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ABSTRACT 

Aims Rapid and efficient magnetization of human bone marrow stromal cells (BMSC) 

through functionalized magnetic nanoparticles (MNP). 

Methods MNP were functionalized with poly(epsilon-lysine) dendrons exposing 

carboxybetaine residue (CB-MNP) to enhance binding to the cellular glycocalix. BMSC were 

incubated with CB-MNP or non-functionalized PAA-MNP for 5-30 minutes in suspension. 

Results CB-MNP functionalisation increased the magnetization efficiency by 3-fold. 

Remarkably, 66% of cells were magnetized after only 5 minutes and the maximum efficiency 

of >80% was reached by 15 minutes. BMSC viability, proliferation and differentiation were 

not impaired: actually, adipogenic and osteogenic differentiation were even improved. 

Conclusions Carboxybetaine-dendron functionalization ensured rapid and efficient BMSC 

magnetization and allowed innovative suspension labelling, with a potential for bypassing 

adhesion culture of progenitors for regenerative medicine. 
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INTRODUCTION 

Cell-based therapies aim at regenerating fully-functional tissues damaged by surgery, 

trauma or disease, where their spontaneous repair is insufficient or leads to non-physiological 

healing [1]. Tissue engineering, based on the combination of suitable progenitor cells with 

biocompatible scaffolding materials, is the most advocated strategy as it enables both control 

over cell behaviour and retention upon transplantation [2,3]. 

Mesenchymal stem/stromal cells (MSC) are widely accepted as the best candidates in this 

type of regenerative medicine approach as they are able to differentiate into the three main 

mesenchymal lineages reaching complete differentiation both in vitro and in vivo, particularly 

into cells of the musculoskeletal system [4]. Therefore, this phenotypic plasticity encourages 

its main therapeutic application in the regeneration of damaged bone or cartilage, where the 

clinical demand is not met by satisfactory surgical solutions [2,5–7]. Studies of MSC obtained 

from different sources show that those isolated from bone marrow (Bone Marrow Stromal 

Cells, BMSC) possess a greater ability to differentiate into the osteogenic lineage both in vitro 

and in vivo when compared to MSC derived from other tissues [8–11]. The use of MSC for 

bone regeneration can be optimized in a tissue engineering approach where these cells are 

combined with natural or synthetic matrices able to mimic the extracellular matrix of 

connective tissue, hence favouring the differentiation of either host migrating progenitors or 

transplanted cells [3,12]. In the latter case, an optimal seeding of the progenitor cells is the 

required first step to ensure a homogeneous regeneration of the tissue throughout the scaffold. 

In particular, high seeding density and uniform cell distribution through the scaffold are 

critical to promote homogenous tissue formation and achieve clinical success [13]. 

Bioreactors, including spinner flasks and perfusion bioreactors, are a very effective 

technology to reach this goal and can overcome the limitations of static loading of highly 

concentrated cell suspensions [14]. However, bioreactor-based seeding procedures require 

one or more days of in vitro culture to allow cell distribution and attachment to the scaffolds 
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[15]. On the other hand, it is highly desirable from a clinical point of view to develop 

intraoperative approaches, whereby progenitors are harvested, seeded onto the scaffold and 

re-implanted into the patient directly without an in vitro culture step; this allows the operator 

to minimize the negative effects of cell manipulation [16] and to reduce costs for cell 

expansion under GMP manufacturing conditions [17,18]. 

Magnetic forces capable of driving cells through the 3D scaffold mesh could provide an 

attractive means to achieve its rapid and homogenous seeding [19]. It has been suggested that 

this magnetic drive can be achieved through the coupling of cells to superparamagnetic nano-

particles (MNP). MNP (from 5 to 150 nm in diameter) can be engineered to have their 

magnetic core coated with different polymeric materials, including dextran, polylysine, 

chitosan or silica [20,21]. The application of these coatings does not alter the magnetic 

properties of the MNP, but enhances their biocompatibility and promote their endocytosis, a 

step necessary to the final magnetization of the cells [22]. However, cell labelling with MNP 

is a slow and low-yield process often not able to guarantee levels of magnetization sufficient 

for cell manipulation. Indeed, published data show that it is necessary to incubate MNP in 

vitro on adherent cells for prolonged periods of time, ranging between 12 and 24 hours [23–

26]. This is a limitation that currently precludes the use of magnetized cells in most 

biomedical applications. 

