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Abstract 

 Several theories of phospholipid homeostasis have postulated that cells regulate the 

molecular composition of their bilayer membranes, such that a common biophysical 

membrane parameter is under homeostatic control. Two commonly cited theories are the 

intrinsic curvature hypothesis, which states that cells control membrane curvature elastic 

stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain 

packing order (membrane order). In this paper we present evidence from data-driven 

modelling studies that these two theories correlate in vivo. We estimate the curvature 

elastic stress of mammalian cells to be 4 – 7x10-12 N, a value high enough to suggest that in 

mammalian cells the preservation of membrane order arises through a mechanism where 

membrane curvature elastic stress is controlled.  

These results emerge from analysing the molecular contribution of individual phospholipids 

to both membrane order and curvature elastic stress in nearly 500 cellular compositionally 

diverse lipidomes. Our model suggests the de novo synthesis of lipids is the dominant 

mechanism by which cells control curvature elastic stress and hence membrane order in 

vivo. These results also suggest cells can increase membrane curvature elastic stress 

disproportionately to membrane order by incorporating polyunsaturated fatty acids into 

lipids. 
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1.0 Introduction 

 Theories of phospholipid homeostasis have arisen to explain long-standing 

observations that the steady-state phospholipid, cholesterol and protein composition of 

biological membranes changes in response to environmental conditions. For example 

chemicals, such as crude oil [1], PCB-153 [2], hydrocarbons, alcohols and detergents [3], 

fatty acids [4] and phospholipids [5], all cause changes to the lipid composition of biological 

membranes. Furthermore the effects of temperature on biomembrane lipid composition 

are well documented in large numbers of animal species such as in poikilotherms [6], 

Archaea [7], zooplankton [8], fish [9,10], mammals [11,12] and plants [13] as discussed 

[14,15]. Since it is well established in model membranes that different component lipids 

cause the collective lipid membrane to have different physical properties, the question 

‘which physical property are cells conserving in their biological membranes?’ arises. 

 In answer to this question several theories have emerged. The theory of 

homeoviscous adaptation (HVA) suggests [16] that cells regulate the membrane order of 

their biological membranes, often described as regulation of membrane fluidity or 

membrane viscosity. In membranes order is quantified through an order parameter ranging 

from 0 (disorder) to 1 (order) and typically calculated using electron spin resonance or 

fluorescence anisotropy of probes such as diphenylhexatriene [9, 16]. The origin of HVA 

theory stems principally from the observations of Sinensky [16] who observed that the 

order parameter of Escherichia coli lipid membranes, determined by electron spin 

resonance, was unchanged despite the membranes having different lipid compositions at 

different temperatures. Over time a large number of other studies have shown that HVA, 

whilst initially formulated as a temperature-dependent response in bacteria, has a broader 

evolutionary significance [9,11]. For example, evidence suggests that membrane order is 

preserved by biological membranes in response to hydrostatic and osmotic pressure [10,17], 

low magnetic field strength [18] and chemicals [2,19], as discussed [14,15,20]. It has also 

become clear that lipids like cholesterol [21] play a critical role in regulating membrane 

order – or fluidity as it is commonly referred to in mammalian systems [22].  
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In contrast the intrinsic curvature hypothesis [23] states that the intrinsic (or 

spontaneous) curvature of biological membranes is tightly regulated through membrane 

compositional change, maintaining membrane curvature elastic energy [24,25] within tight 

boundaries. The origin of this theory stems from observations that cells appear to maintain 

their membrane composition away from a phase transition, so called homeophasic 

adaptation [26]. However, the fundamental observation that cells contain a large number of 

lipids that prefer to adopt curved non-bilayer structures led Gruner to postulate [23,27] that 

cells maintain the stored elastic energy that arises from curvature frustration constant. 

These are not the only theories of phospholipid homeostasis [28,29], for example it has 

been suggested that cells regulate the surface charge of their biological membranes by 

controlling the concentration of negatively charged lipids [30].  

In a broader context, altered lipid compositions are associated with a number of 

diseases such as cancer [31], obesity [32], Alzheimer’s disease [33], liver disease  [34] and 

type 2 diabetes [35]. Therefore quantitative systems models of cellular phospholipid 

homeostasis are critical to understanding these pathologies. 

 

1.1 Cellular mechanisms of phospholipid homeostasis 

The mechanism through which the lipid biosynthetic network detects membrane 

biophysical properties, and adjusts biomembrane composition accordingly, is not well 

elucidated. Data suggest some of the enzymes involved in lipid biosynthesis, such as 

CTP:phosphocholine cytidylyltransferase (CCT) [36] and phospholipases [37,38], are 

regulated by membrane curvature elastic energy and could form part of a regulation 

pathway [39]. Membrane curvature elastic energy has also been implicated in the 

mechanism of action of some antineoplastic agents [40,41]. In contrast studies, using 

labelled spin probes for electron spin resonance [16] or membrane fluorescence 

depolarisation probes [9,11], have shown that membrane order in many biological 

membranes is preserved although membrane composition has changed [14,15,26]. There is 

evidence of the mechanism through which bacteria might control membrane order [42] but 

the precise pathways that eukaryotic cells use have not yet been discovered. However, Rho 
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signalling [43] and a group VIA Ca2+ independent-phospholipase-A2 have been identified as 

significant [44]. Both biochemical and transcriptional mechanisms play a role in 

phospholipid homeostasis; in bacteria this is better understood than in eukaryotes [28]. The 

sterol regulatory element-binding proteins (SREBPs) are a critical part of the transcriptional 

mechanism of mammalian lipid homeostasis. SREBPs, in response to the levels of fatty acids 

in a membrane, proteolytically release fragments that enter the nucleus and activate some 

of the genes required for lipid homeostasis [45]. 

Previously we have identified two different ratio control mechanisms that operate in 

phospholipid homeostasis at the biochemical level. One of these was a ratio control 

mechanism for membrane disorder inspired by HVA [20] and the other was a ratio control 

mechanism derived from the intrinsic curvature hypothesis [46,47]. Both these studies used 

the lipidomes of HL60 and HeLa cells to construct a systems-level insight into the collective 

properties of cellular membranes through data-driven modelling, summarised in section 1.2.  

 

1.2 Background: data-driven modelling with control functions in lipidomic datasets 

The central premise of the data-driven approach is to state that all the different lipid 

compositions that exist across a cell line represent different combinations of lipids with an 

identical value of the common biophysical parameter (membrane order or membrane 

curvature elastic stress in these studies). If this premise is true, then the individual lipid 

concentrations multiplied by a factor that corresponds to their individual, structure-specific, 

contribution (w) to the common biophysical parameter must give rise to a mathematical 

function where one set of w values gives the lowest variance, in the numerical solution to 

that function, across all the lipidomic data sets. Critically the magnitude of this variance, 

which we express as a statistical coefficient of variance (cv = 100% x (standard deviation/ 

mean)), validates the hypothesis. As a rule of thumb, under conditions where there is no 

reason to expect the control function to vary across a set of cell populations (such as in the 

case of asynchronous cell populations), we consider that a cv of 10% or less suggests a 

control function is strongly evidenced. Whilst cv values of between 10% and 20% 

demonstrate good evidence and cv values greater than 20% demonstrate no evidence. 
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Mathematically we formulate each of the two hypotheses as ratio control functions; Eq. 1 

shows the ratio control function inspired by HVA, where pdis is in effect a proxy measure of 

membrane deviation from total order towards disorder. 
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In formal terms Eq. 1 asks, given the set of all possible lipid species {L}, is there a universal 

pivot lipid species, Lpdis, that partitions L into subsets {Lord+Lpdis}, {Ldis} such that the mean 

value of pdis, has the minimum variance across multiple cell populations? 

