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 44 

Abstract 45 

Controlling internal temperature is crucial when prescribing exercise-heat stress, particularly during 46 

interventions designed to induce thermoregulatory adaptations. This study aimed to determine the 47 

relationship between the rate of rectal temperature (Trec) increase, and various methods for 48 

prescribing exercise-heat stress, to identify the most efficient method of prescribing isothermic heat 49 

acclimation (HA) training.  50 

 51 

Thirty-five males cycled in hot conditions (40°C, 39%R.H.) for 29±2 min. Subjects exercised at 52 

60±9%V
.
O2peak, with methods for prescribing exercise retrospectively observed for each participant. 53 

Pearson product moment correlations were calculated for each prescriptive variable against the rate 54 

of change in Trec (°C.hr-1), with stepwise multiple regressions performed on statistically significant 55 

variables (p<0.05). Linear regression identified the predicted intensity required to increase Trec by 1.0-56 

2.0°C between 20-45 min periods, and the duration taken to increase Trec by 1.5°C in response to 57 

incremental intensities to guide prescription.  58 

 59 

Significant (p<0.05) relationships with the rate of change in Trec were observed for prescriptions based 60 

upon relative power (W.kg-1; r=0.764), power (%Powermax; r=0.679), RPE (r=0.577), V
.
O2 (%V

.
O2peak; 61 

r=0.562), HR (%HRmax; r=0.534), and TS (r=0.311). Stepwise multiple regressions observed relative 62 

power and RPE as variables to improve the model (r=0.791), with no improvement following inclusion 63 

of any anthropometric variable.  64 

 65 

Prescription of exercise under heat stress utilizing power (W.kg-1 or %Powermax), has the strongest 66 

relationship with the rate of change in Trec with no additional requirement to correct for body 67 

composition within a normal range. Practitioners should therefore prescribe exercise intensity using 68 

relative power during isothermic HA training to increase Trec efficiently and maximize adaptation.  69 

 70 

 71 
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 76 

INTRODUCTION 77 

Heat illness is a potentially life threatening condition occurring in 1.2 per 100,000 high school athlete 78 

exposures across the US (37). In football, the risk increases to 4.4 per 100,000 athlete exposures 79 

(37). Heat acclimatization/acclimation (HA) has been identified as an important preventative measure 80 

that should be used prior to beginning work in a hot/humid environment to reduce the incidence of 81 

heat illness (4) and attenuate performance decrements (48). Whilst primarily used as a tool to mitigate 82 

negative responses to heat stress and heat illness (26,39), data also supports the use of HA as a 83 

potent training stimuli to elicit notable physiological adaptations in temperate (39,43), and hypoxic (27) 84 

conditions. Indeed, HA has been shown to improve endurance time trial performance in hot and cool 85 

conditions by 8%, and 6% respectively (39). Notwithstanding these benefits for health and 86 

performance, HA remains a time-consuming and practically challenging technique to implement, 87 

particularly should individualized exercise prescription preclude use with large groups of athletes or 88 

other populations who must perform work in hot environments. These challenges may dissuade its 89 

implementation, or reduce the potency of the intervention, and therefore it’s efficacy from both athlete 90 

health and performance perspectives. Consequently, to optimize the use of HA, the most effective 91 

method to administer the intervention should be determined. 92 

 93 

HA involves repeated bouts of training in the heat, conferring physiological adaptation. The 94 

fundamental potentiating stimuli for effective HA regimes are repeated, significant rises in core 95 

temperature leading to elevated skin temperature and profuse sweating in hot environments (50). 96 

Isothermic, or controlled hyperthermic HA, which targets core temperatures ≥38.5°C during training, 97 

has been identified as the optimal method to prepare individuals for training and competition in the 98 

heat (48). Isothermic methods are favorable for athletes (48), particularly those in the taper phase 99 

(26), as opposed to traditional fixed intensity training, as reduced training volume and lower sessional 100 

exercise intensities are agreeable with this phase of the training cycle (26). A typical isothermic 101 

session is ~90 min in duration and performed in hot, humid environmental conditions (ambient 102 

temperature ≥40°C, relative humidity ≥40%), where the environmental temperature exceeds that of 103 

the body, potentiating heat storage (7,53). Typically, there is a ~30 min initial, “active” phase of the 104 

session to attain the desired increase in core and skin temperature, and to stimulate profuse sweating 105 

(22,23,26,43,44). This rapid, yet controlled, increase in temperature affords the individual a further 60 106 
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min of exposure at or around the desired temperature to potentiate adaptation during the 107 

“maintenance” phase. The “active” phase requires moderate-to-high intensity exercise, whilst during 108 

the second “maintenance” phase, lower intensity exercise or rest can be implemented to “clamp” core 109 

temperature at the desired magnitude by maintaining heat balance. Reducing the duration of the 110 

active phase affords individuals a more economical prescription of HA training, while concurrently 111 

reducing the total exercise volume (26).  112 

 113 

Efficient prescription is pertinent to ensure optimal adaptations and to facilitate adaptation across 114 

large numbers of individuals of varying anthropometric and biophysical characteristics, training status 115 

and under significant time constraints. To date, a number of different methods of 116 

monitoring/prescribing exercise to increase core temperature have been implemented. Robust 117 

mechanistic data determining core temperature responses has been obtained via exercise intensity 118 

prescriptions using absolute, or relative (to mass, or surface area) metabolic heat production (Hprod) 119 

