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Abstract 

Proteins are highly mobile structures.  In addition to gross conformational changes occurring on, for 

example, ligand binding, they are also subject to constant thermal motion.  The mobility of the 

protein varies through its structure and can be modulated by ligand binding and other events.  It is 

becoming increasingly clear that this mobility plays an important role in key functions of proteins 

including catalysis, allostery, cooperativity and regulation.  Thus, in addition to an optimum 

structure, proteins most likely also require an optimal dynamic state.  Alteration of this dynamic 

state through protein engineering will affect protein function.  A dramatic example of this is seen in 

some inherited metabolic diseases where alternation of residues distant from the active site affects 

the mobility of the protein and impairs function.  We postulate that using molecular dynamics 

simulations, experimental data or a combination of the two it should be possible to engineer the 

mobility of active sites.  This may be useful in, for example, increasing the promiscuity of enzymes.  

Thus, a paradigm for protein engineering is suggested in which the mobility of the active site is 

rationally modified.  This might be combined with more “traditional” approaches such as altering 

functional groups in the active site. 

 

Keywords:  enzyme engineering; molecular dynamics; protein flexibility; active site; biocatalysis; 

conformational change 
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Introduction:  protein mobility 

It is a truth universally acknowledged that protein structure determines function.  Indeed this 

postulate is a key feature of introductory, undergraduate biochemistry programmes.  This fact also 

underpins structure-based drug design and many aspects of enzyme engineering.  It is often clear 

from looking at protein structures that their structure fits them for binding to small molecule 

ligands, macromolecular binding partners (e.g. other proteins, nucleic acids) and for catalytic or 

energy transducing applications.  Consequently, structural biology has been highly successful in 

furthering our understanding of how proteins work (46, 5, 43). 

 

However, it is also clear that proteins are not static structures.  That they must undergo 

conformational changes in order to function as catalysts, molecular motors and signalling molecules 

is well-established.  Furthermore, like all molecules, they are subject to fluctuations and vibrations 

arising from the thermal energy of the protein and surrounding solvent molecules.  It is becoming 

increasingly clear that the various motions that proteins undergo are vital to their functions.  Indeed 

it is likely that these motions are at least as important as the overall, three-dimensional structures in 

mediating these functions (16, 47).  It is important to be clear about the scale of molecular motions 

being considered.  In general, the term “flexibility” is used to refer to larger scale motions occurring 

over a timescale of 10-7 s to 10 s and includes the motions required for protein folding, allosteric 

regulation and ligand binding.  In contrast “dynamics” refers to faster motions (10-12 s to 10-8 s) 

such as side chain rotations (47).  Understanding the links between these levels of mobility remains 

a considerable challenge in protein science. 

 

Within an individual protein molecule there is considerable variation in the magnitude of the 

molecular motions present.  While some parts may show very limited motions, others may be 

highly mobile.  There are various measures of these motions.  The B-factor or the Debye-Waller 

factor is a measure of thermal motion usually determined during X-ray crystallography (10, 52).  
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Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) are measures of 

deviation from a reference structure.  RMSD is usually measure of deviation from the initial 

structure whereas RMSF is a measure of deviation from an average structure (4).  Normal mode 

analysis (NMA) and principal component analysis (PCA) have emerged as useful tools for the study 

of conformational changes in proteins. NMA utilises a harmonic model to determine possible 

molecular deformations in a particular equilibrated system (27, 29, 44).  PCA extracts the 

contribution of fluctuations from a large selection of conformations (usually from molecular 

dynamic simulations) to the overall dynamics of the molecule (44, 23, 26).  These approaches are 

reviewed in more detail elsewhere (44, 4). 

 

There are a variety of motions which proteins can undergo.  These include large scale domain 

movements where domains move relative to each other over a scale of tens of angstroms.  Such 

motions dramatically re-arrange the overall structure of the protein and have been observed in 

enzymes such as hexokinase (EC 2.7.1.1) (1-3, 32) and molecular motors such as myosin (25).  