 In Eq. 1 [Ldis,n] denotes the concentration of lipid (typically moles/ cell) that 

decreases membrane order, i.e. disordering lipids n and (wdis)n is the weighting factor for 

disorder for lipid n. Similarly [Lord,m] is the concentration of lipid that increases order, i.e. 

ordering lipids m and (wdis)m is the weighting factor for disorder for lipid m. The variables a 

and b are the total numbers of ordering and disordering lipids respectively. We use a ratio 

control function because evidence has suggested that membrane order is regulated in vivo 

by the ratio of saturated to polyunsaturated fatty acids [11] present within the 

phospholipids constituting the cell membrane. 

For the intrinsic curvature hypothesis we use the same conventional ratio control function 

but replace Ldis and Lord with the terms LII and L0, where LII is the concentration of type II 

lipids i.e. lipids that increase membrane stored elastic energy and L0 is the concentration of 

type 0 lipids which decrease membrane stored elastic energy . We introduce the term pces as 

a proxy measure of membrane curvature elastic energy, calculated from Eq. 1 replacing wdis 

with wces, which is the individual lipid weighting factor for curvature elastic stress. A ratio 

control function is used because it has been suggested that in vivo cells balance membrane 

stored elastic energy through controlling the ratio of type 0 to type II (or bilayer to non-

bilayer forming lipids) [39]. 
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1.3 Background: quantifying membrane stored elastic energy 

Critical to understanding this work is the quantification of membrane stored elastic energy 

from the lipid radius of spontaneous curvature (R0) i.e. the unstressed radius of curvature of 

aggregated lipids. R0 is typically derived from inverse hexagonal lyotropic liquid crystal 

phases by small angle X-ray scattering [38] and related to the elastic free energy of bending 

(ΔGc) of a monolayer of surface area (A) by the Helfrich Hamiltonian [24], Eq. 2.  

 

ΔGc = ½ MA(c1 + c2 – 2c0)2 + GAc1c2   Eq. 2, 

 

Where, c1 (=1/R1) and c2 (=1/R2) are the principal curvatures at the interface (with the 

convention that a monolayer with negative curvature curves towards water), c0 (=1/R0) is 

the intrinsic (or spontaneous) curvature of the monolayer, M is the mean curvature 

bending rigidity and G is the Gaussian curvature modulus. 

Since it is not easy to obtain detailed information on the changing values of A, M and G for 

cells, we use curvature elastic stress (), Eq. 3, as a first order approximation of stored 

elastic energy. 

 

    = - 2Mc0     Eq. 3 

 

Extensive details of how the control functions were parameterised and how the values of 

wces and wdis were obtained have been published previously [20,46], as summarised in 

sections 2.1 to 2.3. Figure 1 provides an overview of control mechanisms in phospholipid 

homeostasis and the importance of developing quantitative models to understand the role 

of lipids in health and the environment.  
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1.4 Objectives  

 Our previous studies [20,46] gave two sets of coarse-grain parameters (wces and wdis) 

determined by data-driven modelling using the HL60 and HeLa cell lipidomes. These wces 

and wdis parameters can be substituted, with new lipidomic data, into Eq. 1 to give pdis and 

pces values for these new lipidomes. Our first objective is to determine if the control 

functions and parameters determined previously are valid in these new lipidomic datasets. 

Secondly we evaluate the mechanisms by which both control functions might be maintained 

in vivo; a number of possibilities exist. There might, for example, be two separate control 

mechanisms, one for curvature elastic stress and one for membrane order. However, it is 

also possible that maintaining one of these membrane properties within tightly controlled 

boundaries automatically regulates the other membrane property, suggesting that 

membrane order and membrane curvature elastic stress are fundamentally entangled in 

vivo. 

 

2.0 Materials and Methods 

 The lipidomes used in this study are derived from total cell extracts and have been 

published previously by various groups. Methodology through which control functions for 

membrane order [20] and the intrinsic curvature hypothesis [46] were parameterised is 

summarised in sections 2.1 to 2.3. 

We have published lipidomes of the HL60, HL60 oleate (HL60 cells cultured in excess 

oleate), HeLa and HeLa sync (synchronised HeLa) cells [20,46,47]. The LDLRmouse lipidome was 

obtained from thioglycolate-stimulated wild-type and low-density lipoprotein receptor 

knockout (LDLR(-/-)) mice maintained on normal and Western (High-fat, high cholesterol) 

diets [48]. Lipidomes of RAW 264.7 cells cultured with KDO lipid-A (RAW 264.7KDO), or 

compactin (RAW 264.7compactin) or BMDM cells treated with compactin or ATP (BMDM 

compactin and BMDM ATP, respectively) are freely available in the literature [48–50]. The 
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lipidomes of MDCK cells [51] and human brain cells exhibiting Alzheimer’s Disease and 

control (NEURO Alz) [52] are also available. 

 

2.1 Assumptions in the data-driven modelling 

 To construct these data-driven models a number of assumptions have to be made, 

as discussed previously [20,46], which fall into two groups. The first group are assumptions 

about the experimental (lipidomic) data and ultimately determine the identity and diversity 

of the set of lipid species {L}. The second group are assumptions about the biophysics of the 

control mechanisms and dictate the form of the control function and how the w terms are 

constructed.  

 Assumptions deriving from the experimental data are that; 

A) the lipid species (PC, PE, PS, PA, PI, DAG) used in the control functions represent 

greater than 90% of the total phospholipid composition of whole cells. 

B) where isomeric or isobaric lipid species exist, all the lipids are assigned the dominant 

lipid identity. 

C) the identity of lipid species can be assigned from the likely distribution of 

unsaturations, which is accomplished using the fatty acid species that predominate 

in mammalian cell lipidomes, i.e. the 14:0, 16:0, 16:1, 18:0, 18:1, 18:2, 18:3, 20:4, 

20:5, 22:5, 22:6 fatty acids [53]. 

Assumption C is necessary because many of the lipidomes used in this study report at the 

lipid species level e.g. PC34:2, which does allow individual fatty acid chain lengths or the 

distribution of unsaturation to be assigned. In general, lipid identity assignments based 

upon the distribution of unsaturations are straightforward since, for example, PC 36:1 will 

contain 1 saturated chain and 1 monounsaturated chain (referred to as PC 0:1 in our 

models) and PC 36:2 will predominantly be PC 1: 1 rather than PC 0:2 (due to the greater 

predominance of the 18:1 fatty acid). 
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 Assumptions that dictate the form of the control functions and how the w terms are 

constructed are in part driven by the available lipidomic data but are also determined by 

current knowledge in membrane biophysics. These assumptions are that 

D) the chain length of the individual fatty acid chains has no effect on membrane order 

or spontaneous curvature, which arises directly from assumption C. 

E) control functions can be expressed as ratios where the individual lipids contribute to 

the collective numerator and denominator terms through ideal linear mixing. 

F) curvature elastic stress increases with the number of lipid unsaturations and with 

lipid headgroup such that PS<PC<PI<PE<PA<DAG (for identical chain lengths), based 

on individual lipid contributions to membrane curvature elastic stress estimated 

from values of each lipid’s spontaneous curvature [46]. 

G) membrane disorder increases with the number of lipid unsaturations and with lipid 

headgroup such that PA<PE<PS<PC<PI<DAG, ranked using in vitro trends in individual 

lipid Tm values, as discussed [20]. 