This work reports a novel method based on the surface functionalization of MNP with 

biocompetent dendrons that significantly accelerates and improves the magnetization of 

human BMSC. The interaction between MNP coated by a thin layer of poly(acrylic acid) 

(PAA) and BMSC was achieved through the surface functionalization of the PAA coating 

with hyperbranched poly(epsilon-lysine) dendrons, the uppermost branching generation of 

which was tethered with the zwitterionic modified amino acid carboxybetaine. It was 

hypothesized that the high-density presentation of this highly hydrophilic amino acid could 

favour the interaction between the MNP and the cell surface glycocalyx, thus enhancing MNP 
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internalization. The significantly improved labeling efficiency of cells by functionalized MNP 

enabled the establishment of a novel culture-free protocol of BMSC magnetization that 

ensures their rapid and highly efficient magnetization in suspension, while preserving their 

differentiation potential, thereby enabling the possibility to bypass adhesion culture of 

mesenchymal progenitors. 
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MATERIALS AND METHODS 

Dendron Synthesis 

Poly (ε-lysine) dendrons of three (Gen3K) branching generation type were synthesised on a 

Tenta Gel S (-NH2) resin (Iris Biotech GmbH, Germany) using a previously reported 9-

fluorenylmethoxycarbonyl (Fmoc) solid phase peptide method based on the sequential 

addition of Fmoc-protected amino acids [27]. Dendrons were designed with a cysteine as core 

molecule. The resin was placed inside a reaction vessel and swollen in N, N – 

dimethylformamide (DMF) (Fisher Scientific UK) for 15 minutes. After washing with 3 x 7 

cm3 DMF, the addition of an acid labile Rink amide linker (Iris Biotech GmbH, Germany) to 

the resin was undertaken via the C-terminal of the linker. The Rink amide linker was added to 

allow the final cleavage of the product from the resin. The exposure of N-terminal amines 

allowed the final assembly of the carboxybetaine molecule tethering the uppermost branching 

generation. The obtained dendrimer [C-Gen3K(CB)16] was allowed to stand for 30 minutes 

for a final deprotection step in 20 % v/v piperidine (Sigma Aldrich Co. Ltd, UK) in DMF and 

washed with 3 x 7 cm3 DMF. The contents of the reaction vessel were then washed with 40 

cm3 dichloromethane (Fisher Scientific, UK), methanol (Fisher Scientific, UK) and 

diethylether (Fisher Scientific, UK). Then, the product of synthesis was dried and weighed 

prior to be cleaved from the resin. After three hours incubation, the solution was passed down 

a Pasteur pipette filled with 1 cm of a glass wool and the crude peptide was collected in a tube 

containing 20 cm3 of chilled diethylether. The solution was then centrifuged (Denley BS400) 

at 3500 rpm for 5 minutes to collect the dendron. The diethylether was then carefully 

decanted from the tube and fresh diethylether 20 cm3 was added and the sample was vortexed 

to disrupt the peptide pellet. The centrifugation procedure was then repeated twice more and 

the diethylether was subsequently decanted off. The reaction product was then freeze dried 

(Christ Alpha2-4), dissolved in ethanol and filtered through a syringe filter with a pore 

diameter of 0.22 µm (GE Healthcare Amersham, UK) prior to characterisation. 
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Dendron Characterisation 

Once synthesised the dendron was characterised by analytical HPLC to determine purity and 

further purified by further by preparative HPLC. microTOF mass spectrometry was used to 

characterize the dendron. The crude peptide was separated by a standard analytical HPLC 

method (WatersTM 717 plus Autosampler) performed on a hydrophobic RP 18 column 

(150x4.60 mm, Luna 3u C18 100A, Phenomenex) at 25° C (Column chiller Model 7955, 

Jones Chromatography). The mobile phase consisted of a stepwise gradient of two solvent 

systems (Solvent A deionised water with 0.1% v/v TFA, Solvent B acetonitrile with 0.1% v/v 

TFA). Chromatograms were recorded on UV detector (SPO-6A, Shimadzu) and analysed by 

HPLC software, Total Chrom-TC Navigator. 

