B.G. Baumgart, A polyhedron representation for computer vision, in: Proceedings
national computer conference and exposition (AFIPS '75), ACM, New York, NY,
USA, 1975, pp. 589–596.

[3] T. Cao, K. Mamakani, F.Ruskey, Symmetric Monotone Venn Diagrams with Seven
Curves, in: Proceedings of the Fifth International Conference on Fun with
Algorithms, LNCS 6099, 2010, pp. 331–342.

[4] S.-K. Chang, E. Jungert, A spatial/temporal query language for multiple data
sources in a heterogeneous information system environment, Int. J. Coop. Inf. Syst.
7 (2) (1998) 167–186. http://dx.doi.org/10.1142/S021884309800009X.

[5] S.-K. Chang, G. Costagliola, E. Jungert, F. Orciuoli, Querying distributed multi-
media database data sources in information fusion applications, in: Journal of
IEEE transaction on Multimedia, 2004.

[6] S.-K. Chang, W. Dai, S. Hughes, P. Lakkavaram, X. Li, Evolutionary Query
Processing, Fusion and Visualization, in: Proceedings of International Conference
on Distributed Multimedia Systems, 2002.

[7] S.-K. Chang, Query Morphing for Information Fusion, in: Proceedings of IMAGE:
Learning, Understanding, Information Retrieval, Medical, Cagliari, Italy, June 9–
10, 2003.

[8] S.C. Chow, Generating and Drawing Area-Proportional Euler and Venn Diagrams,
[Ph.D. thesis], University of Victoria, 2007.

[9] R. Clark, Fast Zone Discrimination, in: Proceedings VLL 2007, CEUR, volume 274,
2007, pp. 41–54.

[10] G. Cordasco, R. De Chiara, A. Fish, Interactive Visual Classification with Euler
Diagrams, in: Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing VL/HCC, IEEE Press, 2009, pp. 185–192.

[11] G. Cordasco, R. De Chiara, A. Fish, V. Scarano, The Online Abstraction Problem for
Euler Diagrams, in: Proceedings of Euler diagrams 2012, CEUR 854, 2012, pp. 62–
76.

[12] G. Cordasco, R. De Chiara, A. Fish, V. Scarano, FunEuler: an Euler Diagram based
Interface Enhanced with Region-based Functionalities, in: Proceedings of Euler
diagrams 2012, CEUR 854, 2012, pp. 107–121.

[13] G. Cordasco, R. De Chiara, A. Fish, Efficient on-line algorithms for Euler diagram
region computation, Comput. Geom.: Theory Appl. (CGTA) 44 (2011) 52–68.

[14] R. De Chiara, U. Erra, V. Scarano, VennFS: a Venn diagram file manager, in:
Proceedings of Information Visualisation, IEEE Computer Society, 2003, pp 120–
126.

[15] R. De Chiara, G. Cordasco, A. Fish, Concrete Euler Diagrams manipulation library
GitHub Repository, 〈https://github.com/rosdec/euler〉

[16] H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, M. Sharir, Arrangements
of curves in the plane—topology, combinatorics, and algorithms, in: Theoretical
Computer Science, Vol. 92 N. 2, Elsevier Science Publishers Ltd. 1992, pp. 319–
336.

[17] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag Inc.,
New York, 1987.

[18] L. Euler, Lettres a une princesse d′allemagne sur divers sujets de physique et de
philosophie, Letters 2 (1775) 102–108 [Berne, Socit Typographique].

[19] A. Fish, J. Flower, J. Howse, The semantics of augmented constraint diagrams, J.
Vis. Lang. Comput. 16 (2005) 541–573.

[20] A. Fish, Euler diagram transformations, Graph Transform. Vis. Model. Tech.,
ECEASST 18 (2009) 1–17.

[21] J. Flower, A. Fish, J. Howse, Euler diagram generation, J. Vis. Lang. Comput. 19
(2008) 675–694.