 

2.2 The origin of the terms wces, wdis and pivot species (Lp) 

The parameters wces, wdis and pivot species (Lp) used to construct the control 

functions of the form shown in Eq. 1 were determined by a data-driven modelling approach 

using the HL60, HL60 oleate and HeLa lipidomes. According to a set of rules that stem from 

assumptions F and G, values of w were constructed by random iteration and used to 

calculate pdis and pces. This approach was repeated using each lipid present in the HL60/ 

HeLa lipidomes as the pivot lipid. The best sets of wces or wdis and pivot species were 

selected as those that gave the lowest variance in pdis or pces across all the cell populations 

[20,46] (reproduced in Tables S1 and S2). 

 

2.3 Determining the values of pdis and pces for new lipidomes 

To calculate the values of pdis and pces for each lipidome in this study, the individual 

concentrations of each lipid species (L) for each population of cells (i.e. each experimental 
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flask) were inputted into Eq. 1 along with the relevant value of wces or wdis for that lipid 

species and control function (from Table S1 or S2). The mean average, standard deviation 

and coefficient of variance of pdis and pces were then determined for each lipidome. 

 

 

3.0 Results and Discussion 

3.1 Control functions for membrane disorder and curvature elastic stress tested in new 

lipidomic data sets 

The compositional abundance, statistical variance and origin of the lipidomes used in 

this study are shown in Table S3, which shows very clearly that there is significant diversity 

across the lipidomes studied. This is important to note since without this diversity our 

results are not a significant development on our previous studies. Table 1 shows pdis and 

pces, their standard deviations and the cv for each lipidomic dataset. A brief discussion of the 

effects of lipid composition on pces and pdis is provided as supporting information, section 

S1.1. 

In general, the magnitude of the cv of pces and pdis shown in Table 1 suggests that 

there is good evidence (since the cv is generally below 20%) that the control functions, 

previously developed in the HL60 and HeLa cell lines, are in operation across these other 

mammalian lipidomes. Values of the mean pdis and pces in Table 1 indicate that the trends we 

have previously reported [20,46] are also apparent in these wider datasets and that both 

properties are being regulated. For example individual cell lines have similar values of pdis. 

Within error, the pdis of BMDM ATP is 0.8 ± 0.2 and pdis of BMDM compactin is 0.9 ± 0.2, the pdis 

of RAW 264.7compactin cells is 0.6 ± 0.1, whilst the pdis of RAW 264.7KDO cells is 0.6 ± 0.1. A 

similar trend is seen in the pces data as shown in Table 1.  However the magnitude of pdis and 

pces vary between cell lines indicating that the degree of membrane order and curvature 

elastic stress is likely to be different for each of the cell types. 
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This larger set of data also suggests that the ratio of pdis to pces for each cell line is 

around 3. This indicates a possible correlation between the two control functions across all 

the cell lines. 

 

 

 

3.2 A strong correlation between pces and pdis across all lipidomes and evidence of data 

clustering 

A plot of pdis versus pces for each individual population (circa 500) of cells was 

constructed and is shown in Figure 2A. Figure 2A suggests that there is a strong correlation 

between pdis and pces in vivo (Pearson correlation coefficient of +0.93). This suggests there is 

an equally strong correlation between membrane curvature elastic stress and membrane 

disorder in vivo, such that as thermal disorder increases in the bilayer, curvature elastic 

stress also increases.  In qualitative terms this makes sense since as temperature increases, 

increases in thermal disorder of the acyl chains will lead to a larger hydrocarbon chain cross-

sectional area. This is turn leads to a tighter radius of curvature and greater curvature elastic 

stress in the bilayer arrangement. However, it is well established that the spontaneous 

curvature preference of individual lipids does not correlate with increased membrane 

disorder [54], suggesting a more complex mechanism is behind the correlation in Figure 2A 

and that this correlation is an emergent property of the mixture. 

Another interesting observation is that for the cells analysed in Figure 2A pces and pdis 

cluster over a range of 0.3 to 1.4 and 0.1 to 0.5 respectively. To get an idea of the range of 

values that pdis and pces can have we used Eq. 1 to calculate pdis and pces for binary lipid 

mixtures using the values of wces and wdis in Tables S1 and S2. These data are shown in 

Figure 2B indicating that the pdis and pces values for mammalian cells cluster when compared 

to the range of values possible. 

Before exploring this relationship further it is worthwhile ensuring that the 

correlation between pdis and pces is not artefactual. It is possible that the correlation might 
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occur due to the underlying lipid concentration, in which case any two control functions for 

pdis and pces will show strong correlations because L, in Eq. 1, is significantly greater in 

magnitude than w. Therefore as a control measure, a similar analysis to that shown in Figure 

2A was performed, where two, previously discarded w parameter sets (from our previous 

studies [20,46]) causing high variance (i.e. large cv values) in pdis and pces were plotted 

against each other. Figure S1 shows for the cellular lipidomes and Figure S2 shows for the 

binary lipid mixtures that in this instance pdis and pces are poorly correlated. 

 

3.3 Binary lipid studies of membrane order and curvature elastic stress explain the 

correlation between pces and pdis 

To the best of our knowledge only one literature study has proposed a quantitative 

model of the relationship between membrane order and lipid phase curvature [54].  Using 

binary lipid mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 

deuterated (d-31) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), Lafleur 

et al. [54] determined the order parameter of both the inverse hexagonal (HII) and fluid 

lamellar (Lα) phases at different lipid compositions. They found that the temperature 

dependence of the membrane order parameter follows the same quantitative relationship 

in both phases but also that the membrane order parameter scales as a function of the 

curvature of the lipid mixture. This suggests that there are two components that drive 

membrane order, the first component is thermal energy and the second is stored elastic 

energy. Lafleur et al. [54] show that the average membrane order parameter of POPE:POPC 

82:18 in the Lα phase (SLα) is circa 0.2 and in the HII phase (SHII) is circa 0.08 (both at 30°C). In 

fact over the composition range studied, order in the Lα phase is 2 to 3 times greater than in 

the HII phase, at all temperatures. Thus in the bilayer phase the effects of thermal disorder 

are attenuated by the frustration of lipid spontaneous curvature.  

If we consider the case for mammalian cells (at constant temperature) then, since 

there is evidence to suggest curvature elastic stress is tightly regulated, the results of Lafleur 

et al.[54] imply that the attenuation of thermal order must also be constant. Furthermore if 

the thermal contribution to membrane order is significantly bigger than the contribution 
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from curvature elastic stress in vivo then controlling curvature elastic stress will have little 

effect on net membrane order. Therefore membrane order would need to be independently 

regulated. Similarly, if the thermal contribution to membrane order in vivo is significantly 

lower than the contribution from curvature elastic stress then, to regulate membrane order, 

it is theoretically only necessary to regulate curvature elastic stress. To develop this analysis 

further it is necessary to estimate the curvature elastic stress of the cellular membranes in 

this study. 

 

 

3.4 Estimating curvature elastic stress and the ratio SLα /SHII in vivo 

There are no in vivo measurements of the spontaneous curvature, curvature elastic 

stress or stored elastic energy of biological membranes reported in the literature. Therefore 

the best estimate of the magnitude of curvature elastic stress in vivo comes from calibrating 

pces against the calculated curvature elastic stress present in binary mixtures of lipids. If we 

compare this estimate of curvature elastic stress in a cell membrane to the curvature elastic 

stress in lipid mixtures with published values of the ratio SLα /SHII we can estimate the ratio 

SLα /SHII in vivo.  