 

Attachment of Dendron to Fe3O4@PAA MNP  

Fe3O4@PAA super magnetic nanoparticles were produced by Nanogap S.L. (Santiago de 

Compostela, Spain) as previously described [23]. Fe3O4@PAA (13 mg) were washed three 

times with 20 ml of ethanol. A 20 ml volume of 0.1 M MES buffer containing 38 mg EDC 

and 6 mg NHS was added, the solution was vortexed for 30 seconds and then placed in the 

shaking incubation for 30 minutes.  L-cysteine (25 mg, 0.2 mM) was added and the mixture 

was shaken for 1 h. The MES buffer was removed and the beads washed three times with 

ethanol. The beads were then split into two tubes. To conjugate the dendrimers to the cysteine 

via a disulfide bridge, 10 ml of 8 M urea containing 3% w/v hydrogen peroxide were added 

along with (i) 5.3 mg, 1 µmole dendrimer. The tubes were then returned to the shaking 

incubator for 30 minutes. Non functionalized and dendron-functionalized PAA-MNP [PAA-

MNP-C-Gen3K(CB)16] were characterized by FTIR to show the successful 

biofunctionalization of the MNP. Each sample was examined using FTIR-ATR (Nicolet) 64 

scans, 1 cm-1 resolution in the range 4000-650 cm-1. All samples were washed three times in 
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ethanol for disinfection, dried by evaporation under sterile conditions and stored at 4° C until 

used. 

 

BMSC culture 

Bone marrow (BM) aspirates were obtained from four healthy donors of similar age (35, 

36, 37 and 44 years old, 3 male and 1 female), during routine orthopaedic surgical procedures, 

in accordance with the local ethical committee (Ref. Nr. EK:78/07) and after informed 

consent. Bone marrow nucleated cells (BMNC) were isolated as previously described [28]. 

Briefly, BM was diluted 1:10 with phosphate-buffered saline (PBS) (Sigma-Aldrich, Saint 

Louis, MO) and nucleated cells were counted after staining with crystal violet solution 0.01% 

(Sigma Aldrich, Saint Louis, MO). BMNC were then seeded in tissue culture dishes at a 

density of 1x105 cells/cm2. 

BMSC were expanded in complete medium (CM), consisting of α-MEM supplemented 

with 10% foetal bovine serum (FBS), 1% HEPES, 1% Sodium pyruvate and 1% Penicillin-

Streptomycin-Glutamin (100x) solutions (all from Gibco, Life Technologies, Switzerland), 

and conditioned with 5 ng/ml FGF-2 (R&D systems, Minneapolis, MN) [29]. At a sub-

confluent density of about 80%, cells were washed once with PBS, detached using 0.05% 

trypsin (Gibco) for 5 min at 37° C and counted to assess the number of population doublings. 

BMSC were then plated at a density of 3x103 cells/cm2 for further in vitro expansion in tissue 

culture dishes (TPP, Trasadingen ,Switzerland). 

 

Flow cytometry 

For phenotypic characterization of BMSC, cells were incubated for 20 minutes on ice, in 

PBS with 5% BSA. The antibodies used were: CD90-FITC, CD73-PE, CD45-FITC, IgG1-

FITC, IgG1-PE (all from Becton, Dickinson and Company, Franklin Lakes, NJ) and CD105-

FITC (Serotec Ltd. Oxford, UK). All the antibodies were used at a dilution of 1:50, except 
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CD105-FITC, which was used at 1:20. Data were acquired with a FACSCalibur flow 

cytometer (BD Biosciences) and analyzed by using FlowJo software (Tree Star, Ashland, OR, 

USA). 

 

Labeling of BMSC with CB-MNP 

In order to obtain a starting reference concentration of 7 mg/ml, 3.5 mg of CB-MNP and 

PAA-MNP magnetic nanoparticles were resuspended in 500 µl of 100% ethanol. To improve 

bead disaggregation, microcentrifuge tubes were placed in an ultrasonicating bath for 1 hour, 

vortexing them every 10 minutes to allow for complete resuspension. In a 50 ml tube, BMSC 

were resuspended in an appropriate volume of CM to reach a final concentration of 4x104 

cells/ml. Three different concentrations of both magnetic nano-particles were tested, 

respectively: low = 7.2 µg/104 cells, medium = 14.4 µg/104 cells and high = 28.8 µg/104 cells. 

The magnetic nanoparticles were added to cell suspension and incubated at 37°C, 5% CO2 on 

an orbital shaker (100 rpm) for 5, 15 min or 30 minutes (2 replicates/donor for 3 independent 

donors, n=6 for each condition). 

At the end of the incubation, efficiently labelled MSC were separated by application of an 

external magnet on the side of the vertically held tube for 10 minutes, so that magnetic force 

would not coincide with gravity. After labeling the non-magnetized cells were collected in a 

new tube to be separated from the magnetized ones. Both cell subpopulations were 

centrifuged for 5 minutes at 1500 rpm and counted to determine the percentage of magnetized 

cells. Magnetized cells were resuspended in CM and seeded in tissue culture dishes for further 

analyses. 