[22] C.A. Gurr, Effective diagrammatic communication syntactic, semantic and prag-
matic issues, J. Vis. Lang. Comput. 10 (1999) 317–342.

[23] C.M. Hoffmann, The problems of accuracy and robustness in geometric computa-
tion, Computer 22 (3) (1989) 31–40.

[24] J. Howse, F. Molina, J. Taylor, S. Kent, J. Gil, Spider diagrams a diagrammatic
reasoning system, J. Vis. Lang. Comput. 12 (3) (2001) 299–324.

[25] S. Kent, Constraint diagrams: visualizing invariants in object oriented models, in:
Proceedings of OOPSLA97, ACM Press, 1997, pp. 327–341.

[26] H. Kestler, A. Muller, T. Gress, M. Buchholz, Generalized Venn diagrams: a new
method for visualizing complex genetic set relations, J. Bioinforma. 21 (8) (2005)
1592–1595.

[27] K. Mamakani, W. Myrvold, F. Ruskey, Generating simple convex Venn diagrams, J.
Discret. Algorithms 16 (8) (2012) 270–286.

[28] N. Henry Riche, T. Dwyer, Untangling Euler diagrams, IEEE Trans. Vis. Comput.
Graph. 16 (6) (2010) 1090–1099.

[29] P. Rodgers, L. Zhang, A.Fish, General Euler Diagram Generation, in: Proceedings of
the 5th International Conference on Diagrams 2008, Vol. 5223 of LNAI, Springer-
Verlag, 2008, pp. 13–27.

[30] F. Ruskey, A survey of Venn diagrams, Electronic Journal of Combinatorics. 〈www.
combinatorics.org/Surveys/ds5/VennEJC.html〉, 1997.

[31] A.Shimojima, Inferential and expressive capacities of graphical representations:
survey and some generalizations, in: Proceedings of the 3rd International
Conference on the Theory and Application of Diagrams, Vol. 2980 of LNAI,
Springer-Verlag, 2004, pp. 18–21.

[32] P. Simonetto, D. Auber, D. Archambault, Fully automatic visualisation of over-
lapping sets, Comput. Graph. Forum (EuroVis09) 28 (June (3)) (2009) 967–974.

[33] G. Stapleton, J. Masthoff, J. Flower, A. Fish, J. Southern, Automated theorem
proving in Euler diagrams systems, J. Autom. Reason. 39 (2007) 431–470.

[34] G. Stapleton, P. Rodgers, J. Howse, L. Zhang, Inductively generating Euler
diagrams, IEEE Trans. Vis. Comput. Graph. 17 (1) (2011) 88–100.

[35] G. Stapleton, B. Plimmer, A. Delaney, P. Rodgers, Combining sketching and
traditional diagram editing tools, ACM Trans. Intell. Syst. Technol. 6 (1) (2015) 10.

[36] N. Swoboda, G. Allwein, Using DAG transformations to verify Euler/Venn homo-
geneous and euler/venn fol heterogeneous rules of inference, J. Softw. Syst. Model.
3 (2) (2004) 136–149.

[37] J. Thièvre, M. Viaud, A. Verroust-Blondet, Using Euler Diagrams in Traditional
Library Environments, in: Euler Diagrams 2004, Vol. 134 of ENTCS, 2005, pp.
189–202.

[38] J. Venn, On the Diagrammatic and Mechanical Representation of Propositions and
Reasonings, Phil. Mag, 1880.

[39] A. Verroust, M.-L.Viaud, Ensuring the Drawability of Extended Euler Diagrams for
up to eight Sets, in: Proceedings of the 3rd International Conference on the Theory
and Application of Diagrams, volume 2980 of LNAI, Cambridge, UK, Springer,
2004, pp. 128–141.

[40] M. Wang, B. Plimmer, P. Schmieder, G. Stapleton, P. Rodgers, A. Delaney
SketchSet: Creating Euler diagrams using pen or mouse, in: Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing VL/HCC,
IEEE Press, 2011, pp. 75–82.

