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ABSTRACT

Deposited fine sediment is an essential component of freshwater ecosystems. Nonetheless, anthropogenic activities can modify natural fine
sediment levels, impacting the physical, chemical and biological characteristics of these ecosystems. An ability to quantify deposited fine
sediment is critical to understanding its impacts and successfully managing the anthropogenic activities that are responsible for modifying
it. One widely used method, the visual estimate technique, relies on subjective estimates of particle size and percentage cover. In this paper,
we present two novel alternative approaches, based on non-automated digital image analysis (DIA), which are designed to reduce the sub-
jectivity of submerged and surficial fine sediment estimates, and provide a verifiable record of the conditions at the time of sampling. The
DIA methods were tested across five systematically selected, contrasting temperate stream and river typologies, over three seasons of mon-
itoring. The resultant sediment metrics were strongly, positively correlated with visual estimates (rs= 0.90, and rs= 0.82, p< 0.01), and sim-
ilarly strongly, but negatively correlated with a sediment-specific biotic index, suggesting some degree of biological relevance. The DIA
technique has the potential to be a valuable tool for application in numerous areas of river research, where a non-destructive, less subjective
and verifiable method is desirable. Copyright © 2016 The Authors River Research and Applications Published by John Wiley & Sons Ltd
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INTRODUCTION

Fine sediment (organic and inorganic particles;<2mm) is an
essential component of freshwater ecosystems (Owens et al.,
2001). Nonetheless, anthropogenic activities can lead to
modified levels of fine sediment delivery to surface waters,
impacting the physical, chemical and biological characteris-
tics of these ecosystems (Wood and Armitage, 1997). An
ability to quantify deposited fine sediment is critical to under-
standing its impacts and successfully managing the anthropo-
genic activities that are responsible for modifying it. A
number of methods for quantifying both surficial (Table I)
and subsurface fine sediment have been documented. Some
of the most commonly used methods by both researchers
and monitoring agencies are rapid assessments (Faustini
and Kaufmann, 2007), often comprising visual estimates of
substrate composition (Descloux et al., 2010; Sennatt et al.,
2006). These assessments involve operators estimating the
surficial fine sediment in terms of the percentage cover of dif-
ferent particle sizes across a site. Frequently, the particle size
classifications follow the Wentworth system (Wentworth,

1922): boulders (≥256mm), cobbles (64–256mm), gravels/
pebbles (2–64mm), sand (<2mm≥ 0.06mm), silt and clay
(<0.06mm) (Bain and Stevenson, 1999; Clapcott et al.,
2011; Environment Agency, 2003). Surface percentage cover
estimates often rely on the subjective ability of the operator to
identify particle sizes and percentage cover of these particles
(Faustini and Kaufmann, 2007). Whilst not necessarily an in-
dicator of subsurface fine sediment, percentage cover is likely
to be important in terms of determining the biological impli-
cations of altered fine sediment dynamics, as it is concerned
with the surface ‘drape’, which can lower the oxygen avail-
ability in the benthos and reduce the quantity of forage and
refugial habitat (Sutherland et al., 2010).
Research has investigated the quality of these methods

(Clapcott et al., 2011; Roper et al., 2002; Sennatt et al.,
2006; Whitacre et al., 2007). In terms of precision (i.e. the
degree of closeness between repeated measures), visual esti-
mates by 10 operators have been shown to vary by up to 40
percentage points for sites with the same Wolman pebble
count (Clapcott et al., 2011), although this is likely to be
an extreme example as operators received no prior training
on the technique. Furthermore, the Wolman pebble count
has been shown as biased against small particles (Diplas
and Lohani, 1997; Marcus et al., 1995). In terms of accuracy
(i.e. closeness to the true value), the ‘true’ value for
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substrate composition in a stream is generally unknown
(Sutherland et al., 2010), although some authors have used
‘measured’ methods in place of a true value. However, it

is important to remember that the ‘measured’ method is
not necessarily closer to the ‘true’ value, and a difference
between the estimated and ‘measured’ methods will always

Table I. Various approaches used globally to quantify submerged, surficial fine sediments in rivers and streams

Approach Description Reference

Particle counts • Wolman pebble count. Particles are selected at random, by sampling using
toe-to-heel spacing and selecting the first particle touched by a finger at the
toe of the operator’s boot. Transects between bankfull widths within habitats
of interest (or a zigzag pattern) are followed until 100 particles
(or desired number) are selected.