 

Cytotoxicity assay 

In order to determine whether magnetic labeling was toxic, labeled cells were seeded in 

six-well plates (TPP) at a density of 6x105 cells/cm2 (3 wells/donor for 2 independent donors, 
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n=6 for each condition). After 1, 2 and 3 days medium was discarded and cells were 

incubated with Propidium Iodide (PI) solution (diluted 1:20 in CM; Sigma Aldrich) for 20 

minutes at 37° C, 5% CO2. At the end of the incubation, fresh medium was added and images 

of ten random fields for condition were acquired (Olympus IX50 con camera Color View 

Olympus) both in brightfield and using a red fluorescent filter. Live and PI-positive cells were 

counted and the results were expressed as the percentage of viable cells. 

 

In vitro proliferation 

After labeling, magnetized BMSC were seeded in T75 tissue culture flasks at the density of 

3x105 cell/cm2 (2 flasks/donor for 3 independent donors, n=6 for each condition) and they 

were expanded for two further passages. The number of population doublings was calculated 

at each passage according to formula: Log2 (N/ N0)/t, where N is the number of cells obtained 

after x days, N0 is the number of cells seeded at time 0, and t is the time between two 

passages. 

 

Trasmission Electron microscopy 

Labeled BMSC were seeded on glass coverslips for six hours and then the samples were 

fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer pH 7.6 for 1 h at room 

temperature. After post-fixation with 1% OsO4 in cacodylate buffer for 1 h, cells were 

dehydrated in an ethanol series and embedded in Epon resin. Ultrathin sections stained with 

uranyl acetate and lead citrate were observed with a Jeol Jem-1011 transmission electron 

microscope (Jeol Jem, USA). Two hundred nuclei were examined for each sample. In order to 

quantify the number and the size of magnetic nanoparticle aggregates that had been 

internalized by each cell, the area occupied by magnetic nanoparticles was identified using 

region of interests (ROI) tool and successively calculated by the software (Nis D 4.10 

software from Nikon, Amsterdam, Netherlands). 
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Confocal scanning microscopy 

After labeling, BMSC were seeded on glass coverslips and allowed to adhere overnight. 

After three washes in PBS, the cell monolayer was fixed with 4% PFA at room temperature 

(RT) for 20 min. Non-specific sites were blocked with 1% Bovine Serum Albumin (BSA, 

Sigma Aldrich) in PBS for 30 minutes at RT. Fixed cells were incubated with a primary 

antibody against CD90 (clone 5E10, Abcam, 1:50 in blocking solution) overnight at 4° C in 

humid chamber. After three washes in PBS for 5 minutes, Cy3-conjugated anti-mouse IgG 

(1:100 in PBS 1X Sigma-Aldrich) secondary antibody was added and incubated for 1 hour at 

RT. After three washes in PBS, coverslips were mounted in Fluoromount-G solution and 

imaged. A confocal laser scanning microscopy analysis of intracellular localization of MNP 

was performed using a Nikon TiE microscope equipped with a fully automated A1 confocal 

laser which incorporates the resonant scanner with a resonance frequency of 7.8 kHz allowing 

high-speed imaging (A1R, Nikon, Amsterdam, Netherlands). Reflection and fluorescence 

modes were applied sequentially for detection of MNP and CD90 signal, respectively. In 

reflection mode, the sample was excited with a 488 nm laser: light reflected by the MNP 

passed through a beam splitter (20/80), was reflected by a 450/50 nm filter and was detected 

by a photomultiplier. The CD90 signal was instead detected by fluorescence emission of the 

Cy-3 fluorophore after excitation by 561 nm laser light. Z-stack acquisition (0,22 nm and 0,13 

nm single step respectively for PAA-MNP and CB-MNP) was performed and the confocal 

pinhole was set to 1.2 Airy disk and a 60X Plan-Apochromatic PhN2 1.4NA objective lens 

was used. Orthogonal projection was applied to evaluated MNP position in relation to cell 

membrane. Ten images per condition were analysed (n = 10). 