Figure 3A shows curvature elastic stress (), see Eq.3, versus pces for two binary lipid 

mixtures of DOPE (R0 = -28.5 Å [55]) and POPC (R0 = -454.5 Å) [56], and DOG (R0 = -11.5 Å 

[55]) and POPC. (method shown in section S1.2). The values of pces in Table 1 range from 

0.15 to 0.38. According to Figure 3A, and assuming that this binary lipid model is valid for 

the lipidomes studied, then  in these biological membranes is around 4 - 7x10-12 N.  Figure 

3B shows the relationship between  and SLα /SHII in model membranes, calculated from the 

data of Lafleur et al. [54]. From Figure 3B it is clear that at this value of , SLα /SHII is around 

2.6 and hence  will have a dominating effect on membrane order in these cells. 

 

3.5 A mechanism for phospholipid homeostasis: curvature elastic stress drives membrane 

order in mammalian cells 
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  A ratio of SLα /SHII = 2.6 is consistent with a mechanism where, at constant 

temperature, the regulation of membrane order in vivo could be accomplished by regulation 

of . However Lafleur et al. [54] also present data to show that in the same POPE and POPC 

binary lipid systems where SLα /SHII ranges from 2.6 to 3.11 the absolute magnitude of the 

orientational order parameter does not change significantly with lipid composition and 

hence . An explanation of this stems from Figure 3B, where SLα /SHII appears to plateau at 

values of 3 over the range studied. In this regime the effect of changes in  on absolute 

order will be small, assuming constant temperature, possibly because the system is highly 

stressed. This in turn suggests that if mammalian cells maintain  at around 2 x10-11 N or 

above, SLα /SHII will be about 3 and absolute membrane order will be constant. However, this 

does assume that the non-linear curve fitted to Figure 3B is appropriate. Assuming it is valid, 

then the lower value of SLα /SHII = 2.6, which is at the steepest point in the curve, suggests 

membrane order will be more sensitive to  in this regime. It is however worth noting that 

the effect of protein is ignored in the calculation of τ. Theoretically M will increase with 

increasing protein content in the lipid bilayer as discussed [57], therefore it is likely that the 

estimated value of τ in vivo is at the lower extreme of the real value. 

This mechanism explains why lipids such as cholesterol have an ordering effect on 

the other lipids present in biological membranes [58]. The radius of spontaneous curvature 

of cholesterol is tightly negative (R0 = -20 Å) [56] and hence in a bilayer arrangement, 

frustration of the spontaneous curvature of cholesterol is one mechanism through which 

membrane order might be controlled. This suggests that other lipids with negative 

spontaneous curvature will also increase membrane order when their curvature is 

frustrated, as a recent in vivo study that replaces cholesterol with PE indicates [59]. 

It is interesting to ask whether the same mechanism might operate to maintain 

membrane order in cells constant at different temperatures. Since SLα /SHII is around 2.6 to 3 

at all temperatures studied by Lafleur et al. [54] (from 20°C to 80°C) then it is possible that 

by regulating  in response to temperature change, membrane order will also be regulated. 

However, given that we have estimated  in mammalian cells at constant temperature, 

further work will need to be carried out to assess this. 
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3.6 Mechanistic insights into the correlation between membrane curvature elastic stress and 

membrane order in vivo 

To understand how the individual lipid species contribute to both pces and pdis we 

looked at how hypothetical lipid compositional changes would simultaneously affect both 

terms. This was achieved by normalising the difference in magnitude of w between each 

lipid and each pivot lipid species i.e. (wces Lp – wces L)/ wces Lp or (wdis Lp – wdis L)/ wdis Lp for the 

set of lipids {L}. Figure 4 shows the resultant plot restricted to the lipid species that have the 

greatest impact on the control functions (PC, PE, PS and PI headgroups) [20,46,47]. 

Compositional changes in the lipid species that fall on the dashed diagonal line in Figure 4A 

to C will change the values of pdis and pces by equal amounts for a single cell population. 

Figures 4A to 4C show very clearly that a compositional change in any of the individual lipid 

species (lipid headgroup classes are shown in Figure 4A, unsaturation combinations are 

shown in Figure 4B) will not increase pdis more than pces, since none of the lipids appear 

above the diagonal line. Biologically Figure 4B shows that disorder i.e. pdis does not increase 

linearly with unsaturation. This is to be expected, since once a single unsaturation has been 

added, further unsaturations allow the chains to adopt some more ordered gauche 

conformations as well as less ordered conformations [14].  Furthermore two groups of lipids 

can be defined as shown in Figure 4C, Group 1 (subdivided into 1a and 1b) and Group 2; 

- Group 1 lipids fall on the line of equality (or close to it) and thus compositional 

increases in these lipids decrease (Group 1a) or increase (Group 1b) the 

magnitude of pces and pdis more or less equally. 

- Group 1a lipids are saturated lipids of all headgroups e.g. PC, PS, PE and PI (see 

Figures 4A and B). 

- Group 1b lipids are comprised of mono, di and triunsaturates of PC, PS, PE and PI 

(see Figures 4A and B). 

- Group 2 lipids are a significant distance from the line of equality and 

compositional increases in these lipids increase the magnitude of pces to a greater 

extent than pdis. 

- Group 2 lipids are comprised of polyunsaturates e.g. 20:4 and 22:6 containing 

lipids with PC, PS, PE and PI headgroups (see Figures 4A and B). 

http://dx.doi.org/10.1098/rsif.2016.0228


Dymond MK. 2016 J. R. Soc. Interface 13: 20160228. http://dx.doi.org/10.1098/rsif.2016.0228 
 

Received: 21 March 2016 
Accepted: 25 July 2016 

This information allows us to understand, mathematically, how the correlation 

between the pdis and pces, Figure 2A, is maintained in vivo, since the most compositionally 

abundant lipids in each lipidome (Table S3) are in Groups 1a and 1b. 

 

3.7 Group 1 and Group 2 lipids have different biosynthetic pathways  

Interestingly Figure 4B suggests that the polyunsaturated lipids in Group 2 might 

drive underlying variation in the ratio of pdis to pces. This is an interesting observation when 

the different biosynthetic routes for lipid production are considered. In vivo biosynthesis of 

lipids occurs through two pathways. Phospholipids are synthesised de novo through the 

Kennedy pathway [60], from free fatty acids via diacylglycerols, or by fatty acid remodelling 

through the Lands cycle [61]. The polyunsaturated fatty acids 20:4, 20:5 and 22:6 appear to 

be exclusively substituted into lipids through fatty acid remodelling [62]. What is striking 

about Figure 4C is that the lipids in Groups 1a and 1b are exclusively synthesised by the de 

novo route and the lipids in Group 2 are all synthesised by the remodelling route. This 

suggests a cellular mechanism through which membrane curvature elastic stress could be 

varied disproportionately to membrane order in vivo. This process would occur via the Lands 

cycle, where lipids are switched between Group 1 and 2 by exchange of a 20:4, 20:5 or 22:6 

fatty acid with one of the fatty acids on a Group 1 lipid. 

 

3.8 Evidence that Group 2 lipids drive cell cycle variations in membrane order and curvature 

elastic stress 

In other work [47] we concluded that for HeLa cells curvature elastic stress increases 

in the Gap 2/ Mitosis (G2/M) phase of the cell cycle. We concluded that this is the result of 

increases in arachidonic acid containing lipids. In particular we identified PC18:1/20:4, PE 

18:0/20:4, PE 18:1/20:4, PE 18:0/20:4, PI 18:1/20:4, PI 18:0/20:4 and PS 18:0/20: 4, which 

are in Group 2 as identified in this work. Furthermore, we observed a fall in curvature elastic 

stress in S phase due to an increase in saturated and monounsaturated lipids with PC, PE, PS 

and PI headgroups, which are in Group 1. Figure 4D shows a reconstruction of the original 
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plots of pdis and pces for the HeLa cell cycle normalised to their first time point. This analysis 

allows us to look at the relative magnitude of curvature elastic stress and membrane order 

as they vary about the cell cycle. Initially pdis and pces drop in proportion with each other 

before there is a rise in pces that is greater than the rise in pdis at 12 hours.  What is now clear 

is that the difference in pces and pdis at 12 hours (G2/M) is clearly due to the elevated Group 

2 polyunsaturated lipids. 