Wolman, 1954;
Bevenger and King, 1995;
Diplas and Lohani, 1997

• Wolman pebble count (modified). Grid-by-number methods using a
measuring tape, wire mesh or frame with elastic bands to select particles.

Kellerhals and Bray, 1971;
Bunte and Abt, 2001

• Wolman pebble count (modified). The toe-to-heel approach is used in
conjunction with a clay disc and piston, which is pressed onto the streambed
to sample fine sediment.

Fripp and Diplas, 1993)

In-stream visual estimate • A measuring tape is placed between the beginning and end of a transect. At
0.3m increments, the dominant sediment class over the length is recorded.

Platts et al., 1983

• Using an underwater viewer, the percentage cover of fine sediment is
estimated.

Matthaei et al., 2006

Bankside visual estimate • Substrate composition is estimated following a visual inspection of the
reach from the stream bank.

Environment Agency, 2003

• The percentage of fine sediment is estimated from the stream bank. Clapcott et al., 2011
Photographic image
analysis

• Above water image capture. Areas of substrate are photographed using a
photographic film camera, an underwater viewer and a structure to isolate
the area of streambed. Photographic transparencies were then projected at
three times life size and onto a grid with 400 squares. The predominant
particle size in every fourth square was then recorded.

Gee, 1979

• Similar to the technique used by Gee (1979), with the addition of a
digitizing program to obtain the particle size distribution.

Ibbeken and Schleyer, 1986

• Areas of substrate are photographed from above the water using a
photographic film camera and underwater viewer. Photographic
transparencies are digitized and analysed using Geographic
Information Software.

Whitman et al., 2003

• Images are collected using a modified camera with underwater housing and
a light ring. The resulting images are approximately 0.02m across, and are
analysed using an autocorrelation algorithm to determine grain sizes.

Rubin et al., 2007

Artificial mats • Artificial turf mats (0.15m×0.10m) are fixed to the streambed and left for
3weeks. Mats are carefully retrieved and placed in zip-lock bags and
returned to the laboratory where the sediment is washed out, sieved and
collected for drying and weighing.

Von Bertrab et al., 2013

Adhesive plates • A plate is covered with a thin layer of adhesive material (i.e. clay) and is
pressed onto the streambed. The sample is then wet-sieved to remove the clay.

Fripp and Diplas, 1993

Resuspension • A steel cylinder measuring 1m in height is pushed 0.1m into the streambed.
The water within the cylinder is agitated, artificially suspending the surficial
fine sediment, allowing for three 0.5 L samples to be collected. This process
is carried out at three or more ‘representative’ sites, and samples are used to
determine the mean mass (gm�2) of sediment released.

Lambert and Walling, 1988

• Modified from Lambert and Walling (1988), using a steel cylinder
measuring 0.75m in height. Samples of 0.05 L are collected from two
‘depositional’ and two ‘erosional’ patches at each site.

Duerdoth et al., 2015

Embeddedness • Qualitative assessment using five categories relating to the percentage that
large particles were covered by fine sediment.

Platts et al., 1983

• Qualitative assessment of embeddedness using three categories: 1 = lying
loosely on top of the bed, 2 = partly covered by surrounding substratum,
3 =well buried in the surrounding substratum or firmly wedged in by
surrounding stones.

Matthaei et al., 1999

• Assessment of embeddedness over 11 transects (55 particles) by estimating
the percentage embeddedness of each particle.

