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Abstract 

We report the fabrication of a 3D-printed water-heated cuvette that fits into a standard UV visible 

spectrophotometer. Full 3D-printable designs are provided and 3D-printing conditions have been 

optimised to provide options to print the cuvette in either acrylonitrile butadiene styrene or 

polylactic acid polymers, extending the range of solvents that are compatible with the design.  We 

demonstrate the efficacy of the cuvette by determining the critical micelle concentration of sodium 

dodecyl sulphate at 40°C, the molar extinction coefficients of cobalt nitrate and dsDNA and by 

reproducing the thermochromic UV visible spectrum of a mixture of cobalt chloride, water and 

propan-2-ol. 
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In recent years there has been a rapid expansion in the number and quality of commercially 

available, affordable, fused deposition modelling (FDM) 3D-printers. These FDM 3D-printers allow 

end users to design, test and construct bespoke 3D-fabricated plastic prototypes targeted to their 

own individual applications [1]. Researchers in the chemical and biomedical sciences have made 

bespoke integrated reactionware [2–7], DNA adhesives [8], inserts for cuvettes [9] or X-ray 

absorption spectroscopy [10] that enable spectroelectrochemistry to be performed, surgical models 

and synthetic organs [11] and microfluidic pumps [12].  However, whilst there are a significant 

number of recent research success stories demonstrating the potential applications of 3D-printers, a 

number of key challenges remain. In particular the additive manufacturing process of FDM printing 

has a tendency to create small gaps between successive extruded layers, meaning 3D-prints are not 

always air or watertight. This is a particular challenge for FDM 3D-printing in milli or microfluidic 

applications where the pressure in the device is increased. Strategies for solving this leakage 

problem differ, one approach is to construct devices with increased wall thicknesses, typically 4 mm 

[3], although this does impose a lower limit on the size of device that can be constructed. 

Alternatively,  recent work [13] has shown that many of these printing imperfections in ABS prints 

can be removed with acetone and that 3D-prints treated in this way, post production, have potential 

uses in fluid handling on a variety of scales.  

Here we report our recent success using FDM 3D-printing to develop an inexpensive water heated 

UV visible cuvette made from ABS or PLA, which fits into a standard UV visible spectrometer. 

UV visible spectroscopy was performed on a dual beam Shimadzu Corporation UV-2410PC 

spectrometer equipped with a single monochromator. BRAND® disposable polystyrene cuvettes 

(Sigma-Aldrich UK) were used for control studies. Cobalt nitrate, sodium dodecyl sulphate (SDS) and 

dsDNA from salmon sperm were purchased from Sigma- Aldrich UK. Cobalt chloride was purchased 

from ACROS organics UK and acetone, propan-2-ol and methylene blue were purchased from Fisher 

Scientific UK.  A REFCO (-1 to 3 Bar; class 1.6) pressure gauge and OMEGA® OM-EL-USB-TC 

thermocouple USB datalogger were used to measure pressure and temperature respectively. 3D-

printing was performed on a Makerbot Replicator 2X 3D printer (Makerbot Industries), 1.75 mm 

diameter ABS and PLA filaments were manufactured by Eliphilament and Makerbot Industries 

respectively. Prior to printing the build platform was covered with ScotchBlue TM adhesive tape for 

optimal adherence of the 3D-print. 3D-prints were designed in Autodesk123 and exported as STL 

files into Makerbot Desktop for slicing. The final optimised 3D printing settings for ABS and PLA are 

summarised in Tables S1 and S2 and fully printable designs are included as supporting information.  

The UV visible spectrometer that we used was configured to accept standard 12 x 12 x 45 mm (width 

x depth x height) cuvettes; the incident beam centre was 15mm from the bottom of the cuvette, and 

the 1 mm polystyrene walls leave a sample path length of 10mm. Therefore our water heated 

cuvette needed the following design criteria to function effectively. 