Using transcriptomic data in the NCBI GEO database for HeLa cells as they traverse 

the cell cycle [63] we looked for evidence to suggest that any of the acyltransferase enzymes 

[62] that perform polyunsaturated fatty acid substitutions, full list shown in Table S4, were 

expressed to a greater extent as cell moved into the G2/ M phase of the cell cycle. We could 

find no transcriptional correlation, suggesting a biochemical or post-translational 

mechanism drives substitution with polyunsaturated fatty acids. Many of the 

acyltransferase enzymes that substitute polyunsaturated fatty acids are membrane 

spanning [62] therefore the likely regulatory mechanism is through membrane curvature 

elastic energy as demonstrated for several other intrinsic proteins [38].  However, it is also 

possible that membrane order might be being sensed, as is thought to occur in bacterial 

membranes through the so-termed ‘sunken-buoy’ motif [42] in some transmembrane 

proteins. 

 

4.0 Conclusions 

4.1 Limitations, assumptions and the development of better data-driven models 

 In this work a number of assumptions are made as discussed in section 2.1.  It is 

useful to consider the impact of these assumptions on the conclusions of this study. The 

need for these assumptions partly stems from the current limitations of lipidomic analyses, 

as summarised in Figure 5 and below. 

i) Lipidomic analyses are mass spectrometric and some lipid structural information 

such as fatty acid chain length, position and distribution of unsaturations (critical 
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to efficient biophysical parameterisation) is lost due to isomerism (Assumptions 

A, B & C). 

ii) Lipidomic datasets are predominantly obtained from total lipid extracts and 

contain no information on cellular lipid spatial heterogeneity.  In particular, 

subcellular lipid distribution, membrane protein composition, lipid microdomain 

composition and lipid leaflet compositional asymmetry are lost. 

 

The limitations presented in point (i) are likely to be overcome with new methodological 

developments in lipid mass spectrometry. This will enable a less coarse-grained approach to 

data-driven modelling to be performed by allowing a greater number of lipid species to be 

identified and included in the models. We know, however, from previous work [20] that the 

most compositionally abundant lipids (typically PC and PE lipids) dominate the control 

functions and since these are already included in the model the inclusion of less abundant 

lipids is unlikely to impact the conclusions of this manuscript. 

The limitations presented in point (ii) will be overcome by new methods of lipid 

extraction and membrane fractionation. This will enable control functions to be determined 

for individual subcellular membranes. If all the membranes, domains and membrane leaflets 

in the cell have the same magnitudes of pces and pdis then this will be of no consequence, 

however there is no reason to expect this. Furthermore quantitative details of the 

membrane proteome obtained under the same conditions as the lipidome will enable the 

set of total membrane proteins {PM} to be included in control functions. This is important 

since some membrane proteins can mitigate lipid curvature effects hence their inclusion will 

lead to more accurate models. 

Control functions are parameterised as a mixture where the components contribute 

linearly as a function of concentration to the mixture properties (assumption E). The use of 

this principle of ideal mixing is widespread [25,36,54,55] in the biophysics community and 

unlikely to be re-evaluated. Related to this is the low data density of the relevant lipid 

biophysical data, which allows the ranking of lipid contributions to curvature elastic stress 

(assumption F) or membrane order (assumption G). As new data emerge, a less coarse-
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grained approach to generate the values of wces and wdis can be employed. However, since 

the major trends are well established it is unlikely that either assumption E or F is likely to 

be re-evaluated. 

 

4.2 Summary of key results and future directions 

 Using data-driven models [20,46] as proxies for membrane disorder and membrane 

curvature elastic stress in vivo we have analysed the lipidomes of circa 500 cellular 

populations.  Our analysis suggests; 

- Both pces and pdis are well-evidenced in the new data sets, 

- a positive correlation (R = + 0.93) between the two control functions across the 

new lipidomes, 

- curvature elastic stress in mammalian cells is circa 4 - 7x10-13 N  

- regulation of membrane order (membrane fluidity/ viscosity) can be achieved by 

regulation of membrane curvature elastic stress but not vice versa. 

- lipids synthesised through the Kennedy pathway have a more or less equal effect 

on both control functions, 

- Lands’ cycle offers a route by which cells might increase curvature elastic stress 

to a greater extent than membrane order. 

   

These findings have several implications for model studies of lipid protein 

interactions. For example it is common practice to look at the activity of membrane 

interacting proteins in binary lipid mixtures. Focusing model membrane studies on lipid 

mixtures with pdis and pces values comparable to those in real cells might reveal new insights 

into how lipid composition affects protein activity, particularly if pces and pdis values are used 

to normalise protein activity in across lipid compositions. 

These data-driven models present a number of hypotheses which ought to be tested 

independently. There are a number of challenges that currently prevent this. The biggest is 

that there is currently no way to directly measure stored elastic energy in a membrane. 

http://dx.doi.org/10.1098/rsif.2016.0228


Dymond MK. 2016 J. R. Soc. Interface 13: 20160228. http://dx.doi.org/10.1098/rsif.2016.0228 
 

Received: 21 March 2016 
Accepted: 25 July 2016 

Rather its magnitude must be inferred using the intrinsic parameters of lipid mixtures and 

linear mixing. Membrane order can be measured in membranes; hence one approach to 

test the hypotheses presented is to measure membrane order and compare it to the 

calculated curvature elastic energy in complex lipid mixtures. The relatively few 

spontaneous curvatures values of lipids in the literature, when compared to the number of 

lipids in cells, currently prevent this analysis.  
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Figure 1 a schematic overview of how homeostatic control mechanisms might occur in 

phospholipid biosynthesis, showing the biophysical concepts of membrane order, 

spontaneous curvature and stored elastic energy. A simplified phospholipid biosynthetic 

pathway, where PC, PE, PI, PA, PS and DAG are phosphatidylcholine, 

phosphatidylethanolamine, phosphatidylinositol, phosphatidic acid, phosphatidylserine and 

diacylglycerol lipids respectively, is also shown. Membrane bound proteins involved in lipid 

biosynthesis, which can sense and regulate the biophysical properties of the membrane, the 

environmental contributions to lipid composition and health implications of understanding 

lipid biosynthesis are also summarised. 
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Figure 2A a plot of pdis versus pces for around 500 individual cell populations derived from the 

cell lines summarised in Table 1. The Pearson correlation coefficient for the total data is 0.93 

indicating that pdis and pces are positively correlated. Figure 2B shows pdis versus pces on a 

logarithmic scale calculated for a range of binary lipid mixtures (with increasing amounts of 

10 mol% of the second lipid in the mixture) and the clustering of the pces and pdis values 

determined for the mammalian cells shown in Figure 2A. The inset in Figure 2B shows the 

region where the mammalian cells cluster expanded and on a linear scale. 

 

http://dx.doi.org/10.1098/rsif.2016.0228


Dymond MK. 2016 J. R. Soc. Interface 13: 20160228. http://dx.doi.org/10.1098/rsif.2016.0228 
 

Received: 21 March 2016 
Accepted: 25 July 2016 

Figure 3A the variance of pces with curvature elastic stress () in binary POPC: POPE (black 

circles) or POPC: DOG (black triangles) lipid vesicles. Figure 3B curvature elastic stress versus 

SL/ SLHII in binary POPC: POPE (black circles) order parameter data taken from Lafleur et al. 