Peck et al., 2002
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occur because of the different methodologies measuring
slightly different aspects of the substrate and any fine
sediment.
An alternative to the conventional method of visual esti-

mates of substrate composition is the use of image-based
techniques. Photography has been used to some extent by
geomorphologists and sedimentologists for over 35 years
(Adams, 1979), with recent work utilizing technological ad-
vances to determine grain size characteristics, using (i) auto-
mated grain size analysis of images and (ii) geostatistical
techniques and empirical calibration, mainly of exposed
gravel bed rivers (e.g. Buscombe, 2008; Butler et al.,
2001; Carbonneau et al., 2004; Graham et al., 2005b; Gra-
ham et al., 2005a; McEwan et al., 2000; Rice, 1995; Sime
and Ferguson, 2003; Warrick et al., 2009). Both Rubin
et al. (2007) and Buscombe et al. (2010) have applied their
techniques underwater, the latter in controlled conditions.
Whilst these techniques provide opportunities to process
large numbers of images and obtain particle size distribu-
tions, the identification of fine sediments, particularly sub-
merged, and/or cohesive sediments, is often limited
because of technological limitations and image resolutions
(Bertoldi et al., 2012; Graham et al., 2005a) as well as a re-
quirement for well-defined grain boundaries (Graham et al.,
2005a; McEwan et al., 2000).
In addition to the precision and accuracy of each tech-

nique, the biological relevance of the resulting sediment
metric is often of great concern. In the European Union,
whilst sediment deposition is not directly legislated, as part
of the European Union Water Framework Directive member
states are required to achieve ‘Good Ecological Status’ in
surface waters. Given the ecological impacts of fine sedi-
ment (Bilotta and Brazier, 2008), a method of quantifying
fine sediment that provides a biologically relevant metric is
therefore highly desirable.
The aim of this paper is to provide ‘proof of concept’ for

two novel, non-automated, digital image analysis (DIA)
methods for quantifying submerged, surficial deposited fine
sediment, building on the work from previous authors, many
of whom were attempting to characterize complete grain
size distributions. Crucially, the techniques have to be (i) ap-
plicable to fine sediments on submerged river/streambeds;
(ii) more objective and verifiable than existing visual esti-
mate methods; and (iii) simple to carry out requiring little
specialist software or training. The results from these new
procedures are compared with those based on visual esti-
mates. The precision of each method is assessed using an in-
dependent operator, and the biological relevance is
evaluated using the relationship between each sediment met-
ric and the invertebrate community composition, quantified
using a sediment-specific biotic index (Turley et al., 2016).
Between-transect and between-season variation is also
assessed to provide an insight into fine sediment spatial

variation and the likely ability of the DIA sampling design
to characterize fine sediment conditions across the site.

METHODS

Site selection

Five sites were selected from a database of 835 reference
condition or minimally impacted sites on rivers and streams
located throughout the UK that were sampled between 1978
and 2004 [RIVPACS IV—River Invertebrate Prediction and
Classification System—NERC (CEH) 2006; May 2011 ver-
sion. Database rights NERC (CEH) 2006 all rights re-
served]. The five sites represented a range of different
river types, with contrasting environmental characteristics;
depths between 0.05m and 0.80m and importantly, a range
of fine sediment covers (0–55% based on visual estimates).
The site selection process involved both stratified and sys-
tematic stages to ensure sites with a range of deposited fine
sediment conditions were selected with minimal bias.
Briefly, this involved ranking the 835 sites in terms of the
percentage of the substrate comprised fine sediment (based
on previous visual estimates) and selecting those sites that
represented the minimum, 25th, 50th, 75th and 100th per-
centile values. Using satellite imagery, a number of criteria
were then applied to the selected sites to minimize selection
bias, to ensure that sites were relatively unimpacted by point
source organic pollution (e.g. no sewage treatment works
and significant urban/rural dwellings upstream), physical
modifications (e.g. no obvious channelization) or arable ag-
riculture (and the associated fertilizers and pesticides) and to
reduce the number of pressures with the potential to influ-
ence the macroinvertebrate community composition. If a site
failed to meet the criteria it was rejected and the next ranked
site was put through the same criteria, until five sites were
found that met all criteria. The characteristics of these sys-
tematically selected sites are shown in Table II. In this study,

Table II. Characteristics of the five stream sites, based on data from
the RIVPACS IV database

Environmental
variables Site 1 Site 2 Site 3 Site 4 Site 5

Altitudea (m) 364 205 75 25 66
Slopea (mm�1) 0.01 0.008 0.008 0.004 0.003
Average widthb (m) 1.9 5.8 3.9 8.0 11.8
Average depthb (m) 0.08 0.30 0.14 0.25 0.65
Alkalinityc 24.4 6.8 61.8 111.7 247.0
Fine sedimentb (%) 0 12 18 34 55

Environmental variables derived from the following:
amap data,
bmean of three seasonal measurements,
cmean of 12 monthly measurements.
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each site consisted of a short river reach, approximately
10m in length, over which the visual estimates, digital im-
ages and macroinvertebrates were collected.