1. Sample path length of 10 mm 

2. Sample centre 15 mm above the cuvette base. 

3. Complete design no bigger than 12 x 12 mm (width x depth) and around 45 mm in height 

4. Watertight 
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CAD designs of our 3D-printed water heated cuvette are shown in Figure 1A; we solved a number of 

problems before coming up with the final working cuvette. The most significant challenge 

encountered was leaking, either from the water-jacket chamber or the sample chamber. The origin 

of these leaks was two-fold, firstly small defects between layers resulting from the FDM printing 

process. Secondly, at printed vertices in the horizontal and vertical planes, sagging of the horizontal 

printed surface resulted in small voids, which leak. As noted, small defects can be fused using 

organic solvents [13], however bigger defects at vertices require carefully designed 3D-prints. A key 

design feature of our cuvette, which prevented sagging in the horizontal plane, was the inclusion of 

an inverted pyramid structure beneath the sample chamber, as noted in Figure 1B. The minimum 

and maximum sample volumes of the cuvette are 0.24 and 0.68 ml respectively. 

 

Figure 1A 3D-printed water heated cuvette, showing key dimensions and design features. The white 

dashed box indicates the approximate location of where optically transparent polystyrene, cut from 

polystyrene cuvettes was glued. Figure 1B shows a photograph of final cuvette printed in PLA. 

 

Freshly printed ABS cuvettes were immersed in acetone (circa 20°C) and freshly printed PLA cuvettes 

were immersed in chloroform (circa 20°C) for 8 seconds to fuse defects between the printed layers. 

Excess solvent was removed and the cuvettes were dried in a fume hood for 2 hours before optically 

transparent plastic, cut from disposable polystyrene cuvettes, was glued to the faces of the printed 

cuvette, Figure 1A. To make the sample chamber watertight a slurry of ABS in acetone or PLA in 

chloroform was used as the glue. This provides an optical quality plastic, which cannot be 3D-

printed. For studies utilising dsDNA we extended the working wavelength range of the cuvette by 

gluing on quartz slides using Gorilla™ super glue adhesive. This particular product was chosen due to 

it retaining strength at 100°C. After drying, cuvettes were pressure-tested to approximately 200 kPa 

by connecting the water input to a plastic syringe and sealing the output. Only cuvettes that passed 

this pressure test were used in subsequent studies, where they were connected to a recirculating 

water bath and fitted into the UV visible spectrometer. It should be noted that 8 seconds immersion 

in organic solvent was optimal and less than 1 in 5 cuvettes failed the pressure test. However it is 

likely that ambient temperature and the initial resolution of the 3D print will affect success rates. 

To ascertain how long samples would need to be equilibrated for during measurements, we 

characterised the heating rate of the cuvette. This was achieved by attaching the thermocouple 
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probe the internal walls of the cuvette sample chamber. From an ambient water temperature of 

17°C up to a maximum working temperature of 65°C, the glass transition temperature of PLA, the 

water bath heated linearly at a rate of 0.033 ± 0.001°Cs-1. Over the same temperature range the 

cuvette connected to the water bath heated linearly at 0.031 ± 0.001°Cs-1 indicating no significant 

lag between the water bath and cuvette heating. As a precaution samples were left to equilibrate at 

a constant temperature for 5 minutes prior to measurement of their absorbance.  

Using both disposable polystyrene cuvettes and our 3D-printed cuvette we determined the value of 

the molar extinction coefficient (ε) for Co(NO3)2, at 510 nm, to be 480 ± 10 m2mol-1 in water, 

indicating that the 3D-printed cuvette makes measurements as accurately as disposable plastic 

cuvettes. Figure S1A shows a plot of absorbance versus concentration for solutions of Co(NO3)2 

determined in the 3D printed cuvette at room temperature.  

As a further test we determined ε, at 260nm, of dsDNA from salmon sperm in the 3D-printed cuvette 

(with quartz covers glued to the sample chamber) at room temperature and compared it to the 

value we calculated using quartz cuvettes. Both sets of cuvettes gave molar extinction coefficients of 

dsDNA of 0.025 ± 0.0005 (g/ml)-1 cm-1. The ratio of absorbance at 260 and 280 (A260/280), a measure 

of the protein contamination in DNA, was 1.81 ± 0.01 for both cuvette systems. Indicating that the 

3D-printed cuvette with quartz covers also gives reproducible results when compared to the data 

obtained in quartz cuvettes. Figure S2A shows a plot of DNA absorbance at 260 nm versus 

concentration determined in the 3D-printed cuvette and Figure S2B shows the UV visible spectral 

plots of DNA from 200 to 400 nm at a range of concentrations obtained in the 3D-printed cuvette. 