More subtle changes include the local rearrangement of residues, for example in induced fit around 

enzyme substrates or other ligands.  For example, the interaction between phosphodiesterase 5 

(PDE5; EC 3.1.4.35) and sildenafil (Viagra, Revatio) requires mutual conformational changes in the 

protein and the ligand to create a complementary binding site.  Other PDE isoforms are unable (or 

less able) to undergo this conformational change, hence the selectively of the drug for this isoform 

despite high levels of similarity between PDE isoforms (53).  There are also other subtle changes 

such rotations of side chains.  Surface-exposed side chains which are not bonded to other molecules 

can usually rotate freely and rapidly.  This can be constrained by binding to other parts of the 

protein (or other ligands) or by steric hindrance.  The activation energy barriers between the 

different conformers is often small, hence the rapid rates.  Therefore, in addition to flipping between 

two (or more) conformational states, we also need to consider changes that result in side chains 

altering the fraction of time spent in various states.  These changes can have profound influences on 
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ligand binding and protein function (e.g. (41, 28)). 

 

Recent studies have suggested that the natural vibrational properties of protein molecules can be 

important in mediating catalysis and intra-molecular communication (16).  Thus, these vibrational 

motions can be “tuned” at a local level by events such as ligand binding or changes in the external 

environment of the protein and may be critical for enzyme catalysis.  However, this hypothesis is 

not accepted by all authors.  For example, some studies consider that there is no experimental proof 

linking molecular motions with catalysis (22).  These authors propose that electrostatic pre-

organisation and consequent alterations in free energies of activations provide a better explanation 

(with greater experimental evidence) of the catalytic power of many enzymes (22, 15). 

 

One key group of proteins which are postulated to use coupled molecular motions, are those which 

demonstrate cooperativity in ligand binding.  Typically these proteins have at least two ligand 

binding sites.  While these sites may appear structurally similar in x-ray or NMR studies, they do 

not function independently.  The binding of a ligand at one site, will affect the affinity at the other 

site.  Two forms of cooperativity are recognised – positive (in which binding at the first site 

increases the affinity at the second site) and negative (in which binding at the first site makes 

interaction at the second one less likely (13, 48)).  Both forms of cooperativity generally require 

some form of allosteric communication between the active sites.  Most obviously this can be 

achieved through conformational changes which ramify through the structure linking one active site 

to the other (eg haemoglobin (34)).  However, it is also possible to achieve this communication 

through modulation of the mobility of the protein, e.g. in glutamate dehydrogenase (51).  Recent 

models of allosteric communication suggest that there are many different structural forms of the 

enzyme present (possibly including some intrinsically disordered states) (33). 

 

That protein motions can affect functions of enzymes has been well established experimentally.  In 
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dihydrofolate reductase (DHFR; EC 1.5.1.3), alterations in the dynamic behaviour have been 

mapped to various stages of the catalytic cycle (42).  In the prolyl cis-trans isomerase cyclophilin A 

(CypA; EC 5.2.1.8), NMR measurements demonstrated that motions required for catalysis also 

occur in the free enzyme.  This suggested that the enzyme’s intrinsic motions are evolved for 

catalysis (12).  Similar observations were made with adenylate kinase (EC 2.7.4.3) (17).  In 

ribonuclease A (EC 3.1.27.5) motions in the RNA binding site and the catalytic site are coupled (9).  

In addition, the motions of a surface loop distant from the active site are also correlated:  

substitution of the this loop with a shorter sequence from a structurally similar protein resulted in 

slower loop motions, reduced active site dynamics and a lower turnover number (11). 