Visual estimates

The percentage of fine sediment cover was estimated over
the site and corresponded with the area that was sampled
for invertebrates, following the UK Environment Agency
protocol (Environment Agency, 2003). Briefly, this in-
volved observations carried out from the stream bank, and
where necessary, probing areas of substrate. The overall
percentage of fine sediment (<2mm) was recorded to the
nearest 5%.

Digital image collection

In order to reduce the potential for sampling bias (i.e.
selecting areas of high or low sediment), each site was
photographed systematically using equidistant transects.
Five transects were set up at each site, beginning at the
downstream end of the site and positioned every 2m (see
Supporting Information), incorporating riffles, runs and
glides where present. Three sampling locations were posi-
tioned on each transect at ¼, ½ and ¾ of the wetted channel
width. Each site was sampled over three seasons (spring,
summer and autumn) in the same year (2014).
A relatively low cost (<500GBP) 16.1-megapixel water-

proof digital camera (Panasonic DMC-FT5) was used to
eliminate the need for a structure to protect the camera from
water. In addition to being waterproof, another important
feature was the camera’s reported performance under low
light conditions and its minimum focal distance. Both of
these were important considerations as photographs were
to be taken within the water column, which would result
in reduced natural light and a limited distance between the
camera and the streambed.
At each site and on each visit, the camera was submerged

and test photographs were taken and reviewed in situ to de-
termine the approximate, optimum distance between the
camera and the streambed. The camera was held from a ver-
tical position to capture images of the substrate in plan view.
The optimum distance was deemed as that which resulted in
an image that captured the maximum area of the streambed
(which was limited by the water depth) whilst providing a
suitably clear image for later analysis. In streams that are rel-
atively turbid, this can result in a small area (<0.01m2) of
streambed being captured in each image. Beginning at the
downstream end of the site, so as not to disturb the substrate
prior to image capture, an image was taken at each sampling
location, with image quality being briefly reviewed before
moving on to the next location. The distance between the
streambed and the camera lens was measured using a

graduated measuring pole with 0.01m increments and was
recorded for each image. The minimum and maximum dis-
tances between the camera lens and the streambed in this
study were 0.02 and 0.76m, respectively. Once the images
had been collected, they were returned to the laboratory
and uploaded for processing.

Image processing

The image processing was kept to a minimum in comparison
with the automated processes described by previous authors,
and was carried out using Adobe Photoshop Elements 13,
but can also be conducted using image editing freeware
(e.g. Pixlr 3.0). The relationship between camera height
and the area (m2) of streambed captured in the image was de-
termined using a tripod setup in the laboratory. Images of a
1m rule were captured with the camera positioned at
0.05m height increments, between 0.02 and 0.80m, and
the length of the rule captured in each image, at each height
was recorded. Using these data, a formula was derived using
linear regression to calculate the length (L; metres) of stream-
bed captured for each camera height (h; metres) increment
between 0.02 and 0.80m using the Panasonic DMC-FT5,
Panasonic Corporation, Osaka, Japan. assuming a planar bed
(Equation 1). The length of each image was then resized so
that they represented the actual captured area of the
streambed, and their resolution was set to 180pixels per inch.

L ¼ 1:223h þ 0:018 (1)

Estimate-based digital image analysis

Images collected for DIA were first used by the operator to
estimate the percentage of fine sediment. This involved a
grid layout (10× 10) being placed over the image in
Photoshop (each square of the grid representing 1% of the
area in the image) to aid a systematic summation. In order
to assist in the identification of fine sediment, the Brush Tool
was set to 12 pixels as this size brush represents approxi-
mately 2mm at the resolution of the saved images, allowing
a comparison between the cursor and particles. Where nec-
essary, the contrast and brightness of the image was manip-
ulated to improve the clarity of dark areas of substrate (e.g.
interstices). The percentage of fine sediment was then esti-
mated to the nearest 1% and recorded. This process required
less than 5min per image.