 

In vitro Osteogenic Differentiation 
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Osteogenic differentiation was induced in monolayer as previously described (Jaiswal, et 

al., 1997). Briefly labeled BMSC were seeded in 6-well plates (8 wells/donor from 2 

independent donors, 4 of which used for Alizarin Red staining and 4 for calcium 

quantification; n=8 for each condition and assay) at a density of 3x105 cells/cm2 in α-MEM 

supplemented with 10% FBS until they reached confluency. Medium was then supplemented 

with 10 mM β-glycerophosphate, 10 nM dexamethasone and 0.1 mM L-Ascorbic acid-2-

phosphate (all from Sigma) for three weeks (Osteogenic medium, OM) and changed twice per 

week. After 21 days of osteogenic induction, the cell layer was washed once with PBS, fixed 

with 4% formalin for 10 min at room temperature and rinsed extensively with distill H2O. 

Cells layer was incubated with 2% Alizarin red (AR-S Sigma Aldrich) solution for 10 min at 

room temperature and when the solution was removed plates were washed twice with 100% 

ethanol and images were acquired using a phase-contrast microscope (Olympus IX50 with a 

Color View camera). The total calcium amount was quantified using the Calcium 

quantification kit CA-590 (RANDOX, Crumlin, United Kindom). Briefly, at the end of 

osteogenic induction the cell monolayer was washed twice with PBS and scratched adding 0.5 

N HCl in each well. Cell lysates were transferred in microcentrifuge tubes and were shaken 

for 3 hours at 4° C on an orbital shaker. At the end of the incubation the solution was spun at 

1000 rpm for 5 minutes. The supernatant was collected in a new tube and stored at -20° C 

until the analysis. The working solution was prepared adding equal parts of the two 

components R1 (calcium buffer) and R2 (Calcium chromogen). In a 96-well plate, 5 µl of cell 

lysate were added to 195 µl of working solution and absorbance was read at 575 nm. A 

standard curve was prepared using Calcium/Phosphate at 5 different concentrations between 

0-100 µg/ml. 

 

In vitro Adipogenic Differentiation 



	 13 

Adipogenic differentiation was induced as previously described [31]. Briefly, cells were 

seeded in 6-well plates at a density of 3x105 cells/cm2 (4 wells/donor from 2 independent 

donors, n=8 for each condition) and cultured in CM until confluence. The medium was then 

supplemented with 10 µg/ml Insulin, 1 µM Dexamethasone, 100 µM indomethacin and 500 

µM 3-isobutyl-1-methyl-xanthine (adipogenic induction medium, AIM) for 72 hours and 

subsequently combined with 10 µg/ml insulin (all from Sigma Aldrich) (adipogenic 

maintenance medium, AMM) for 24 hours. The 96-hour treatment cycle was repeated four 

times. At the end of adipogenic induction, the cell monolayer was washed with PBS, fixed in 

4% formalin for 10 minutes and stained with three volumes of Oil Red O (Sigma Aldrich) in 

0.3% v/v isopropanol and two volumes of H2O for 15 minutes at room temperature. 

Representative micrographs were acquired using a brightfield microscope (Olympus IX50 

with a Color View camera). Oil Red O, contained in lipid droplets, was then solubilized with 

100% isopropanol and the optical density was measured with a spectrophotometer at 500 nm 

[32]. 

 

Statistical Analysis 

Results are expressed as mean ± SEM. Before statistical testing, Kolmogorov-Smirnov test 

was performed on all data sets to assess normal distribution. The data reported in Figure 6 did 

not satisfy the normality test and were therefore analyzed with the non-parametric Kruskal-

Wallis test for multiple comparisons and Dunn’s post-hoc test. All other data sets passed the 

normality test and were therefore analysed using 1-way ANOVA and Bonferroni’s multiple-

comparison test as a post-test. Results were considered to be statistically significant at p 

values < 0.05 (* = p < 0.05, ** = p < 0.01, *** = p < 0.001). The data, including median value 

with range or mean value with SEM, were processed with GraphPad Prism 5 Software 

(GraphPad; San Diego, CA, USA). 



	 14 

RESULTS 

Dendrimer synthesis and MNP functionalization 

Mass spectrometry confirmed the successful synthesis of dendrons with peaks 

corresponding to various charged peptides, all multiples of the theoretical molecular weight 

(M): 3644.6. These corresponding peaks were: M12+ m/z 303.84, M9+ m/z 405.11, (M+11H)11+ 

m/z 332.41, (M+9H)9+ m/z 406.12, (M + 4H)4+ m/z 912.52. 

The final yield of the reaction was 50 mg of dendrimers from an initial 100 mg of solid-

phase resin, with a purity of 63%, corresponding to a single HPLC peak eluted at 14 min. 