[54]. 

 

Figure 4 plots of (wces Lp  - wces L)/ wces Lp versus (wdis Lp - wdis L)/ wdis Lp  showing how changes in 

the lipid composition of a dataset will impact each control function relative to the pivot 

species. Lipid species that fall on the line of equality (or close to it) have roughly equal 

effects on the magnitude of pces and pdis. Figure 4A shows the lipids classified by headgroup 
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identity. Figure 4B shows the lipids classified by the total number of unsaturations in both 

hydrocarbon chains. Figure 4C shows the lipids classified into three groups (Groups 1a, 1b 

and 2) as discussed in the text. Figure 4D shows the relative changes in pces and pdis about 

the cell cycle of the HeLa cell; pces data were normalised to the pces value at 3hours and pdis 

data were normalised to the pdis value at 3 hours. G1, S, G2 and M are the Gap 1, Synthesis, 

Gap 2 and Mitosis phases respectively and x-axis is the number of hours after the release of 

cells from synchronisation agent [47].  Increases in pces over pdis during G2/M are driven by 

compositional increases in polyunsaturated lipids. 

 

Figure 5, a summary of assumptions used to generate data-driven models and the impact of 

new lipidomic and/ or biophysical data on the conclusions of this manuscript. 
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Table 1 mean values of pdis and pces and the resultant cv values for the different mammalian cell line 

lipidomes summarised in sections 2.1 to 2.3. 

         Cell Line   n Mean Sdev cv / % Mean (pdis/pces) Sdev (pdis/pces) 

HL60 oleate 
Pdis 

17 
0.98 0.08 8.38 

2.82 0.16 
Pces 0.35 0.03 9.89 

 
        

HL60 
Pdis 

16 
0.71 0.07 10.46 

2.42 0.25 
Pces 0.30 0.03 10.89 

 
        

HeLa 
Pdis 

8 
0.46 0.01 1.95 

3.01 0.23 
Pces 0.15 0.01 9.49 

       
  

LDLR mouse 
Pdis 

16 
1.04 0.06 5.36 

2.75 0.23 
Pces 0.38 0.04 9.65 

 
        

BMDM ATP 
Pdis 

87 
0.82 0.14 17.46 

2.92 0.26 
Pces 0.28 0.04 13.19 

       
  

RAW 264.7 compactin 
Pdis 

116 
0.64 0.09 14.79 

2.79 0.20 
Pces 0.23 0.04 17.26 

       
  

BMDM compactin 
Pdis 

87 
0.92 0.18 19.40 

2.92 0.19 
Pces 0.31 0.05 17.52 

       
  

RAW 264.7 KDO 
Pdis 

96 
0.60 0.10 15.95 

2.69 0.15 
Pces 0.23 0.04 17.99 

       
  

HeLa sync 
*
 

Pdis 
18 

0.44 0.07 16.30 
3.01 0.39 

Pces 0.15 0.04 26.65 

         

MDCK ** 
Pdis 

 

0.69 0.15 21.24 
3.45 0.22 

Pces 0.20 0.04 18.59 

       
  

NEURO Altz** 
Pdis  

0.75 0.05 6.92 
3.35 0.13 

Pces  
0.23 0.02 10.20 

         * These cells are synchronised at the G1/ S boundary 
    ** The lipidome of these cells is reported as an average of 3 repeats 
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SI 1.1 A brief discussion of the effect of lipid composition on the variance of pces and pdis 

Table S3 shows the top 15 most compositionally abundant phospholipids in the 

lipidomes studied. If these lipidomes are not compositionally different to those already 

studied i.e. HeLa and HL60 then the novelty of these new results is low. The compositional 

diversity of the lipidomes is briefly discussed and the effect on pdis and pces considered.  

In the HL60 cell line the most abundant lipid is PE18:1/ 18:1, which is present at 8.0 

% of the total lipids in the control function. A number of polyunsaturated PE lipids, such as 

PE 18:0/ 22:6 (4.7 %) and PE18:0/ 20:4 (7.0 %) are in the highest ten most abundant lipids. 

PC16:0/ 18:1 is the third most abundant lipid at 6.3% and PC 18:1/18:1 has 3.7 % 

abundance. Culturing the HL60 cell line with exogenous oleate (HL60 oleate) causes 

PE18:1/18:1 to rise to 21.4% of the total lipid analysed. PC 18:1/18:1 also rises to 7.5%, 

polyunsaturated PE lipids remain prevalent in the ten most abundant species but 

surprisingly DAG 18:1/18:1, not apparent in highest 15 abundant lipids in the HL60 lipidome, 

is now at 4.34 % abundance. In the HeLa cell line the most abundant lipid is PC 16:0/18:1 

(12.1 %) followed by PE 18:1/18:1 (9.7%). Monounsaturated and diunsaturated PC and PE 

lipids dominate the lipidome with some polyunsaturated PE lipids (PE 18:0/ 20:4 and PE 

18:1/20:4) present. The cv values of pdis, pces for HL60oleate, HL60 and HeLa cell lines 

(reproduced from our previous publications [1,2]) are close to or below  10%. 

The LDLR mouse lipidome  is determined from thioglycolate-stimulated wild-type and 

low-density lipoprotein receptor knockout (LDLR(-/-)) mice  [3] maintained on normal and 

Western (High-fat, high cholesterol) diets. The lipids PS(36:1), PS(36:2) and PS(38:8) 

dominate the composition at 6.1 %, 5.4 % and 3.7 % respectively, polyunsaturated PS, PE, PC 

and a PI are also common. PC(36:2) is the highest dominating PC lipid at 2.2 % of the total 

phospholipid composition. The mean cv of pdis and pces are 5.36% and 9.65% respectively, 

giving excellent evidence that both control functions are in operation across a range of 

control and experimental studies.  

In RAW 264.7 cells, cultured with KDO lipid-A and/ or ATP. (RAW 264.7KDO) [3–5], 

PS(36:1) at 6.8 % is the most abundant lipid. PC(36:2) is the second most abundant at 3.2 %. 

Polyunsaturated PE, PS and PI lipids are also abundant but polyunsaturated PC lipids are not 
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present (Table S3). The mean cv of pdis and pces are 17.46% and 13.19% respectively. Similar 

values of the mean cv of pdis and pces were obtained for RAW 264.7 cells, cultured with 

compactin (RAW 264.7compactin)[3–5] and BMDM cells treated with compactin or ATP (BMDM 

compactin and BMDM ATP, respectively) [3,5]. In the BMDM ATP experiments the most abundant 

lipids are PS(36:1) at 7.2 %, PC(36:2) at 3.4 %, PC(34:1) at 3.86 % and PE(36:2) at 3.4 %.  The 

BMDM compactin experiments show a similar composition to the BDM ATP lipidome, except that 

in the BMDM compactin lipidome polyunsaturated PC lipids such as PC(40:7) is now the third 

most dominant lipid at 3.9%.  

The lipidome of MDCK cells [6]  is dominated by PC (34:1) at 9.8 % and PS(36:1)at  

5.9 %, Table S3. The cv of pdis and pces for the MDCK cell line are 18.59 % and 21.24 

respectively. Finally, the lipidome of human brain cells exhibiting Alzheimer’s Disease and 

control (NEURO Alz) [7] is dominated by the PC lipids PC(34:1) at 12.5%, PC(32:0) at 8.1% and 

PC(36:1) at 5.6%, this is the only cell line with a dominant saturated lipid species at such 

high composition. The cv of pdis and pces for these lipidomes are 6.92 and 10.2 % respectively. 