Software-based digital image analysis

Using the images collected in the field, areas of fine sed-
iment were highlighted and quantified. This involved
firstly opening the resized images in Photoshop and
selecting the foreground colour of ‘ff0000’ along with
the Brush Tool set at 14 pixels. Moving the Brush Tool
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over the image, any particles that were less than the size
of the cursor were then highlighted with the foreground
colour (Figure 1) using either the Brush Tool, Polygonal
Lasso or in some cases the Magic Wand Tool. The Magic
Wand Tool could only be used at a low tolerance (<25%)
when the areas of fine sediment were suitably contrasted
to the other particles surrounding it. Once the fine sedi-
ment had been identified and highlighted (requiring up
to 30min per image), the images were ‘saved for web’,
as Portable Network Graphics. The images were then
uploaded to PixelCount, a freeware Google Chrome appli-
cation that was developed to count the number of pixels
of a specific colour (ff0000—which is set prior to
uploading the images). The application outputs the propor-
tion of each image that matches the chosen colour. By
converting this proportion to an area (m2) using the
known area of the streambed in each image, the total area
(m2) of fine sediment in all 15 images was divided by the
total overall area in the images and multiplied by 100 to
obtain the overall percentage cover of fine sediment
(Equation 2).

% fine sediment ¼ ∑ a�pð Þ
∑a

�100 (2)

In Equation 2, a is the total area (m2) of streambed in
the image and p is the proportion of the image that is
highlighted. In the numerator of the equation, the area in
each image is multiplied by the proportion of highlighted
fine sediment in the image, and the products are then
summed. In the denominator, the areas of each image

are summed. The equation takes into consideration that
each image can capture a different size area, and as such,
the same proportion of fine sediment in any two images
may not represent the same size area.

Precision of digital image analysis techniques

In order to evaluate the precision of the DIA techniques, an
independent operator carried out duplicate analyses for a
single season for each of the five sites. The exact seasonal
sample that was analysed was randomly selected, and
inter-operator comparisons were made between the same
sites and seasons. Whilst the first operator had knowledge
of the sites (having visited the location and conducted visual
estimates), the independent operator had no prior knowledge
of the site characteristics. Brief training (1 h) was provided
using 10 trial images with a range of sediment covers, to
guide the independent operator through the process of
identifying, estimating and highlighting fine sediment in
the images.

Fine sediment spatial variation

To evaluate the effectiveness of the image collection sam-
pling design as well as the spatial variation in fine sediment
at the study sites, the between-transect variation in fine sed-
iment values were assessed in terms of the 95% confidence
intervals for the mean percentage of fine sediment based
on five transects. This required the percentage of fine sedi-
ment cover in each one of the sites five transects to be calcu-
lated individually (using the three images in each transect)
and averaged over the five transects.

Figure 1. Examples of digital image analysis (DIA) images (top row) and these images with fine sediment highlighted (bottom row). Area of
streambed and fine sediment estimates based on estimate-based DIA and software-based DIA are detailed. This figure is available in colour

online at wileyonlinelibrary.com/journal/rra
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Biological relevance

In this study, we assess the biological relevance of the
methods by comparing their Spearman’s rank correlation
coefficients with a sediment-specific biotic index; the mixed
taxonomic level, Empirically-weighted Proportion of
Sediment-sensitive Invertebrates (E-PSI) index (Turley
et al., 2016). The E-PSI index is designed to identify the im-
pacts of fine sediment pressures in streams using the benthic
invertebrate community composition. Invertebrates were
initially rated by their sensitivity to fine sediment, based
on expert knowledge and an assessment of biological and
ecological traits that result in a sensitivity or tolerance of
fine sediment (Extence et al., 2011; Turley et al., 2014).
The E-PSI index maintains this biological basis and assigns
detailed sensitivity weights based on empirical data of inver-
tebrate community compositions and visual estimates of fine
sediment (Turley et al., 2016). For this reason, the index
may be more strongly correlated with visual estimates than
with the other methods. The invertebrate data used to calcu-
late this index were collected using the UK standard
method: a standardized 3-min kick sample using a 900-μm
mesh hand net, followed by a 1-min hand search. All in-
stream habitats identified at the site were sampled in propor-
tion to their occurrence (Environment Agency, 2009). Inver-
tebrates were recorded to the lowest practicable taxonomic
level, mostly to species or genus, with the exception of
Oligochaeta (class) and Diptera (family).