Figure 1A summarizes the structure of MNP functionalized with the hyperbrached 

poly(epsilon lysine) dendrons. Fe3O4 magnetic nanoparticles were coated with a thin layer of 

polyacrilic acid (PAA-MNP) and successively functionalized with dendrons of poly(epsilon 

lysine) to yield PAA-MNP-C-Gen3K(CB)16, which will be referred to as CB-MNP in the rest 

of the manuscript for simplicity. PAA-MNP and CB-MNP were characterized for Fourier 

Transform Infrared Spectroscopy (FTIR). Functionalized CB-MNP showed the typical amine 

I and amine II peaks of the dendrons (Figure 1B, red arrows) in the region comprised between 

1400 cm-1 and 1600 cm-1, which were instead not found in the non-modified PAA-MNP 

(Figure 1C). The size of non-functionalized PAA-MNP nanoparticles was 18.46 nm with a 

zeta potential of –45.6 mV and the functionalization with dendrons led to an increase in the 

measured hydrodynamic radius to 33.37 nm and a zeta potential of –25.6 mV (Meikle et al, 

manuscript submitted). 

 

Dose-dependent cytotoxicity and labelling efficiency of functionalized CB-MNP 

Phenotypic characterization of isolated BMSC confirmed that the populations were almost 

uniformly positive for mesenchymal markers (CD105 = 97.8±0.8%, CD90 = 81.3±8.0% and 

CD73 = 98.9±0.4%) whereas the presence of leukocytes was extremely infrequent (CD45 = 

0.5±0.2%), in agreement with previous results [28,33,34]. 
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In order to minimize manipulation of isolated BMSC, we developed a protocol to rapidly 

label cells in suspension rather than in adhesion culture (Figure 2A). Cells were re-suspended 

in a 50-ml tube in complete culture medium, in order to avoid serum deprivation during the 

labelling procedure, at a concentration of 4x104 cells/ml and MNP were added (step1). 

Labelling took place during a 30-minute incubation on an orbital shaker to avoid 

sedimentation of cells and MNP (step 2). Efficiently labelled MSC were then separated by 

application of an external magnet on the side of the vertically held tube, so that magnetic 

force would not coincide with gravity (step 3), and isolated cells were plated on tissue culture 

dishes for further analyses (step 4). 

To investigate which CB-MNP concentration could preserve cell viability while bestowing 

a magnetization level sufficient for manipulation, increasing concentrations of CB-MNP were 

tested with a fixed number of target cells. A starting concentration of 14.4 µg CB-MNP/104 

cells (medium concentration) was calculated from published experiments performed using a 

different protocol on adherent cells [35], transforming the amount reported there in µg of 

MNP/104 cells, to be incubated in suspension labeling in a standard volume. Starting from this 

reference dose, which was shown to produce efficient magnetization with multi-hour 

incubations on adherent cells, 2-fold lower and higher concentrations were included (low = 

7.2 µg CB-MNP/104 cells and high = 28.8 µg CB-MNP/104 cells). After magnetic separation, 

labelling efficiency was measured by counting the cells retained by the magnet compared to 

the total number before the incubation. After 30 minutes of incubation with CB-MNP, >80% 

of the cells were successfully magnetized at all three tested concentrations (low=82.7±7.9%, 

medium=85.5±4.0%, high=85.0±2.8%, p not significant for all comparisons), indicating that 

the labelling conditions were saturating in this range. Cells were then allowed to adhere to 

plastic at 37°C for 24 hours. Labelling was clearly visible under transmitted light and it did 

not affect the morphology and the adherence properties of the cells. CB-MNP formed 

macroscopic aggregates, which appeared mainly localized on the cell membrane at this stage 
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(Figure 2B, red arrows). Interestingly, CB-MNP that were not associated with cells could be 

seen to form much smaller aggregates (Figure 2C, white arrows), suggesting a reduced 

propensity for spontaneous aggregation. A cytotoxicity test was performed 24, 48 and 72 

hours after labelling. Viability was always close to 99% with all CB-MNP doses at all time-

points and did not differ from that of unlabelled control MSC (Figure 2D). Taken together, 

these results indicate that a 4-fold range of CB-MNP doses allowed rapid and efficient 

magnetization of human BMSC without signs of cytotoxicity. 

 

Effect of magnetic labeling with CB-MNP on MSC proliferation 

After labelling with the different CB-MNP doses and magnetic separation, BMSC were 

plated at low density to measure the possible effects of CB-MNP on active cell proliferation. 