We conclude in the manuscript that there is good evidence for the previously identified 

control mechanisms operating in these new cell lines since general pces and pdis are in the 

range of 5 to 20%. 
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Supplementary Figures 

 

 

 

Figure S1; a correlation plot of pces and pdis constructed using wces and wdis parameter sets 

previously discarded since they showed gave low variance across the HL60 and HeLa cell 

populations studies [1,2]. 
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Figure S2 pces and pdis calculated for binary lipid mixtures using the same previously 

discarded parameter sets as for Figure S1. 

 

S1.2 Construction of the calibration plot relating pces to curvature elastic stress 

We accomplish this using the addition rule for spontaneous curvatures based on the 

principle of ideal mixing as discussed [8]. Where; 

c0 mix = (1-x) c0 A + xc0 B  Eq. S1, 

 

such that c0 mix is the spontaneous curvature of a mixture of lipids A and B, x is the mole 

fraction of lipid B and C0A and C0B are the spontaneous curvatures of the pure lipids A and B. 

Curvature elastic stresses are calculated using Eq. 3, main manuscript, using c0mix and a Mmix 

term. Typical values of M for pure lipid monolayers are of the order of 0.5x10-19 J for DOPE 

[9] and DOG [10] whilst for DOPC 1.0x10-19 J is reported [9]. We use a similar addition rule 

(Eq. S1) to calculate Mmix for these mixtures. It should however be noted that, in 

comparison to the range of spontaneous curvature values of lipids, M varies only slightly 

indicating that the principal contribution to curvature elastic stress is the frustrated lipid 

spontaneous curvature. 
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Table S4 enzymes with acyl glycerol transferase activity as discussed [11].  The presence of 

individual transcripts was assessed by looking through data for GSE 26922, from the Gene 

Expression Omnibus [12].  

 

AGPAT 9, AGPAT3, AGPAT1, AGPAT2, AGPAT6, AGPAT5, AGPAT4, AGPAT9, LPGAT1, GPAT2, 

AGPAT3, AGPAT2, AGPAT6, AGPAT4, AGPAT5, ABHD5, PNPLA2, PNPLA4, PNPLA2, PNPLA6, 

PNPLA2, PNPLA1, PNPLA7, DGAT2, MBOAT1, MBOAT2, MBOAT4, MBOAT7,LPCAT1, LPCAT2, 

LPCAT3, LPCAT4, PLA1, LPA1, PLA2, PLA2 GROUP IVB, PLA2 GROUP III, PLA GROUPIVF, PLA 

GROUPVI, PLA GROUPIIC, PLA GROUPIIF, PLA GROUPX, PLA GROUPIVD, PLA GROUPXV, PLA 

GROUPXVI, PLA GROUPVII, PLA GROUPIVA, PLA GROUPIIA, PLA GROUPIID, PLA GROUPVIIB, 

PLA GROUPVIIA, LYPLA2, PLA GROUPIIE, PLA GROUPIII. 
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Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.2204 0.2842 0.348 0.3596 0.4466 0.5626 0.6728

1 0.348 0.4118 0.4234 0.5104 0.6264 0.7366

2 0.4756 0.4872 0.5742 0.6902 0.8004

3 0.4988 0.5858 0.7018 0.812

4 0.6728 0.7888 0.899

5 0.9048 1.015

6 1.1252

Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.2394 0.3087 0.378 0.3906 0.4851 0.6111 0.7308

1 0.378 0.4473 0.4599 0.5544 0.6804 0.8001

2 0.5166 0.5292 0.6237 0.7497 0.8694

3 0.5418 0.6363 0.7623 0.882

4 0.7308 0.8568 0.9765

5 0.9828 1.1025

6 1.2222

Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.2432 0.3136 0.384 0.3968 0.4928 0.6208 0.7424

1 0.384 0.4544 0.4672 0.5632 0.6912 0.8128

2 0.5248 0.5376 0.6336 0.7616 0.8832

3 0.5504 0.6464 0.7744 0.896

4 0.7424 0.8704 0.992

5 0.9984 1.12

6 1.2416

Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.2432 0.3136 0.384 0.3968 0.4928 0.6208 0.7424

1 0.384 0.4544 0.4672 0.5632 0.6912 0.8128

2 0.5248 0.5376 0.6336 0.7616 0.8832

3 0.5504 0.6464 0.7744 0.896

4 0.7424 0.8704 0.992

5 0.9984 1.12

6 1.2416

Table S1 the w ces  values of lipids used to parameterise Equation 1 and calculate p ces *

PS w ces  values

PC w ces  values

PI w ces  values

PE w ces  values



Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.2698 0.3479 0.426 0.4402 0.5467 0.6887 0.8236

1 0.426 0.5041 0.5183 0.6248 0.7668 0.9017

2 0.5822 0.5964 0.7029 0.8449 0.9798

3 0.6106 0.7171 0.8591 0.994

4 0.8236 0.9656 1.1005

5 1.1076 1.2425

6 1.3774

Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.3192 0.4116 0.504 0.5208 0.6468 0.8148 0.9744

1 0.504 0.5964 0.6132 0.7392 0.9072 1.0668

2 0.6888 0.7056 0.8316 0.9996 1.1592

3 0.7224 0.8484 1.0164 1.176

4 0.9744 1.1424 1.302

5 1.3104 1.47

6 1.6296

* where DAG, PA, PI, PE, PC, PS are the diacylglycerol, phosphatidic acid, phosphatidylinositol, 

phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine headgroups. Commonly occuring lipids in 

the mammalian lipidome are shaded grey and the terms Unsats C1 and Unsats C2, refer to the number of 

unsaturations in the first and second hydrocarbon chain respectively. The value shown in bold is the pivot species 

PE 0:1 for the p ces  control function.

PA w ces  values

DAG w ces  values



Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.5084 0.6478 0.7216 0.7298 0.7544 1.0004 1.0578

1 0.7872 0.861 0.8692 0.8938 1.1398 1.1972

2 0.9348 0.943 0.9676 1.2136 1.271

3 0.9512 0.9758 1.2218 1.2792

4 1.0004 1.2464 1.3038

5 1.4924 1.5498

6 1.6072

Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.558 0.711 0.792 0.801 0.828 1.098 1.161

1 0.864 0.945 0.954 0.981 1.251 1.314

2 1.026 1.035 1.062 1.332 1.395

3 1.044 1.071 1.341 1.404

4 1.098 1.368 1.431

5 1.638 1.701

6 1.764

Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.589 0.7505 0.836 0.8455 0.874 1.159 1.2255

1 0.912 0.9975 1.007 1.0355 1.3205 1.387

2 1.083 1.0925 1.121 1.406 1.4725

3 1.102 1.1305 1.4155 1.482

4 1.159 1.444 1.5105

5 1.729 1.7955

6 1.862

Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.496 0.632 0.704 0.712 0.736 0.976 1.032

1 0.768 0.84 0.848 0.872 1.112 1.168

2 0.912 0.92 0.944 1.184 1.24

3 0.928 0.952 1.192 1.248

4 0.976 1.216 1.272

5 1.456 1.512

6 1.568

Table S2 the w dis  values of lipids used to parameterise Equation 1 and calculate p dis *

PS w dis  values

PC wdis  values

PI w dis  values

PE w dis  values



Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.4774 0.6083 0.6776 0.6853 0.7084 0.9394 0.9933

1 0.7392 0.8085 0.8162 0.8393 1.0703 1.1242

2 0.8778 0.8855 0.9086 1.1396 1.1935

3 1.183987 0.9163 1.1473 1.2012

4 0.9394 1.1704 1.2243

5 1.4014 1.4553

6 1.5092

Unsats C2

Unsats C1 0 1 2 3 4 5 6

0 0.6014 0.7663 0.8536 0.8633 0.8924 1.1834 1.2513

1 0.9312 1.0185 1.0282 1.0573 1.3483 1.4162

2 1.1058 1.1155 1.1446 1.4356 1.5035

3 1.1252 1.1543 1.4453 1.5132

4 1.1834 1.4744 1.5423

5 1.7654 1.8333

6 1.9012

* where DAG, PA, PI, PE, PC, PS are the diacylglycerol, phosphatidic acid, phosphatidylinositol, 

phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine headgroups. Commonly occuring lipids in 

the mammalian lipidome are shaded grey and the terms Unsats C1 and Unsats C2, refer to the number of 

unsaturations in the first and second hydrocarbon chain respectively. The value shown in bold is the pivot species 

PS 0:4 for the p dis  control function.