(11,55), and evaporative heat loss (11,47), however these methods have limited practicality due to 120 

extensive equipment demands to monitor Hprod. More widely implemented measurements include 121 

peak oxygen uptake (%V
.
O2peak) (39,46), power relative to body mass (W.kg-1) (44), percentage of 122 

peak power (%Powermax) (8), relative (to maximum) heart rate (HR; %HRmax) (32), and subjective 123 

RPE (6,43,49). Whilst each of these methods may have potential applications for prescribing 124 

exercise-heat stress to increase core temperature, the variability of the increase is likely to differ 125 

between methods, and between individuals, resulting from established heat production differences at 126 

the same prescription (11,13,33,34,55). Within HA experimental work, Patterson et al., (44) 127 

implemented a fixed relative power prescription of 2.5 W.kg-1 attaining a core temperature of 38.5°C in 128 

30 min, whilst Garrett et al., (22,23) utilized absolute power to achieve the target core temperature of 129 

38.5°C in 28-35 min. Neal et al., (43) have demonstrated that a target core temperature of 38.5°C can 130 

be attained in 25 min using a fixed rating of perceived exertion (RPE), whilst utilizing 65% O2peak has 131 

led to active phase durations ranging from 38 - 47 min (25–27,42). Differences between protocols of 132 

~10-15 min may be trivial within a single session, however, given the necessity to perform exercise-133 

heat stress on 5 to 10 consecutive days (58), a five- to ten-fold increase in the “inefficiency” is more 134 

impactful upon the individual. Moreover, some of these prescription techniques also necessitate an 135 

initial test to establish V
.
O2peak or appropriate power outputs. This may be beneficial if it improves the 136 
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efficiency of the administration, however it is presently unknown whether relative (to aerobic capacity) 137 

prescriptions are indeed of benefit, with their implementation questioned (26). Should these 138 

preliminary tests not be required, then the efficiency of the intervention is improved further. 139 

Experimental data suggests that exercise heat stress prescribed relative to aerobic capacity is likely 140 

to demonstrate greater variability in core temperature than that prescribed based upon a method 141 

more closely representing relative heat production (12,33). For practitioners in the field, or those 142 

working with large groups of individuals, a simple prescription method that can be applied a priori to 143 

confidently increase core temperature by a desired amount, over a given time period is warranted.  144 

 145 

This study investigated the relationship between the rate of core temperature increase during 146 

exercise-heat stress, and of the aforementioned prospective variables appropriate for prescribing 147 

exercise-heat stress, in order to identify the optimal approach for practitioners, coaches and athletes 148 

to use for HA training. It was hypothesized that relative power would demonstrate the strongest 149 

relationship with the rate of change in core temperature due to the linear relationship between power 150 

and V
.
O2, and the large component of Hprod which is determined by V

.
O2. 151 

 152 

METHODS 153 

Experimental approach to the problem 154 

Data was analyzed from the first 30 min of fifty-four experimental trials whereby participants cycled in 155 

hot conditions part of an acute exercise-heat stress exposure, or first day of HA as published 156 

elsewhere (24–27,42). The data was subsequently analyzed to determine which exercise intensity 157 

methods (independent variables: relative power (W.kg-1 and %max), %V
.
O2peak, %HRmax, RPE and 158 

thermal sensation (TS)) would most effectively predict the change in Trec (dependent variable; ∆Trec), 159 

and should therefore be used to prescribe HA. Once the most appropriate methods were identified 160 

and ranked, further analysis was then performed to guide practitioners in the use of each method.  161 

 162 

Subjects  163 

Thirty-five moderately trained (multisport cohort, mean performance level 2 (45)), unacclimated adult 164 

males (see Table 1 for descriptive characteristics) formed the experimental cohort. Nineteen of the 165 

participants performed two sessions which were included in the analysis; these were separated by a 166 
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minimum of nine months. All participants were informed of the benefits and risks of the investigation 167 

and prior to participation each completed and signed medical questionnaires and institutionally 168 

approved informed consent following the principles outlined by the Declaration of Helsinki as revised 169 

in 2013 before commencing any trial. This study was approved by an Institutional Ethics Board with 170 

ethical limitations stating the experiment was to be terminated if Trec ≥39.7°C. Confounding variables 171 

of smoking, caffeine, glutamine, alcohol, generic supplementation, prior thermal, hypoxic, and 172 

hyperbaric exposures were all controlled as described in the original manuscripts (24–27,42). Prior to 173 

any preliminary or experimental trial euhydration was set in accordance with established urine 174 

osmolality guidelines (<700 mOsm·Kg-1 H2O (52)) and measured using a urine osmometer (Alago 175 

Vitech Scientific, Pocket PAL-OSMO, UK).  176 

 177 

***INSERT TABLE 1 APPROXIMATELY HERE*** 178 

 179 

Procedures 180 

Anthropometric data collection including stature and nude body mass (NBM) were recorded using a 181 

fixed stadiometer (Detecto Physicians Scales; Cranlea & Co., Birmingham, UK) and digital scales 182 

(ADAM GFK 150, USA; accuracy ± 0.01kg). Later, body fat (%) was estimated (54) from body density, 183 

derived from a four site skin fold calculation (15) using skinfold calipers (Harpenden, Burgess Hill, UK) 184 

with body surface area (BSA) also calculated retrospectively (1). 185 

 186 

V
.