Before reaching confluence the cells were detached and counted (Passage 1), re-plated at low 

density and counted again after a further passage to determine the number of population 

doublings (Passage 2). Proliferation was slower at the second passage compared to the first, as 

primary BMSC are well-known to gradually reduce their doubling time over the first few 

passages in culture [29,36]. However, no significant differences were found in the number of 

doublings per day between the different CB-MNP doses and in comparison with control 

conditions, at both passages (Figure 3), indicating that CB-MNP labelling did not interfere 

with BMSC adhesion and proliferation capacity. 

 

Adipogenic and osteogenic differentiation potential of BMSC after CB-MNP labelling 

To determine the effects of labelling with the different CB-MNP doses on BMSC 

differentiation potential, after magnetic separation cells were expanded on tissue culture 

plastic for one passage and then treated with adipogenic or osteogenic differentiation-

inducing factors. 
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Under adipogenic conditions, both control and CB-MNP-labeled MSC generated mature 

adipocytes (Figure 4A), characterized by mature lipid vacuoles revealed by Oil Red O 

staining. Quantification of the amount of lipid deposition after Oil Red O extraction showed 

that differentiation of cells labelled with all CB-MNP concentrations was improved by about 

30% compared to that of unlabelled control BMSC (Figure 4B). 

Following osteogenic stimulation, BMSC differentiated efficiently under all conditions, as 

evidenced by the production of Alizarin Red-positive calcium deposits in vitro (Figure 5A). 

Since Alizarin Red staining provides only semi-quantitative results, osteogenic differentiation 

was precisely measured by biochemical quantification of the deposited calcium after lysis of 

the cell layers, revealing that labelling with all three doses of CB-MNP significantly increased 

osteogenic differentiation by more than 2-fold compared to control naïve cells (Figure 5B). 

 

Rapid magnetization of BMSC by CB-MNP 

In any biomedical or biotechnological application involving the use of MSC, it is desirable 

to minimize the duration of the labelling procedure without compromising the efficiency of 

the whole operation. Therefore, in order to determine the minimum necessary duration of 

labelling, BMSC were incubated with the lowest of the three previously tested doses of CB-

MNP (7.2 µg/104 cells), since this already ensured the maximum labelling efficiency and the 

percentage of magnetized cells was measured after incubation for 5, 15 and 30 minutes and 

compared with the same dose of non-functionalized PAA-MNP to determine the effect of the 

dendron C-Gen3K(CB)16. As shown in Figure 6, labelling with PAA-MNP led to a 

magnetization efficiency of 27.9±10.9% after 5 minutes of incubation, which did not improve 

with longer labelling times up to 30 minutes (21.3±12.1% and 23.4±6.8% for 15 and 30 

minutes respectively, p=n.s.). However, CB-MNP could efficiently magnetize already 

66.2±14.4% of cells with only 5 minutes of incubation and labelling efficiency increased to 

79.0±6.7% and 83.7±6.8% after 15 and 30 minutes respectively. Therefore, functionalization 
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with C-Gen3K(CB)16 led to an increase of 2.4-fold in the BMSC magnetization efficiency by 

PAA-MNP (p<0.001) with an incubation time as rapid as only 5 minute. 

 

Effect of CB functionalization on PAA-MNP internalization 

In order to determine the fate of MNP after cell labelling, MSC were incubated with the 

lowest dose (7.2 µg/104 cells) of CB-MNP or PAA-MNP for 5 and 30 minutes and the 

localization of MNP was analysed by confocal microscopy and transmission electron 

microscopy (TEM) after adhesion to coverslips, washing of unbound particles and fixation 

(overnight for confocal analysis and 6 hours for TEM). For confocal microscopy, the cell 

membrane was marked by immunostaining for the BMSC surface marker CD90 (in red in 

Figure 7), while MNP were visualized in the green channel taking advantage of the intrinsic 

property of iron-containing MNP to reflect fluorescent light. Both types of MNP could be 

clearly seen on the internal side of the BMSC cell membrane in the orthogonal projections of 

confocal z-stacks. However, while rarely some PAA-MNP clusters could be observed also 

attached to the cell surface outside the membrane, possibly in the act of being internalized 

(Figure 7B), functionalized CB-MNP appeared almost exclusively internalized (Figure 7A). 