 

The next test we performed was to calculate the critical micelle concentration (CMC) of an 

amphiphile at an elevated temperature. We chose this test because phospholipids are amphiphiles 

and their critical aggregation concentration is important for biological processes, thus it is useful to 

measure this property at elevated temperature. However there are relatively few measurements of 

phospholipid CMC values in the literature and therefore for a more robust test we chose to 

determine the CMC of SDS, a commonly used anionic surfactant. The CMC of SDS has been 

determined many times in the literature using a number of different methods. In water at 25°C 

measurements of the CMC of SDS range from 8.3 mM [14] using capillary electrophoresis, 8.3 mM 

using a temperature shock method in combination with the dye acridine orange and UV visible 

spectroscopy, 8.1 ± 0.12 mM to 7.0 mM [15] by conductance measurements [16] and titration 

calorimetry [17]. The CMC of SDS shows slight temperature dependence with literature values at 

30°C in water of 7.3 ± 0.3 mM [18] and 7.2 mM at 40°C and a general decrease in CMC with 

increasing temperature [19].  

Using a UV visible method in combination with the dye methylene blue, such that the dye partitions 

into the interior of micelles changing the concentration of the dye in solution, we determined the 

CMC of SDS at 40°C  to be 7.0 ± 0.3 mM in water, which agrees well with measurements in the 

literature.  Figure S1B shows the results of this analysis, where the CMC is estimated from the graph 

by considering the gradients of two intersecting lines [20], which correspond to the linear increase in 

absorbance of the dye as a function of concentration in the presence and absence of micelles. There 

are a number of reports in the literature where the CMC of different amphiphiles, i.e. surfactants or 

phospholipid analogues, have been determined at 37°C, which is particularly relevant for 
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applications in biological systems [21]. We anticipate that this 3D-printed cuvette will be useful for 

these soft-matter applications. 

As a final test we reproduced the thermochromic shift in the UV visible spectra of CoCl2 solutions of 

water and propan-2-ol, which arise due to the different absorbance spectra of cobalt chloride 

complexes in tetrahedral or octahedral geometries. In the tetrahedral arrangement these complexes 

are pink in colour and in the octahedral form these complexes are blue in colour. In solutions of 

water and propan-2-ol, a temperature-dependence exists whereby the tetrahedral form, stable at 

low temperature, exists in equilibrium with the octahedral form, favoured at higher temperature. 

This effect is driven by different solvation arrangements of water and propan-2-ol molecules being 

favoured at different temperatures and hence a different coordination structure for the cobalt 

chloride salt [22]. The percentage of water in the solvent mixture dictates the temperature range 

over which the thermochromic behaviour is observed, with higher water fractions shifting the 

dependence to higher temperatures [23]. 

 We measured the thermochromic behaviour of CoCl2 solutions of water and propan-2-ol 

using our water heated cuvette and compared our spectra to those obtained by Dybko et al. [22] in a 

commercially available heated cuvette system. Figure 2 shows the temperature-dependence of the 

UV visible spectrum in the range of 400 to 800 nm for 10ml saturated CoCl2 in water added to 40 ml 

propan-2-ol. 

 

 

Figure 2A the thermochromic shift of UV visible spectra for CoCl2 in solutions of water and propan-2-

ol. Measurements were made at water bath temperatures of 20, 25, 30, 35, 40, 43 and 45°C, the 

peak centred at 660 nm increases in size with temperature. Figure 2B dependence of absorption at 

660 nm on temperature for CoCl2 solutions in solutions of water and propan-2-ol. Absorbance data 

were extrapolated from Figure 2A (at 660 nm), the dashed line shows an exponential line of best fit 

over the temperature range studied (y = 0.42 x e(0.047x), R2 = 0.99). 
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The results we obtain in Figure 2A show identical trends to those reported in the literature [22], with 

one peak centred around 525 nm and the emergence of a second peak in the range of 600 to 700 

nm with increasing temperature, corresponding to the octahedral cobalt complex. The maximum 

wavelength (λmax) of absorbance of the octahedral complex is 660 nm, which increases in absorbance 

intensity as the solution temperature is increased. The relationship between temperature and 

absorbance follows a sigmoidal dependence [22], rather than the linear dependence observed for 

concentration versus absorbance. Figure 2B shows the temperature dependence of the absorbance 

at 660 nm determined in our 3D-printed cuvette also showing the trend reported by Dybko et al. 