O2peak (L.min-1) was determined from an incremental test on a cycle ergometer (Monark e724, 187 

Vansbro, Sweden) in temperate conditions (~20°C, ~40% RH). Saddle height was adjusted and 188 

remained unchanged for the subsequent experimental trials. Starting exercise intensity was set at 80 189 

W with resistance applied to the flywheel eliciting 24 W.min-1 increases at the constant cadence of 80 190 

rpm. HR (b.min-1) was monitored continually during all exercise tests by telemetry (Polar Electro Oyo, 191 

Kempele, Finland). The test was terminated when participants could not maintain cadence above 70 192 

rpm after strong verbal encouragement. Expired metabolic gas was measured throughout the test 193 

using an online system (Metamax 3X or 3B, Cortex, Germany). V
.
O2peak was considered the highest 194 

volume of oxygen (V
.
O2) obtained in any 10 s period with V

.
O2peak more appropriately describing the 195 

ACCEPTED



7 

 

end point of the test due to an absence of O2 plateau in all participants. Confirmation of V
.
O2peak was 196 

made via the attainment of a HR within 10 b.min-1 of age predicted maximum, and RER >1.1 in all 197 

participants.  198 

 199 

All experimental trials were conducted in the morning (08:00±02:00 h) on a cycle ergometer located 200 

inside an environmental chamber whereby temperature (40.1±0.1°C) and humidity (39.0±1.3% RH) 201 

were thermostatically controlled (WatFlow control system; TISS, Hampshire, UK). Following provision 202 

of a urine sample and measurement of NBM, each participant was equipped with a rectal thermistor 203 

inserted 10 cm past the anal sphincter (Henleys Medical, UK, Meter logger Model 401, Yellow Springs 204 

Instruments, Yellow Springs, Missouri, USA), and a HR monitor affixed around the torso. A 10 min 205 

period of seated rest in temperate laboratory conditions (~20°C, ~40% RH) preceded entry to the 206 

environmental chamber. Upon entering the chamber, participants immediately commenced cycling at 207 

an external mechanical power output corresponding to either 50% (n = 22), 65% (n = 26), or 75% V
.

208 

O2peak (n = 6). During the experimental session HR, Trec, power (external work), RPE (2)) and TS (59)) 209 

were recorded every 5 min. Upon participants being unable to maintain the target cadence of 80 rpm, 210 

intensity was reduced by 5-10%V
.
O2peak to recover the target cadence (80 rpm). The rate of Trec 211 

increase (°C.hr-1) was calculated following completion of the ~30 min trial.  212 

 213 

Following the 29 ± 2 min of exercise-heat stress, the relationship between each prescriptive 214 

parameter recorded, and the rate of Trec increase for the given trial were calculated.  215 

 216 

EQ.3. Rate of change in Trec (°C.hr-1) = (Trec
2 – Trec

1/time2 – time1)*60 217 

Note: Trec
2 and time2 are simultaneous measurements taken at the end of the exercise heat stress; 218 

and Trec
1 and time1 are the seated resting values in the chamber immediately prior to beginning the 219 

exercise protocol.  220 

 221 

Power corresponding to the percentage of V
.
O2peak was calculated by plotting power against O2 from 222 

the preliminary V
.
O2peak test, and using the linear regression equation to determine resistance required 223 
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to elicit the desired power at a fixed cadence of 80 rpm. Mean relative power (W.kg-1) was calculated 224 

by dividing observed mean power by NBM. Percentage of peak power (%Powermax) was calculated by 225 

dividing the mean power during the 30 min exposure by the power at V
.
O2peak during the preliminary 226 

trial (Powermax). 227 

 228 

EQ.4. %Powermax = (mean Power (W)/ (Powermax (W)))*100 229 

 230 

Percentage of age predicted maximum HR (%HRmax) was calculated from the recorded mean HR and 231 

age predicted maximum HR (56).  232 

 233 

EQ.5. %HRmax = (mean HR (b.min-1)/ (208 - 0.7 x age (years)))*100 234 

 235 

RPE, and TS, were recorded at 5 min intervals throughout the exposure, with a mean calculated, and 236 

used for subsequent analysis.  237 

 238 

Calculations 239 

Using the significant linear relationship between rate of Trec increase and each exercise intensity 240 

parameter, the slope and intercept were used to calculate the requirements to increase Trec by 1.0°C, 241 

1.5°C, and 2.0°C in 20, 25, 30, 35, 40 and 45 min periods, utilizing the equation below (see Table 2 242 

for slope and intercept corresponding to each variable).  243 

 244 

EQ.1. Prescription = ((rate of change in Trec (°C.hr-1)) * (60 / desired duration for change in Trec (min)) 245 

– intercept [°C.hr-1]) / slope [°C.hr-1] 246 

 247 

Further to identifying the prescription required to achieve incremental changes in Trec over incremental 248 

durations, an additional calculation to describe the duration to achieve a +1.5°C change in Trec in 249 

response to smaller incremental changes in the prescription was calculated using the equation below 250 

(see Table 2 for slope and intercept corresponding to each variable). 251 

 252 

EQ.2. Time (min) = (1.5°C) / ((intensity * slope [°C.min-1]) + intercept [°C.min-1]) 253 
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 254 

The ranges in Trec were implemented to account for variation in Trec due to potential differences from 255 

the basal 37.0°C (57), with diurnal variation (+0.5°C, (61)), and with HA (-0.5°C, (27,39)). Time was 256 

also adjusted to make the active phase more efficient (~1:4 active:maintenance ratio), or more 257 

palatable for the individual (1:1 active:maintenance ratio). A +1.5°C change in Trec represented the 258 

attainment of the isothermic threshold of 38.5°C from the basal Trec (37.0°C).  259 