 

Towards an alternative paradigm for protein engineering 

The engineering of proteins to enhance or alter their activity is now well-established (39, 6).  The 

aspiration of such studies is to adopt an engineering approach in which a well-understood enzyme is 

redesigned for a specific role.  For example, for an enzyme with a structurally characterised active 

site and well defined catalytic mechanism, the aim would be to alter the side chains in order to 

provide altered chemical functionality and, consequently, altered function.  In theory, this appears 

quite straightforward especially if combined with molecular modelling approaches to predict the 

architecture of the redesigned active site.  Using such approaches it ought to be possible to redesign 

active sites around specific, novel substrates and produce enzymes capable of catalysing non-

physiological reactions with activities sufficient to be commercially viable.  While there have been 

some considerable successes in the design of novel biocatalysts, practical considerations have 

limited the application of enzyme redesign.  Such considerations include our current limited ability 

to predict the structural consequences for the whole protein of even single amino acids changes.  

Current modelling techniques also struggle to account for entropic changes (e.g. resulting from 

solvation/desolvation in the active site) of such alterations.  Linked to both of these factors, is the 

need to consider not just alterations to the mean structure of the protein but also to the mobility of 
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the molecule, especially around the active site.  It is clear from some studies on inherited metabolic 

diseases that single point mutations which alter one amino acid (normally away from the active site) 

can have profound effects on structure, folding and consequently activity.  In some cases, these 

changes have been shown to result in increased or decreased flexibility of the protein, e.g. galactose 

1-phosphate uridylyltransferase (EC 2.7.7.12), UDP-galactose 4’-epimerase (EC 5.1.3.2), 

phosphoglycerate kinase 1 (EC 2.7.2.3), cystathionine β-synthase (EC 4.2.1.22) and mevalonate 

kinase (EC 2.7.1.36) (31, 49, 38, 37, 18, 7).  Such studies strongly suggest the an optimum amount 

of flexibility is required for maximum activity,  Indeed, it seems likely that, in addition to optimal 

three-dimensional structures, proteins also require optimal dynamics to fit them for their functions. 

 

Recognition of the need for optimal dynamics as well as structure suggests a paradigm in protein 

engineering.  Instead of (or as well as) attempting to alter the chemical functionality of active sites, 

it should be possible to alter their flexibility.  In one early study, the hinge regions of various 

immunoglobulins were engineered with consequent effects on the flexibility and function of the 

molecules (40).  Modulation of the flexibility of a hinge region in triose phosphate isomerase (TPI; 

EC 5.3.1.1) markedly affected the steady-state kinetic parameters (45).  There has also been 

considerable success in the engineering the mobility of proteins such that their overall stability is 

enhanced.  In the case of nitrile hydratase (EC 4.2.1.84), molecular dynamics (MD) simulations 

were used to identify regions responsible for initial thermal unfolding.  Residues in these regions 

were then altered in order to introduce additional salt bridges into the protein.  When additional salt 

bridges were introduced into the C-terminal region of the β-subunit, there was a substantial increase 

in stability without loss of activity (8).  MD simulations were also used to investigate the role of 

surface-exposed glutamate and asparate residues in thermolysin (EC 3.4.24.27).  Substitution of two 

of these (Asp37 and Glu119) resulted in a more thermally stable protein (58).  Lipase B (EC 

3.1.1.3) was redesigned following MD simulations which identified highly mobile regions.  One 

variant (A251E) was approximately 2.5 times more stable than the wild-type protein (36).  In a 
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separate approach, rigidification of active site residues in this enzyme also resulted in a more 

thermally stable protein (54).  MD simulations have also been carried out to investigate the effects 

of organic solvents on lipase B.  These solvents are predicted to reduce the flexibility of the enzyme 

(50).  A site on the surface of the enzyme which is affected by methanol was identified by MD 

simulations and then altered resulting in a protein with higher stability in this solvent (35).  In a 

number of these cases, greater stability was initially obtained at a cost to the enzyme’s activity.  

Further rounds of simulations and/or experiments were often required to generate a more stable 

protein with comparable activity to wild-type. 

 

It might be expected that an active site with increased flexibility compared to the wild-type may 

accommodate a wider range of substrates.  This has been suggested in the case of galactokinase (EC 

2.7.1.6), where alterations to the sequence of a β-sheet structure distant from the active site resulted 

in a broader range of substrates being accepted and processed by the enzyme (19, 20, 55-57).  