[22]. 

We have 3D-printed and tested a water heated cuvette for UV visible spectroscopy, demonstrating 

that the 3D-printed cuvette provides reproducible temperature dependent spectra when compared 

to disposable cuvettes, quartz cuvettes and literature studies. We constructed our cuvette from both 

ABS and PLA polymers making versions with ‘windows’ made from optically transparent polystyrene 

or quartz slides. The print reproducibility was greater for the cuvette constructed from PLA but the 

lower glass transition temperature of PLA (circa 65°C) means that PLA cuvettes have a lower working 

range when compared to cuvettes made ABS (glass transition temperature circa 105°C). PLA has 

different solvent compatibility [24] to ABS and is thus better suited for obtaining UV visible spectra 

in a range of organic solvents although both cuvettes can be used for water-based studies. The beam 

centre on our spectrophotometer was 15mm, whilst this is almost standard, our design can be 

modified for spectrometers with different beam centre heights. The material cost of producing the 

cuvette is around £0.10 pounds sterling and subject to the constraints of dimension it is likely that 

these cuvettes are compatible with microelectrodes further extending the range of applications. In 

particular we foresee that this cuvette is ideal for preliminary research work, when conventional 

heated UV visible machines are not available, and for educational users. 
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Supplementary methodology 

3D-printing conditions 

During construction we trialled different infill densities before settling on a density of 50% 

for the final design, at lower infill densities (10%) we found the cuvette was fragile and distorted 

more easily during prolonged heating. Aside from danger of leakage, this distortion caused 

experimental artefacts when measuring the absorbance spectra of samples. At higher infill density, 

close to 100%, 3D-prints were stronger but distorted more during printing. In part this distortion was 

due to the extruded filament not cooling sufficiently before the next layer was added, thus as the 

printer extruder extrudes the current layer, layers below are slightly mobile. This problem can be 

eliminated by increasing the minimum layer duration, see Tables S1 and S2, in the print settings and 

tends to be related to the size of the structure being printed. It was particularly problematic when 

printing the small 2.5 mm diameter water inlet and water outlet. Our highest quality cuvettes were 

obtained by 3D-printing a monolith beside the cuvette, which gave each layer sufficient time to cool 

before the next was added. This approach also prevented the build-up of molten plastic on the 

extruder head which can result from extending the minimum layer duration. 

 

Table S1. Optimal print settings for ABS cuvettes on the MakerBot Replicator 2X.  

Extruder Temperature 245°C Platform Temperature 110°C 

Travel Speed 150 mm/s Z-axis Travel Speed 23 mm/s 

Minimum Layer Duration 5.0 s First Layer Raft Print Speed 50 mm/s 

Infill Print Speed 90 mm/s Inserts Print Speed 90 mm/s 

Outlines Print Speed 40 mm/s Raft Print Speed 90 mm/s 

Raft Base Print Speed 10 mm/s Bridges Print Speed 40 mm/s 

First Layer Print Speed 30 mm/s Infill Density 50% 

Infill Pattern Hexagonal Layer Height 0.20 mm 

Infill Layer Height 0.20 mm Number of Shells 2 

Roof Thickness 0.80 mm Floor Thickness 0.80 mm 

Coarseness 0.0001 mm Raft-Model Spacing 0.35 mm 

Raft Margin 4.0 mm Support Off 

Bridging Off Filament Diameter 1.77 mm 

Retraction Distance 1.3 mm Retraction Speed 25 mm/s 

Restart Speed 25 mm/s Extra Restart Distance 0.0 mm 

    

 

 

 

 

Table S2. Optimal print settings for PLA cuvettes on the MakerBot Replicator 2X. 
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Extruder Temperature 220°C Platform Temperature 110°C 