Statistical analysis

The data were compiled in Microsoft Excel and analysed
using SPSS statistical software (IBM SPSS Statistics 22).
Fine sediment data were aligned with E-PSI scores that were
calculated using mixed taxonomic level data collected con-
temporaneously. The fine sediment data did not satisfy the
assumption of bivariate normality for Pearson’s correlation
coefficient and could not be successfully transformed. As
such, the results from the DIA methods were compared with
the visual estimates using Spearman’s rank correlations, to
identify any relationships between software-based digital
image analysis (sDIA), estimate-based digital image analy-
sis (eDIA) and visual estimates, as well as their relationships
to the sediment-specific biotic index. All correlations were
interpreted using the Dancey and Reidy (2007) classifica-
tions of correlations; 0.1–0.39 =weak, 0.4–0.69=moderate,
0.7–0.99= strong.

RESULTS

Comparison of methods

Software-based DIA and eDIA were strongly and positively
correlated with visual estimates (rs=0.90, p< 0.01 and

rs=0.82, p<0.01, respectively) (Figure 2). Software-based
DIA was also strongly correlated to eDIA (rs=0.95,
p< 0.01). The mean difference between an individual DIA
value and the corresponding (same site and season) visual
estimate was 11.5 and 11.3 percentage points (for sDIA
and eDIA, respectively), whilst the largest difference was
33 percentage points (37% fine sediment compared with
70% fine sediment).

Figure 2. Comparison between (a) visual estimates and software-
based digital image analysis (DIA), (b) visual estimates and esti-
mate-based DIA and (c) software-based DIA and estimate-based
DIA, at five sites each with three seasonal samples (i.e. n= 15)
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Precision of software-based and estimate-based digital
image analysis

The mean difference between the first operator’s and the in-
dependent operator’s sDIA results over the five sites was 1.8
percentage points, with the maximum difference being three
percentage points. Similarly, the mean difference between
the eDIA from each operator was 1.8 percentage points,
with a maximum difference of five percentage points (see
Supporting Information).

Fine sediment spatial variation

The variation between transects is illustrated by Figure 3
using data from sDIA. The majority of sites had narrow con-
fidence intervals (<5 percentage points). The exceptions
were site 3 (spring) and site 5 (all seasons), with the largest
confidence interval being 32 percentage points (site 5
—spring).

Biological relevance

All three methods of quantifying fine sediment were
strongly negatively correlated to the E-PSI index. The visual
estimates and sDIA were similarly strongly correlated to the
E-PSI index (rs=�0.74 and rs=�0.77, p<0.01, respec-
tively) with the most strongly correlated method being eDIA
(rs=�0.87, p< 0.01; Figure 4).

DISCUSSION

Comparison of methods

The results of this study show that both the sDIA and eDIA
methods were strongly correlated with the visual estimates.

Similar to McHugh and Budy (2005), the visual estimates
conducted for this study resulted in higher values for per-
centage fine sediment, an overestimation of the ‘measured’
method (in their case a hoop-based embeddedness tech-
nique). Whilst the differences between DIA and visual esti-
mates may be the result of one method being more accurate
than the other, this cannot be tested, as the true value for fine
sediment is unquantifiable. The differences between the data
from the two methods could also be due to different method-
ologies, with DIA attempting to represent the percentage of
fine sediment across the site using sample patches, and vi-
sual estimates summarizing the entire study site. Some of
the differences are also likely to be due to the subjectivity
of the visual estimate method (Descloux et al., 2010; Roper
et al., 2002; Sennatt et al., 2006), as well as the sampling de-
sign used in this study for image collection. However, using
systematically selected transects and fixed image locations
reduces the subjectivity of the technique in comparison with
other commonly used methods of quantifying fine sediment.
For example, the practicalities of deploying numerous
pieces of equipment and/or removing and processing large
amounts of sediment mean that many methods result in a
limited number of locations being sampled. These locations
are often selected based on operator judgements, which may
introduce operator error or bias. Techniques that utilize
bucket traps, artificial mats, adhesive plates or resuspension
techniques often require subjective decisions to be made re-
garding selection of sampling locations. For example, appli-
cation of the resuspension technique can require the
identification of ‘erosional’ and ‘depositional’ sampling lo-
cations (Duerdoth et al., 2015) necessitating a subjective
evaluation of stream characteristics, which may vary with
flow conditions. Furthermore, it is likely that methods that
require such sampling location decisions are influenced by