 260 

***INSERT TABLE 2 APPROXIMATELY HERE*** 261 

 262 

Statistical Analyses 263 

All statistical calculations were performed using SPSS software version 20.0 (SPSS, Chicago, IL, US) 264 

with all data reported as mean ± standard deviation. Significance level was set at p < 0.05. All 265 

outcome variables were assessed for normality of distribution and sphericity prior to further analysis. 266 

Pearson’s correlations (R) were used to examine the relationships between the rate of Trec increase 267 

and dependent variables describing parameters for prescribing exercise intensity. Stepwise multiple 268 

regression was later performed on all significant correlates for the rate of change in Trec utilizing a 269 

forward selection entry method, with an acceptable Durbin-Watson (d) test score observed as d = 270 

2.023, thus demonstrating a lack of autocorrelation between data at the 0.05 α level. 271 

 272 

RESULTS 273 

A mean rate of Trec increase of 2.24 ± 1.09°C.hr-1 (range 0.64 – 4.82°C.hr-1) was observed. This rate 274 

of Trec increase correlated (p<0.05) with relative power (W.kg-1; r=0.764), percentage of peak power 275 

(%Powermax; r=0.679), RPE (r=0.577), percentage of V
.
O2peak (%V

.
O2peak; r=0.562), percentage of age 276 

predicted maximum HR (%HRmax; r=0.534), and TS (r=0.311). Anthropometric descriptive variables of 277 

age (r=0.368), mass (r=-0.327), body fat (r=-0.335) and BSA/mass (r=0.301) correlated with the rate 278 

of Trec increase (p<0.05), with no correlation observed for BSA (r=-0.262) or stature (r=-0.020). 279 

Absolute V
.
O2peak (r=0.437) and relative V

.
O2peak (r=0.527) obtained during the preliminary trial were 280 

correlated with the rate of Trec increase (p<0.05). 281 

ACCEPTED



10 

 

Tables 1 and 2 present the descriptive data for linear regression equation relating to each 282 

independent variable. Figure 1 presents a matrix of the scatterplots for each variable in relation to the 283 

rate of change in core temperature.  284 

 285 

***INSERT FIGURE 1 APPROXIMATELY HERE*** 286 

 287 

Multiple regression observed acceptance of relative power (W.kg-1; R2 change=0.583, SEE=0.712) 288 

and RPE (R2 change=0.042) into the model for a final regression equation (see EQ.6. below) 289 

demonstrating an improvement predictive capability (r= 0.791, R2=0.625, SEE=0.682). 290 

 291 

EQ.6. Rate of change in Trec (°C.hr-1) = -1.614+ (1.040*Power (W.kg-1) + (0.114*RPE) 292 

 293 

DISCUSSION 294 

The aim of this study was to determine the strongest relationship between the rate of Trec increase 295 

during exercise-heat stress replicating the active phase of an isothermic HA session, and a series of 296 

prospective variables appropriate for prescribing exercise-heat stress. As with any training stimuli, the 297 

efficient administration is congruous with its palatability and beneficial application. Our data identifies 298 

a potential optimal approach for practitioners to use to induce heat adaptation. In agreement with our 299 

hypothesis, power relative to mass (W.kg-1) demonstrated the strongest relationship with the rate of 300 

Trec increase during ~30 min of exercise-heat stress in uncompensable conditions. This parameter 301 

explained 58% of the variance of the increase, and can therefore be suggested as the most 302 

appropriate parameter for controlling the increase in Trec, noticeably reducing the variability in the 303 

duration taken to achieve the target Trec of 38.5°C during isothermic HA. Additionally, %Powermax 304 

explained 46% of the variance of the increase in Trec. RPE (33%), %V
.
O2peak (32%), %HRmax (29%), 305 

and TS (10%) all demonstrated a significant but lesser explanation of the increase in Trec. The 306 

variability of these prescription methods is likely due to an indirect, rather than direct relationship with 307 

the conceptual heat balance equation (35), whereby power (W.kg-1 or %Powermax) is directly 308 

represented as external work, and relates to Hprod due to the relationship between external work, and 309 

metabolic energy expenditure based upon established rates of mechanical efficiency (36). Relative 310 
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physiological intensities demonstrate an indirect relationship with Hprod , thus a greater variability in the 311 

change in Trec in occurs (19).” 312 

Resting core temperature is routinely measured as 37.0°C at the rectum (57) representing a 1.5°C 313 

difference from the isothermic target proposed as optimal for heat adaptation (48,58). Utilizing linear 314 

regression, the described prescription to increase Trec by 1.5°C in 30 min (17) within the participants 315 

used in the study is as follows: power = 2.7 W.kg-1, power = 64 %Powermax, RPE = 17 “Very Hard”, 316 

HR = 95 %max, V
.
O2 = 68 %peak, and TS = 8.0 (Table 3). The relationship between each predictive 317 

method and the intensity-duration to achieve a +1.5°C change in Trec are presented in Table 4. 318 