PA w dis  values

DAG w dis  values



Mean SD Mean SD Mean SD

8.05 2.55 PE18:1/18:1 21.44 6.89 PE18:1/18:1 12.11 3.68 PC16:0/18:1

6.99 2.80 PE18:0/20:4 7.49 2.24 PC18:1/18:1 9.73 5.66 PE18:1/18:1

6.38 1.66 PC16:0/18:1 6.64 1.71 PC16:0/18:1 8.86 3.04 PC18:1/18:1

4.72 1.71 PE18:0/22:6 6.56 2.32 PE18:0/18:1 6.05 3.04 PE18:0/18:1

4.23 1.49 PE18:0/18:1 4.69 1.98 PE18:0/20:4 4.02 2.97 PE16:0/18:1

3.83 1.25 PE18:1/20:4 4.35 3.82 AG18:1/18:1 3.52 1.61 PC16:0a/18:1

3.73 0.60 PC16:0/16:1 4.29 1.73 PE18:1/20:4 2.96 0.71 PE18:0/20:4

3.65 0.96 PC18:1/18:1 3.48 1.31 PE18:0/22:6 2.96 1.00 PC18:0/18:1

3.62 0.69 PC16:1/18:1 2.46 0.78 PE16:0/18:1 2.74 1.02 PC16:0/16:1

2.75 0.66 PE16:0/18:1 2.18 0.97 PE18:0a/22:0 2.66 0.74 PE18:1/20:4

2.69 0.72 PE18:1/18:2 2.04 0.63 PE18:1/18:2 2.32 0.72 PC16:0/18:2

2.54 1.06 PE18:0/22:5 1.95 0.81 PE18:0/22:5 2.21 1.12 PE18:0/20:2

2.52 0.92 PE18:0a/22:0 1.71 0.70 PE18:0/20:2 1.88 0.64 PC16:0/16:0

2.02 0.54 PC18:1/18:2 1.64 0.34 PC16:0/18:2 1.78 0.67 PC18:0/20:2

1.76 0.86 PE18:0/20:3 1.54 0.25 PC16:0/16:1 1.72 0.74 PC18:0a/18:2

Mean SD Mean SD Mean SD

6.76 2.62 PS(36:1) 6.59 1.89 PC(36:2) 7.21 3.18 PS(36:1)

3.27 1.10 PC(36:2) 5.58 1.49 PC(32:1) 7.12 4.88 PC(36:2)

2.82 1.12 PS(40:5) 5.57 1.45 PS(36:1) 3.86 2.00 PC(34:1)

2.74 0.93 PC(36:1) 3.41 0.84 PC(34:1) 3.40 1.01 PE(36:2)

2.62 1.14 PS(34:1) 3.13 1.35 PC(36:1) 3.15 2.27 PC(36:1)

2.60 1.04 PE(38:4) 3.01 1.04 PE(38:4) 3.07 0.88 PE(38:4)

2.51 0.83 PC(32:1) 2.59 0.88 PE(36:2) 3.01 1.02 PE(36:1)

2.36 0.97 PS(40:6) 2.29 0.62 PE(36:1) 2.82 1.49 PC(32:1)

2.23 1.14 PS(36:0) 2.16 0.81 PS(34:1) 2.45 1.06 PS(36:2)

1.97 0.64 PE(36:1) 2.15 0.61 PC(34:2) 2.45 2.14 PC(38:6)

1.80 0.63 PE(36:2) 1.89 0.53 PE(38:5e)/PE(38:4p) 2.43 1.00 PS(38:4)

1.80 0.78 PI(38:4) 1.80 0.56 PC(38:4) 2.32 0.97 PS(34:1)

1.73 0.73 PI(38:3) 1.57 0.39 PS(36:2) 2.07 1.98 PC(40:6)

1.66 0.70 PS(36:2) 1.54 0.49 PE(38:5) 1.96 1.01 PE(38:5e)/PE(38:4p)

1.66 0.55 PE(34:1) 1.53 0.42 PE(34:1) 1.88 0.66 PS(40:6)

Figure S3,  percentage total molar phospholipid composition of the fifteen most abundant phospholipids in each lipidome.

RAW 264.7 KDO

HL60 HL60 oleate HeLa

BMDM ATPRAW 264.7 compactin



Mean SD Mean SD Mean SD

11.25 1.91 PC 34:1 12.50 1.22 PC 34:1 6.09 0.76 PS(36:1)

6.78 0.98 PS 18:0-18:1 8.13 1.18 PC 32:0 5.43 1.32 PS(36:2)

6.22 1.55 PC 36:2 5.56 0.44 PC 36:1 3.70 1.12 PS(38:4)

4.38 0.57 PC 34:2 5.05 1.85 PS 36:1 3.30 0.82 PE(38:4)

3.67 0.43 PC 32:1 4.97 1.26 PE 40:6 3.09 0.44 PS(34:1)

3.16 0.89 PE 18:1-18:1 4.46 1.00 PI 38:4 2.97 0.28 PI(38:4)

3.02 0.98 PE 18:0-18:1 3.70 0.83 PC 36:4 2.95 0.45 PE(38:5e)/PE(38:4p)

2.94 0.90 PI 18:0-20:4 3.58 0.81 PC 38:4 2.62 1.72 PS(40:4)

2.86 1.24 PE O-18:1-20:4 3.55 0.44 PC 34:0 2.19 0.92 PC(36:2)

2.76 1.02 PC 36:3 3.55 0.16 PC 36:2 2.18 0.30 PS(38:3)

2.43 0.50 PI 18:0-20:3 2.82 0.92 PS 40:6 1.95 0.40 PC(38:6)

2.42 0.88 PC 36:1 2.37 0.24 PC 32:1 1.92 0.54 PC(38:4)

2.05 0.93 PE O-18:1-18:1 2.20 0.17 PC 38:6 1.72 0.42 PC(36:1)

1.86 0.66 PI 18:0-18:1 2.14 0.44 PE 38:4 1.70 0.37 PS(40:5)

1.86 0.84 PC 36:4 1.91 0.32 PC 40:6 1.65 0.32 PC(38:5)

Mean SD

7.55 4.79 PS(36:1)

5.44 2.24 PC(36:2)

4.44 3.93 PC(40:7)

3.76 1.30 PC(32:1)

3.31 1.72 PC(36:1)

3.10 2.54 PC(40:6)

2.91 1.27 PC(34:1)

2.88 1.09 PE(36:2)

2.54 0.97 PE(36:1)

2.35 1.66 PC(38:5)

2.33 1.40 PS(36:2)

2.21 2.53 PE(40:7e)/PE(40:6p)

2.14 1.48 PC(38:6)

2.14 1.14 PS(34:1)

2.03 1.41 PC(38:4)

MDCK NEURO Altz LDLR mouse

BMDM compactin 