Preliminary molecular modelling studies suggested that this may be due to increased mobility of 

two loop structures in the active site.  This prediction is consistent with the kinetic data which 

demonstrated widely increased range of monosaccharides which were recognised by the enzyme, 

but also reduced activity compared to the wild-type (24).  The increased mobility of the active site 

will result in a greater range of conformations adopted by this part of the structure.  In turn, this will 

enable a greater range of complementary interactions with sugar molecules, but also decrease the 

time spent by the active site in a catalytically competent conformation.  We have previously noted 

that combining this approach with methods to increase the overall stability of the enzyme may 

result in galactokinases with broader specificity and higher activities (30). 

 

Engineering the dynamics of proteins requires a detailed knowledge of their motions.  While this 

can sometimes be obtained experimentally for smaller proteins (typically < 25 kDa) by NMR 

spectroscopy it is generally only possible to obtain limited information experimentally.  However, in 
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silico approaches to model the dynamics of proteins are well-established.  These can provide a 

model of the overall dynamic behaviour of a protein combined with estimates of the numerical 

measures of mobility described above.  Extending these methods permits the prediction of the 

effects of alteration of amino acid residues on local and global mobility.  However, molecular 

dynamics methods are computationally expensive and time-consuming.  The generation of 100 ns 

of simulation typically requires weeks of computer time.  Therefore, it is not currently realistic to 

undertake computational studies in which the alteration of large numbers of residues are evaluated 

for their effects on active site flexibility.  Intelligent analysis of MD data can, however, enable 

sensible predictions to be made about which residues might be altered.  For example, the use of MD 

data to identify regions of high or low mobility which correlate with that of the active site may 

suggest regions to target for alteration.  The existence of tables of mean residue flexibility (e.g. 

(21)) facilitate the alteration of residues to ones which impart more or less mobility that the wild-

type.  At the extremes of flexibility are glycine (generally the most flexible) and proline (normally 

highly conformationally constraining). 

 

Over 20 years ago, Alan Fersht proposed “rules” for enzyme engineering (14).  In essence these 

rules suggested that small changes may be more likely to result in successful outcomes.  For 

example, alteration of a glutamate residue to asparate (to create more space) or to a glutamine (to 

abolish the charge) may be more successful than alteration to lysine (to reverse the change) or 

phenylalanine (to abolish the charge, increase size and generate a more hydrophobic environment).  

We suggest that similar “rules” may apply when modulating mobility.  Alteration of glycine to 

proline is likely to result in greatly enhanced rigidity (and the imposition of a very limited range of 

conformations).  This will have effects beyond the local region and may well result in misfolded, 

non-functional protein.  In this case, alteration to the next most flexible residue (serine) may be 

more appropriate.  Further theoretical and experimental studies to understand the links between 

local and global changes in mobility will be required before more sophisticated “rules” can be 
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proposed. 

 

The approaches suggested above have an element of trial and error.  They involve the prediction of 

residues likely to affect flexibility on the basis of MD simulations (or experimental data) followed 

by further MD work and, ultimately, experimental testing.  For a more design-orientated approach, 

it would be desirable to decide where more mobility was required (e.g. in the active site) and then 

use computational methods to predict where changes should be made to best achieve this.  This may 

require the development of novel MD approaches and analyses.  Doing so would open up new 

possibilities of protein engineering and should increase the success rate. 

 

Overall, we consider that the dynamic behaviour of proteins should be considered to be at least as 

important as their three-dimensional structures.  We further emphasise that this dynamic behaviour 

is critical in the redesign of proteins and is an important factor in the success or failure of protein 

engineering projects.  Finally, we postulate a paradigm for protein engineering in which the 

mobility of active sites (and other critical parts of proteins) are redesigned based on MD simulations 

and/or experimental data. 
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