 319 

***INSERT TABLE 3 APPROXIMATELY HERE*** 320 

***INSERT TABLE 4 APPROXIMATELY HERE*** 321 

 322 

The linear regression calculations are comparable to that published elsewhere, for example it has 323 

been observed that an RPE = 15 can be used to attain a Trec of 38.5°C within ~25 min (43), and that a 324 

fixed relative power prescription of 2.5 W.kg-1 attaining 38.5°C in 30 min (44). Both of these are lower 325 

than the calculated RPE = 17 and 2.7 W.kg-1 in the present study, whereby in our cohort RPE = 15 326 

would increase Trec to 38.5°C in 37 min, and 2.5 W.kg-1 would require 33 min (Table 4). This disparity 327 

can be explained by the higher V
.
O2peak of the participants whereby the greater aerobic capacities (63 328 

and 54 mL.kg-1.min-1), mean that for the same relative intensity, a higher absolute intensity, V
.
O2 and 329 

Hprod occurs. This data highlights that isothermic HA may be more efficient in more aerobically trained 330 

individuals in spite of increased capacities for heat loss via sweating in this population (7).  331 

Conversely, the linear regression observed a prescription of 68% V
.
O2peak as being required, further 332 

reinforcing this mechanism for the delayed attainment in the experiments which have utilized a 65%  333 

V
.
O2peak prescription (25–27,42). This identifies that in these experiments (25–27,42), that the work 334 

intensity was too low to achieve a Trec = 38.5°C in 30 mins, and that the reduced predictive capacity of 335 

this variable means it is inferior to relative power and RPE. Practitioners adopting the relative power 336 

prediction can derive confidence from the linear relationship between external work and V
.
O2, and the 337 

consistency of gross efficiency within absolute work and external temperatures (18,60,62). The finding 338 
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that external power relative to body mass in W.kg-1 is the best predictor of the rate of change of Trec 339 

supports the notion that heat production per unit mass is the primary determinant (11,13,33,34,55), 340 

because mechanistically (and biophysically) this is most likely the reason for the observed 341 

relationships. There is little mechanistic justification for external workload per unit mass as an 342 

independent determinant of the rate of change in Trec, rather this is the most effective surrogate for the 343 

impractical measurement of Hprod. Little attention has been given to the required intensity for exercise 344 

during the maintenance phase of the isothermic HA in published literature. Table 4 proposes that to 345 

elicit minimal increases in Trec during this ~60 min phase the following prescriptions are appropriate 346 

power ≤1.25 W.kg-1, power ≤30 %Powermax, RPE ≤10 “Very Light - Light”, V ̇O2 ≤40 %peak, HR ≤60 347 

%max, and TS ≤5.0. 348 

 349 

The significant relationship, but lower predictive capacity for the rate of change in Trec of %V
.
O2peak and 350 

%HRmax is explained by the nature of their implementation, notably the disparity in absolute intensity 351 

observed between individuals for the same relative prescription (40). It has been observed that 352 

aerobically trained individuals can produce a higher power for equal relative intensities when 353 

compared to untrained equivalents in both temperate and hot conditions (46). For individuals who 354 

demonstrate a greater absolute aerobic capacity (i.e. V
.
O2peak) and consequently exercise at a greater 355 

absolute V
.
O2, and therefore greater absolute Hprod for the same relative prescription, a greater rate of 356 

change in Trec likely occurs (11,33,34,55). This highlights previous observations that isothermic HA 357 

may be more efficient in individuals with a high vs. a low aerobic capacity (26). The implementation of 358 

%V
.
O2peak, %HRmax for training administration has been proposed as appropriate for moderate intensity 359 

prescriptions (<60% V
.

O2peak) between individuals (40), however under heat stress, significant 360 

cardiovascular drift occurs reducing absolute V
.
O2peak (38), further reducing the effectiveness of these 361 

relative intensity prescriptions. These uncertainties make identification of this “moderate” intensity 362 

domain unclear. The %V
.
O2peak (or %HRmax) approach is often preferred for prescribing training as it is 363 

known that each participant, irrespective of absolute aerobic capacity, will be able to complete the 364 

exercise bout. In a varied cohort of individuals commencing isothermic HA, where the intention is to 365 
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provide a potent exercise load to rapidly increase heat storage, %V
.
O2peak, %HRmax are however 366 

inferior measurements in comparison to that of power relative to body mass.  367 

The predictive capacity of the RPE scale is appealing for practitioners due to the simplicity of its 368 

application, and the present analysis further reinforces the effective implementation of the scale as a 369 

viable method for prescribing exercise heat-stress (6). In addition to being effective at predicting the 370 

rate of Trec increase (Figure 1), RPE has shown consistency between days for administration 371 

variables such as mean power, and time until Trec ≥ 38.5°C in trained individuals (43). An additional 372 

benefit of the RPE method is that it is less susceptible to decreases in the adaptation stimuli with 373 

ongoing HA (58) or the increases in aerobic capacity known to occur with heat adaptation (39). This 374 

notion furthers mitigates the use of %V
.
O2peak and %HRmax. Even with increased aerobic capacity and 375 

improved TS during heat adaptation (39), RPE is subjectively interpreted by an individual based upon 376 

cardiovascular and thermoregulatory afferent feedback (16). Consequently, even with increased 377 

aerobic capacity, clamping RPE will likely result in increased exercise performance/work. This 378 

concurrently increases Hprod following elevated absolute V
.
O2. Although heat storage will decrease with 379 

adaptation throughout HA, an increased time to attain the isothermic target is less likely to occur as 380 

the self-regulation of work at a higher intensity appears to maintain the potency of this prescription at 381 

least through short term timescales (43). Though RPE is a complex multifactorial construct, it provides 382 

an effective method for prescribing work in the heat, with a targeted prescription of 17 being predictive 383 

of an increase in Trec of 1.5°C within 30 min when the monitoring of power at 2.7 W.kg-1 is not 384 

possible. 385 

Multiple regressions observed a 4.2% improvement to the simple linear regression equation could be 386 

made by adding RPE to the relative power (W.kg-1). This generated a total prediction of 62.5%. Whilst 387 

this may offer a mathematical improvement to the model, within the experimental conditions imposed, 388 