Figure 3. Mean percentage fine sediment values from software-based digital image analysis of five transects (each comprising three images),
from five sites [1 (low fine sediment) to 5 (high fine sediment)] over three seasons (spring, summer and autumn). Error bars show 95% con-

fidence intervals
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the nature of the substrate or channel itself, with substrates
containing large boulders, and/or deeper waters (deeper than
sampling equipment), and/or narrow-braided channels
(narrower than sampling equipment) being omitted from
sampling because of operational constraints. These common
limitations impact the ability of methods to represent spatial
variation in substrate composition accurately. In contrast, a
systematic approach such as that used in this study may
more accurately represent spatial variation, although the
number of transects/images required to do this is likely to
be site specific. Increasing the number of transects/images
requires a minimal investment of time, particularly if opting
for the estimate-based approach, which requires less than
5min processing per image (compared with up to 30min
for sDIA).
Digital image analysis is more objective than visual esti-

mates as it allows for particles to be measured and percent-
ages to be computed. The operational limitations associated
with DIA are similar to those that are experienced for visual
estimates. In conditions where water clarity is poor, the
method can prove problematic; however, moving the cam-
era closer to the streambed can, in some cases, overcome
this issue. Similarly, low water clarity can also prevent vi-
sual estimates. One of the benefits of using digital photogra-
phy is that photographs can be reviewed instantaneously,
something which is not possible for film photography. Other
conditions (e.g. low light and rapid flow) leading to poorly
lit/focused images require some level of subjectivity in order
to identify areas of fine sediment, although digital image
contrast can be altered as part of the post-processing to mit-
igate these problems. The method is restricted to streams
that are wadeable, unless a boat mounted system could be
used. Nevertheless, one of the significant strengths of the

approach is the ability for images to be archived for verifica-
tion, therefore providing a means of quality assurance. It is
also a non-destructive technique, a characteristic that is par-
ticularly desirable when being carried out alongside biolog-
ical sampling and/or in conservation areas (Naden et al.,
2003).
Perhaps unsurprisingly, the sDIA was more strongly cor-

related to eDIA than to the visual estimates. This is likely to
be due to the two methods quantifying fine sediment over
the same areas of streambed (captured in the images),
whereas the visual estimates consider the site as a whole.
This strong correlation (rs=0.95, p<0.01) suggests that
the comparatively rapid approach (up to 5min per image)
of estimating the amount of fine sediment in the images
using eDIA could negate the requirement of manually
highlighting fine sediment for sDIA, which is a time-
intensive procedure (up to 30min per image). All three
methods are likely to be subject to ‘fabric errors’, which
are the result of misclassifications of particle size due to
the orientation of particles in relation to the plane of the im-
age, as well as the potential for particles to be partially hid-
den (Graham et al., 2005b). However, as the focus of the
analyses was fine sediment, this error is likely to be
minimal.

Precision of software-based and estimate-based digital
image analysis

The inter-operator comparison for both methods of DIA
yielded relatively small differences between fine sediment
values (maximum five percentage points) across the five
samples. This is despite the site/season being randomly se-
lected for verification and the independent operator having

Figure 4. Relationship between % fine sediment (estimate-based digital image analysis) and the Empirically-weighted Proportion of Sediment-
sensitive Invertebrates (E-PSI) index

M. D. TURLEY ET AL.

Copyright © 2016 The Authors River Research and Applications Published by John Wiley & Sons Ltd River Res. Applic. (2016)