[41] Li. Xin, S.K.Chang, An interactive visual query interface on spatial/temporal data,
in: Proceedings of the Tenth International Conference on Distributed Multimedia
Systems, 2004.

[42] K. Weiler, Polygon comparison using a graph representation, Computer Graphics
(SIGGRAPH '80 Proceedings), 14(3):10–18, July 1980.

[43] R.J. Wilson, Introduction to Graph Theory, 4th edition, Longman, 1996.

G. Cordasco et al. Journal of Visual Languages and Computing xx (xxxx) xxxx–xxxx

20

http://dx.doi.org/10.1142/S021884309800009X
http://refhub.elsevier.com/S1045-(15)30022-sbref2
http://refhub.elsevier.com/S1045-(15)30022-sbref2
https://github.com/rosdec/euler
http://refhub.elsevier.com/S1045-(15)30022-sbref3
http://refhub.elsevier.com/S1045-(15)30022-sbref3
http://refhub.elsevier.com/S1045-(15)30022-sbref4
http://refhub.elsevier.com/S1045-(15)30022-sbref4
http://refhub.elsevier.com/S1045-(15)30022-sbref5
http://refhub.elsevier.com/S1045-(15)30022-sbref5
http://refhub.elsevier.com/S1045-(15)30022-sbref6
http://refhub.elsevier.com/S1045-(15)30022-sbref6
http://refhub.elsevier.com/S1045-(15)30022-sbref7
http://refhub.elsevier.com/S1045-(15)30022-sbref7
http://refhub.elsevier.com/S1045-(15)30022-sbref8
http://refhub.elsevier.com/S1045-(15)30022-sbref8
http://refhub.elsevier.com/S1045-(15)30022-sbref9
http://refhub.elsevier.com/S1045-(15)30022-sbref9
http://refhub.elsevier.com/S1045-(15)30022-sbref10
http://refhub.elsevier.com/S1045-(15)30022-sbref10
http://refhub.elsevier.com/S1045-(15)30022-sbref11
http://refhub.elsevier.com/S1045-(15)30022-sbref11
http://refhub.elsevier.com/S1045-(15)30022-sbref11
http://refhub.elsevier.com/S1045-(15)30022-sbref12
http://refhub.elsevier.com/S1045-(15)30022-sbref12
http://refhub.elsevier.com/S1045-(15)30022-sbref13
http://refhub.elsevier.com/S1045-(15)30022-sbref13
http://www.combinatorics.org/Surveys/ds5/VennEJC.html
http://www.combinatorics.org/Surveys/ds5/VennEJC.html
http://refhub.elsevier.com/S1045-(15)30022-sbref14
http://refhub.elsevier.com/S1045-(15)30022-sbref14
http://refhub.elsevier.com/S1045-(15)30022-sbref15
http://refhub.elsevier.com/S1045-(15)30022-sbref15
http://refhub.elsevier.com/S1045-(15)30022-sbref16
http://refhub.elsevier.com/S1045-(15)30022-sbref16
http://refhub.elsevier.com/S1045-(15)30022-sbref17
http://refhub.elsevier.com/S1045-(15)30022-sbref17
http://refhub.elsevier.com/S1045-(15)30022-sbref18
http://refhub.elsevier.com/S1045-(15)30022-sbref18
http://refhub.elsevier.com/S1045-(15)30022-sbref18
http://refhub.elsevier.com/S1045-(15)30022-sbref19

	Online region computations for Euler diagrams with relaxed drawing conventions
	Introduction
	Motivation
	Contribution and paper outline

	Preliminaries
	Refining intersection point types for the concurrency case

	Computing the abstraction of Euler diagrams
	The algorithms
	The contour removal algorithm
	Relaxing the well-formedness condition WF2
	Relaxing the well-formedness condition WF1
	Timing

	Extensions of the algorithms
	Extension to non-simple curves

	Identifying disconnected zones
	Implementation and benchmarking with ellipses
	Related work
	Conclusion
	Acknowledgements
	References