RPE was not manipulated, nor is manipulation of RPE able to directly modulate the physiology 389 

responsible for Hprod i.e. V
.
O2 and respiratory exchange ratio (RER). Instead RPE is a reflection of the 390 

perception of the afferent feedback pertaining to the physiological responses of the external work 391 

being performed, and potentially the external environment where it is occurring (16). In light of this, 392 

and considering the aim of this analysis (to predict changes in Trec, thus optimize isothermic HA), the 393 
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small improvements in determining the rate of change in Trec via multiple regression is deemed 394 

unhelpful in this instance, particularly regarding the sensitivity of the RPE scale and the variability in 395 

RPE at any given power between individuals as demonstrated by Figure 1. The rejection of participant 396 

descriptive characteristics into the multiple regression models in favor of power (W.kg-1) and RPE is 397 

noteworthy. Had participant descriptive variables been included in an improved regression model, 398 

practitioners may have needed to adjust prescriptions of exercise intensity to account for individual 399 

variation in fitness/fatness (12).  Based on our data, and recent work dissuading the use of power 400 

relative to lean body mass (14), this is not necessary. 401 

It has been stated that after 60 min of exercise in compensable conditions, Hprod (W.kg-1) is the best 402 

predictor (49.6%) of the rate of change in Trec (12), with anthropometric characteristics of surface area 403 

to mass ratio (4.3%), and body fat percentage (2.3%) improving the model. This reaffirms the 404 

importance of Hprod in modulating changes in core temperature during accurate prescription of 405 

exercise heat stress. A limitation of the proposed optimal implementation via the Hprod method is that, 406 

whilst setting the initial intensity prescription can be achieved based upon preliminary data, to 407 

effectively control and monitor the training, continual measurement of metabolic gas exchange is also 408 

required (11). This is neither feasible, nor practical for those in the field or when working with large 409 

groups due to requirements for specialized equipment and individual pre intervention testing. Previous 410 

studies have demonstrated that core temperature increase has a positive relationship with absolute or 411 

relative Hprod (30,33) and negatively correlates with body mass (9,28–31). Data in the present study 412 

highlights a correlation between the rate of change in Trec and some anthropometric variables (mass, 413 

mass/BSA, and body fat (%)). The predictive ability of the anthropometric variables was less than the 414 

exercise intensity parameters, and did not further improve the multiple regression equation. This is in 415 

agreement with recent data highlighting the most important characteristic determining core 416 

temperature during compensable exercise-heat stress to be relative Hprod (12), which is a byproduct of 417 

absolute V
.
O2 even when considering independent participant groups demonstrate large differences in 418 

absolute Hprod (11), and body composition (14) at the same relative intensity. The dynamics of internal 419 

heat distribution may differ greatly between individuals and environments accounting for unexplained 420 

variation in Trec increase (12); this is an important area of future research particularly regarding heat 421 

illness.  422 

ACCEPTED



15 

 

Limitations 423 

Our data is in partial agreement with the recent observation that experiments should adopt a Hprod 424 

(W.kg-1) prescription of intensity (12), to compare changes in core temperature effectively. A primary 425 

limitation of this retrospective analysis is the absence of real time, online measurement of expired 426 

metabolic gases during the exercise-heat stress that would facilitate data analysis on actual Hprod and 427 

V
.
O2. Data presented in elegant experiments isolating the effectiveness of Hprod derived prescriptions 428 

have shown consistent changes in core temperature inferring this method to be optimal in 429 

compensable conditions (11,33,34,55), at present no data is available to extend this to 430 

uncompensable conditions in which isothermic HA is performed. Whilst experimentally beneficial the 431 

impracticalities of implementing these techniques discourage their use by practitioners for the 432 

prescription of exercise intensity when training individuals and teams in the heat. 433 

 434 

The disparity between the environmental conditions for the determination of % V
.

O2peak and 435 

%Powermax, and that in which the exercise-heat stress was performed is an additionally plausible 436 

contributing factor for the individual variation in the rate of change in Trec using a %V
.

O2peak (or 437 

%Powermax) method (25–27,42). A greater contributing factor may be systematic differences in Hprod, 438 

in addition to other physiological responses, notably sweating, when utilizing this method (10,19,33). 439 