Travel Speed 150 mm/s Z-axis Travel Speed 23 mm/s 

Minimum Layer Duration 5.0 s First Layer Raft Print Speed 50 mm/s 

Infill Print Speed 90 mm/s Inserts Print Speed 90 mm/s 

Outlines Print Speed 40 mm/s Raft Print Speed 90 mm/s 

Raft Base Print Speed 10 mm/s Bridges Print Speed 40 mm/s 

First Layer Print Speed 30 mm/s Infill Density 50% 

Infill Pattern Hexagonal Layer Height 0.20 mm 

Infill Layer Height 0.20 mm Number of Shells 2 

Roof Thickness 0.80 mm Floor Thickness 0.80 mm 

Coarseness 0.0001 mm Raft-Model Spacing 0.35 mm 

Raft Margin 4.0 mm Support Off 

Bridging Off Filament Diameter 1.77 mm 

Retraction Distance 1.3 mm Retraction Speed 25 mm/s 

Restart Speed 25 mm/s Extra Restart Distance 0.0 mm 

 

 Characterisation of the thermal sensitivity of the 3D-printed cuvette 

The thermal sensitivity of the 3D-printed cuvette was determined to ensure that in experimental 

runs sufficient time would be left for samples to reach thermodynamic equilibrium. The heating 

rates of both the water bath and the 3D-printed cuvette were determined using a digital 

thermocouple, measuring the temperature at 30 second intervals. 

Determination of the molar extinction coefficient of Co(NO3)2 in water 

Co(NO3)2 solutions were prepared with concentrations of 0.025 M, 0.04 M, 0.05 M, 0.08 M, 0.10 M, 

0.133 M and 0.20 M and their absorbance measured over the range 350 – 650 nm using water as a 

blank. Each concentration was measured in triplicate using disposable cuvettes or a water heated-

printed cuvettes made from ABS and PLA and background subtracted using the appropriate cuvette 

containing water. The molar extinction coefficient (ε) was determined using the Beer-Lambert 

principle from linear fits to plots of the Co(NO3)2 concentration versus their absorbance at 510 nm, 

which yields ε510 as the function of the gradient of the line and the path length (10 mm), see 

Equation 1. 

 

A = εcl   Equation 1, 

 

 

 

Determination of the molar extinction coefficient of dsDNA in 50 mM Trizma buffer pH 7.4 

In 50 mM Trizma buffer, dsDNA solutions were prepared with concentrations of 12.6, 23.9, 34.1, 

43.3, 51.6 g ml-1 and their absorbance measured over the range 200 – 400 nm using 50 mM Trizma 
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buffer as a blank. Each concentration was measured in triplicate using quartz cuvettes or a water 

heated-printed cuvettes fitted with quartz covers made from ABS. The molar extinction coefficient 

(ε) was determined using the Beer-Lambert principle from linear fits to plots of the dsDNA 

concentration versus their absorbance at 260 nm, which yields ε260 as the function of the gradient of 

the line and the path length (10 mm), see Equation 1. 

 

Determination of the CMC of SDS at 40°C 

Ten solutions of SDS were prepared at 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 11 

mM and 12 mM in water, containing 10-5 M methylene blue. The water heated cuvette was placed 

into the UV visible spectrometer and heated to 40°C before the background absorbance of 10-5 M 

methylene blue in water was recorded. Absorbance measurements were made in triplicate between 

650 and 670 nm and in increasing SDS concentrations, allowing 5 minutes for samples to reach 

thermal equilibrium. Samples were removed from the cuvette using a glass pipette before rinsing 

with 10-5 M methylene blue in water, prior to the addition of the next sample. The CMC was 

determined using absorbance measurements at 660nm. 

Determination of the thermochromic shift of mixtures of CoCl2, water and propan-2-ol 

10 ml of saturated aqueous CoCl2 was added to 40mL of isopropyl alcohol as previously published 

[1]. The 3D-printed cuvette was connected to a water bath placed into the UV visible machine and 

mixture absorbance between 400 – 800 nm was measured at temperatures between 15°C - 45°C in 

increments, leaving 5 minutes for thermal equilibration between measurements. 

 

 

 

 

 

 

 

 

 

Supplementary Figures 
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Figure S1A, the molar extinction coefficient determined for Co(NO3)2 at 510 nm and Figure S1B the 

CMC of SDS determined at 40°C using the low-volume 3D-printed cuvette. The CMC is determined 

from Figure S1B as the point where the two lines intersect. 

 

 

Figure S2A the molar extinction coefficient determined for dsDNA at 510 nm and Figure S2B, the 

absorbance spectrum of dsDNA from 200 to 400 nm at a range of concentrations. Spectra in both 

figures were obtained using the 3D-printed cuvette fitted with quartz covers. 
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