DOI: 10.1002/rra



no prior knowledge or expectations of the site. Although the
precision of visual estimates carried out in this study is not
considered, previously published work on this topic has
shown the method to have a lower level of precision. For ex-
ample, a study using 10 different operators showed visual
estimates to vary by up to 40 percentage units for sites with
the same Wolman counts (Clapcott et al., 2011). However,
the operators did not receive any specific training prior to
the observations and so this example is likely to be an ex-
treme case. Wang et al. (1996) found the precision of visual
estimates between six operators to be ‘moderate’, with con-
fidence intervals of between 5 and 15 percentage points. It is
thought that recent standardized training of operators is
likely to improve the precision of visual estimates of stream
habitat (Poole et al., 1997; Roper and Scarnecchia, 1995). A
high level of inter-operator precision was shown for the DIA
methods across sites with a range of substrate compositions;
however, this analysis involved fewer operators. The sDIA
method has a potential advantage over the eDIA method,
which introduces some subjectivity to DIA, requiring oper-
ators to estimate the percentage of fine sediment in the im-
ages (using a 10×10 grid), which is likely to lower its
accuracy and precision. Nonetheless, eDIA offers substan-
tial time and cost-savings in comparison with sDIA, requir-
ing approximately one-sixth of the time commitment.

Fine sediment spatial variation

In application, the sampling design used to collect digital
images for DIA should be designed to provide suitable rep-
resentation of fine sediment spatial variation. The use of five
transects here is merely an example of how the method
could be applied. The relatively narrow confidence intervals
for sites 1, 2 and 4 suggest that the sites exhibited little var-
iation in terms of fine sediment coverage and that five tran-
sects or less may provide sufficient representation of spatial
variation in some situations. The larger confidence intervals
for sites 3 and 5 suggest that a greater number of
transects/larger area of streambed may need to be sampled
to suitably represent fine sediment conditions over certain
sites. Environmental factors are likely to influence the num-
ber of images required in order to provide an accurate repre-
sentation of spatial variation. These include the water depth,
water clarity and light availability, which limit the area of
the streambed captured in each image, potentially necessitat-
ing the collection of a greater number of images. Further-
more, sites with a heterogeneous and poorly sorted
substrate are likely to require a greater number of images
in comparison with more homogenous, well-sorted stream-
beds, in order to capture images that accurately represent
the fine sediment conditions throughout the site.
The positioning of image locations for DIA is not influ-

enced by the presence of boulders, cobbles or bedrock

and so may be able to suitably capture the true characteris-
tics of stream and river substrate. In contrast, techniques
such as adhesive plates, artificial mats or resuspension sam-
pling devices are restricted by the diameter of the device
and the ability to attach or insert the device into the sub-
strate, although they do benefit from enabling analysis of
geochemical properties of the sediment, as part of the
post-processing.

Biological relevance

As the true value for the percentage of fine sediment in a
stream is unknown, the accuracy of the methods cannot be
determined. However, a potentially more meaningful mea-
sure (depending on the intended application) is its biologi-
cal relevance. The E-PSI index was strongly correlated to
all three methods of quantifying deposited fine sediment.
These results suggest that all three methods have some de-
gree of biological relevance, particularly given the biologi-
cal basis of the index, which provides a mechanistic
linkage for the observed correlations. These strong correla-
tions were observed at systematically selected sites that
greatly varied in their environmental characteristics, sug-
gesting that the techniques are indicative of fine sediment
conditions across a range of different temperate rivers and
stream types. Although the DIA approach does not consider
the quality of fine sediment (geochemical and particle size
distribution), the percentage cover of fine sediment is likely
to be biologically relevant as it relates to niche theory and
habitat suitability (Hirzel and Le Lay, 2008) throughout
the reach.

Potential for future application

Whilst visual estimates of fine sediment have been found to
be some of the most correlated metrics to both land use and
invertebrate biotic indices (Sutherland et al., 2010, 2012),
the subjectivity of these methods have the potential to result
in incorrect conclusions as to the sediment conditions at a
site. DIA presents an opportunity to reduce the subjectivity
involved in characterizing streambed fine sediment condi-
tions. Such an approach is highly desirable for monitoring
and research applications, as well as for river restoration
and management projects, which require non-destructive,
reliable and ecologically meaningful habitat indicators
(Woolsey et al., 2007). Given the budget constraints often
placed on these types of application, the eDIA approach
may provide a more suitable means of characterizing fine
sediment conditions. Further work should be conducted to
determine the optimum number of transects or area of
streambed that is necessary to provide a good representation
of fine sediment conditions across sites with differing envi-
ronmental characteristics.
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