Finally, this data assumes all individuals tolerate cycling exercise  to the same extent as the 440 

participants within this study, and would not find the requisite prescriptions intolerable due to localized 441 

fatigue. It remains unknown whether the W.kg-1 prescription is effective in other exercise modalities 442 

where measurement of power is achievable, this should be experimentally elucidated. This 443 

observation also extends to protocols where power isn’t able to be monitored or cycling exercise 444 

cannot be performed, e.g. when the exercise modality is treadmill running. At the current time the 445 

optimal approach to administering HA may be via prescriptive RPE as implemented recently 446 

elsewhere (6). Confidence in the use of the prescribed RPE when running from this cycling data can 447 

be drawn from the equality of submaximal V
.
O2 and RPE between exercise modes at submaximal 448 

intensities (3). 449 

 450 
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Although the data presented in Table 3 and Table 4 presents the requirements of the described 451 

intensity prescription, some data have been excluded from the tables at the upper extremes of the 452 

prescriptions representing a large increase in Trec over short durations. The exclusion criteria were 453 

made when the regression equation calculated a prescription that was unattainable within the 454 

confines of the implementation tool (RPE>20, TS>8) or impractical (>100% of %HRmax). These tables 455 

offer an effective guide for practitioners who are designing HA strategies. Caution should be drawn 456 

from data where the prescription appears unsustainable for extended periods (>100% of %Powermax, 457 

>100% of %V
.
O2peak).  458 

 459 

It should be noted the present data is based upon only male participants. Future work should 460 

therefore aim to predict core temperature responses to exercise in the heat in female participants, 461 

with some caution applied when implementing these workloads in females whom demonstrate 462 

different baseline heat tolerance to males (42), in particular at differing times of the menstrual cycle 463 

and in response to contraceptive medication (7). 464 

 465 

Future directions 466 

Future experiments may consider the efficacy of this analysis utilizing running, or arm cranking 467 

models of HA, and cycle models in combination with prohibited evaporation (41), under imposed 468 

hypohydration (22,43), or using an acclimatization, rather than acclimation model. Additionally, this 469 

analysis should be used to address the paucity of experimental HA data considering participants at 470 

the extremes of anthropometric norms known to be susceptible to extreme internal heat load (13), in 471 

addition to the assessment of female responses (42), and those with thermoregulatory impairment 472 

e.g. spinal cord lesion or multiple sclerosis patients (5,51). Optimizing the administration is desirable 473 

to improve the ecological validity and effective implementation of the intervention in the 474 

aforementioned populations. This present data has highlighted that the observations regarding 475 

methods for effective control of core temperature change in compensable conditions are also relevant 476 

in uncompensable conditions (12,34), although this should be experimentally tested utilizing an 477 

explicit experimental design specific to that research question. 478 

 479 

PRACTICAL APPLICATIONS 480 
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This data provides precise guidelines to allow practitioners to accurately implement isothermic HA to 481 

improve aerobic capacity and mitigate heat illness in athletes (48). Given the greatest predictive 482 

capacity, and equal or greater simplification of administration of using power (W.kg-1 or %Powermax) or 483 

RPE methods these are the preferred methods. The use of % O2peak, %HRmax or TS demonstrate 484 

reduced efficacy when the aim is to minimize the duration to achieve a given increase in core 485 

temperature. There is no necessity to adjust the administration to account for differences in body 486 

composition within a normal range, in part due to the relative (to body mass) predictive 487 

recommendations. A further benefit of the power (W.kg-1) or RPE based prescription is the opportunity 488 

to forgo a pre HA intervention assessment of V
.
O2peak or V

.
O2max, which may be of greatest relevance 489 

within the time-limited environment of professional sport, or during large scale occupational or military 490 

deployments. Practitioners should therefore implement a relative power based (21,22,44) prescription 491 

when administering training sessions in the heat (i.e. HA). If monitoring of power is unavailable RPE 492 

provides an effective alternative (43). Inexpensive and portable equipment allows easy monitoring of 493 

the physiological responses, notably the change in core temperature (20), during the exposure to 494 

ensure participant safety, and to observe maintenance of the stimuli for adaptation for an individual 495 

between sessions.  496 

 497 
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 706 

FIGURE LEGEND 707 

Figure 1. Relationships between the rate of change in Trec and exercise intensity parameters Power 708 

(A; W.kg-1), Power (B; %max), RPE (C), V
.
O2peak (D; %), HR (E; %max), TS (F). 709 

 710 

TABLE LEGENDS 711 

 712 

Table 1. Participant descriptive characteristics prior to the commencement of each 713 

experimental trial and the respective relationship to the rate of Trec increase within each 714 

experimental trial 715 

 716 

Table 2. Summary of data describing relationships between exercise intensity prescription 717 

parameters and the rate of Trec increase [expressed as °C.hr-1 (used in EQ 1 for calculations 718 

in Table 3) or °C.min-1 (used in EQ 2 for calculations in Table 4)] within each experimental 719 

trial 720 

 721 

Table 3 Relative power (W.kg-1 and %Powermax), RPE, oxygen uptake (%V
.

O2peak), HR 722 

(%HRmax) and TS requirements to achieve incremental changes in Trec over incremental 723 

durations. Note Shaded areas represent intensities where prescription exceeds physiological 724 

capacity/perceptual scale. 725 

 726 

Table 4 Duration to achieve a +1.5°C change in Trec in response to incremental changes in 727 

relative power (W.kg-1 and %Powermax), RPE, oxygen uptake (%V
.
O2peak), HR (%HRmax) and 728 

TS.  729 

 730 ACCEPTED



Table 1. Participant descriptive characteristics prior to the commencement of each experimental trial and 

the respective relationship to the rate of Trec increase within each experimental trial 

 

 Mean ± SD Min Max R2 P 

Age 
(years) 

23 ± 4 18 36 0.14 0.006 

Height 
(cm) 

180 ± 6 168 190 0.00 0.885 

Mass 
(kg) 

76.3 ± 10.1 58.6 107.6 0.11 0.016 

BSA 

(m
2
) 

1.95 ± 0.13 1.72 2.29 0.07 0.055 

BSA/Mass 
(cm2/kg) 

258 ± 17 204 296 0.09 0.027 

Fat 
(%) 

13.8 ± 4.1 7.8 31.0 0.11 0.013 

V
.
O2peak 

(L.min
-1
) 

3.82 ± 0.66 2.23 5.41 0.19 0.001 

V
.
O2peak 

(mL.kg
-1
.min

-1
) 

51 ± 11 21 87 0.28 <0.001 

ACCEPTED



 

 

Table 2. Summary of data describing relationships between exercise intensity prescription parameters and 
the rate of Trec increase [expressed as °C.hr-1 (used in EQ 1 for calculations in Table 3) or °C.min-1 (used in 
EQ 2 for calculations in Table 4)] within each experimental trial 

 Mean ± SD Min Max R2 P 
Slope 

(°C.hr-1) 
Intercept 
(°C.hr-1) 

Slope 
(°C.min-1) 

Intercept 
(°C.min-1) 

Power 
(W.kg-1) 

2.1 ± 0.1 0.8 3.8 0.58 <0.001 1.2650 -0.4704 0.02108 -0.00784 

Power 
(%max) 

51 ± 12 24 78 0.46 <0.001 0.0619 -0.9576 0.00103 -0.01596 

RPE 
(A.U.) 

14 ± 2 9 19 0.33 <0.001 0.2725 -1.6769 0.00454 -0.02795 

Oxygen Uptake 

(%V
.
O2peak) 

51 ± 11 47 73 0.32 <0.001 0.0745 -2.1042 0.00124 -0.03507 

HR 
(%HRmax) 

83 ± 10 58 96 0.29 <0.001 0.0616 -2.7794 0.00103 -0.04632 

TS 
(A.U.) 

6.3 ± 0.6 4.9 7.3 0.10 0.022 0.6004 -1.5797 0.01001 -0.02633 

ACCEPTED



 

Table 3 Relative power (W.kg-1 and %Powermax), RPE, oxygen uptake (%V
.
O2peak), HR (%HRmax) and TS requirements to achieve incremental changes in Trec 

over incremental durations. Note Shaded areas represent intensities where prescription exceeds physiological capacity/perceptual scale. 

 

 +1.0°C +1.5°C +2.0°C 

Time  (min) - 20 25 30 35 40 45 20 25 30 35 40 45 20 25 30 35 40 45 

Power 
(W.kg-1) 2.7 2.3 1.9 1.7 1.5 1.4 4.0 3.2 2.7 2.4 2.1 1.9 5.2 4.2 3.6 3.1 2.7 2.5 

Power 
(%Powermax) 

64 54 48 43 40 37 88 74 64 57 52 48 112 93 80 71 64 59 

RPE 
(A.U.) 17 15 13 12 12 11 20+ 19 17 16 14 13 20+ 20+ 20+ 19 17 16 

Oxygen 
Uptake  

(%V
.
O2peak) 

68 60 55 51 48 46 89 77 68 63 58 55 100+ 93 82 74 68 64 

HR  
(%HRpeak) 

95 85 79 74 70 68 100+ 100+ 95 88 83 79 100+ 100+ 100+ 100+ 95 90 

TS 
(A.U.) 7.6 6.6 6.0 5.5 5.1 4.9 8.0+ 8.0+ 7.6 6.9 6.4 6.0 8.0+ 8.0+ 8.0+ 8.0+ 7.6 7.1 ACCEPTED



 

Table 4 Duration to achieve a +1.5°C change in Trec in response to incremental changes in relative power (W.kg-1 and %Powermax), RPE, oxygen uptake (%V
.
O2peak), HR 

(%HRmax) and TS. Note Shaded areas represent intensities where prescription exceeds physiological capacity/perceptual scale, italics indicate data calculated 

outside of the upper and lower bounds of the experimental data (see Table 2). 

Power Time to Trec 
= +1.5°C Power Time to Trec = 

+1.5°C RPE Time to Trec = 
+1.5°C 

Oxygen 
Uptake 

Time to Trec = 
+1.5°C HR Time to Trec = 

+1.5°C TS Time to Trec = 
+1.5°C 

(W.kg-1) (min) (%Powermax) (min) (A.U.) (min) (%V
.
O2peak) (min) (%HRpeak) (min) (A.U.) (min) 

1.00 113 20 322 7 390 30 680 50 298 3.0 406 

1.25 81 25 153 8 179 35 178 55 147 3.5 172 

1.50 63 30 100 9 116 40 103 60 98 4.0 109 

1.75 52 35 75 10 86 45 72 65 73 4.5 80 

2.00 44 40 59 11 68 50 55 70 59 5.0 63 

2.25 38 45 49 12 56 55 45 75 49 5.5 52 

2.50 33 50 42 13 48 60 38 80 42 6.0 44 

2.75 30 55 37 14 42 65 33 85 37 6.5 39 

3.00 27 60 33 15 37 70 29 90 33 7.0 34 

3.25 25 65 29 16 34 75 26 95 29 7.5 31 

3.50 23 70 27 17 30 80 23 100 27 8.0 28 

3.75 21 75 24 18 28 85 21     

4.00 20 80 23 19 26 90 20     

4.25 18 85 21 20 24 95 18     

4.50 17 90 20   100 17     

4.75 16 95 18         

5.00 15 100 17         
ACCEPTED
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