To more rigorously determine how CB functionalization may affect the cell binding and 

internalization processes, samples were analysed by TEM (Figure 8). After incubation for 

either 5 or 30 minutes, both kinds of MNP were visible inside cytoplasmic vacuoles as well as 

in extracellular aggregates (arrowheads and arrows, respectively, in Figure 8A-E). However, 

in agreement with the confocal results, cells treated with CB-MNP showed smaller and less 

dense extracellular aggregates than those labelled with non-functionalized PAA-MNP. The 

vacuoles containing MNP aggregates were identified as early endosomes because of their 

electron-clear inner volume. Apart from the increased number of vacuoles, cells labelled with 

both kinds of MNP did not show any ultrastructural signs of cytotoxicity, as the morphology 

of the nucleus, mitochondria, Golgi apparatus and endoplasmic reticulum was normal and 
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similar to that of unlabelled control BMSC. The size and the number of intracellular MNP 

aggregates were quantified. As shown in Figure 8F, the size of internalized aggregates was 

quite variable, but on average it was similar between CB- and PAA-MNP after 5-minute 

incubation. However, aggregates of non-functionalized PAA-MNP became significantly 

larger after 30 minutes of incubation, whereas those of functionalized CB-MNP remained 

smaller. Further, labelling with CB-MNP led to a much greater number of internalized 

aggregates per microscopic field than non-functionalized PAA-MNP after incubation for both 

5 and 30 minutes (3- and 6-fold more, respectively; Figure 8G). Taken together, these data 

suggest that carboxybetaine dendron functionalization significantly improved the efficiency 

of MNP adhesion to cell membrane and their subsequent internalization in the form of many 

small aggregates. 
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DISCUSSION 

The present work describes a novel approach for the magnetization of multipotent 

mesenchymal progenitors based on the combination of: a) superparamagnetic nanoparticles 

functionalized with a hyperbranched dendron coating, exposing a highly hydrophilic 

carboxybetaine residue and designed for efficient interaction with the glycocalyx on cell 

membranes; and b) an optimized protocol for cell labelling in suspension, avoiding the step of 

adhesion culture. The combination of these two elements enabled the rapid (15 minutes) and 

efficient (>80%) magnetization of primary human BMSC with no impairment of their in vitro 

viability and proliferation, while their differentiation potential was even improved. 

Magnetization of cells has been long considered as a suitable approach towards their 

separation, particularly in the field of cytofluorimetry. Cell sorting is achieved by the 

coupling of micron-size magnetic beads to antibodies that are able to bind specific cell surface 

molecules and separate the expressing cells from a heterogeneous sample through magnetic 

forces [37]. However, such approach is not suitable for other biotechnological and biomedical 

applications where, for example, magnetic forces can be used to manipulate heterogeneous 

progenitor populations, whose surface marker composition is only partially known, such as in 

tissue engineering/regenerative medicine applications. Therefore, the availability of super-

paramagnetic particles of nanoscale size that can be internalized by most cells and that are 

activated only in the presence of a magnetic field have opened new avenues for the 

exploitation of magnetism in a number of biotechnological and biomedical applications. This 

new technological approach has also expanded the possibilities for non-invasive analysis of 

progenitor fate after their in vivo delivery, such as by magnetic resonance imaging (MRI) 

[38]. While MNP internalization enables the magnetization of any type of cells, concerns still 

remain about their potential cytotoxic and genotoxic effects. Towards this end, the coating of 

MNP with biocompatible materials has been proposed; these mainly include synthetic and 

natural polymers. However, the selection of these polymers has been rather based on the 
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demonstration of their biocompatibility in other applications and no reported study has been 

based on an ad hoc design of coatings where the polymer can be exploited to enhance not 

only the MNP biocompatibility, but also their internalization process. 

In this study a unique functionalization approach has been designed that capitalises on the 

availability of highly homogeneous MNP coated with a 2-nm layer of poly(acrylic acid) [39]. 

The presence of the exposed carboxylic groups of the polymer at the surface of this type of 

MNP was exploited to covalently graft a novel class of hyperbranched poly(epsilon-lysine) 

peptides. These peptides, called dendrons, present sixteen uppermost molecular branches, all 

functionalised with carboxybetaine, a highly hydrophilic amino acid derivative [40]. The 

successful synthesis of a highly purified dendron was proven both by the single HPLC elution 

peak released at 14min and by the mass spectrometry showing peaks matching the multiples 

of the theoretical molecular weight of the dendron. 

As expected, the thin poly(acrylic acid) coating of the MNP could not be detected by FTIR 

as its thickness was below the sensitivity limit of the instrument. The weak, near-to-

background footprint of the branched peptide could be however detected when dendron-

functionalised MNP were analysed. In particular, the wavelength range between 1000 and 

1600 cm-1 showed at least 4 peaks that can be attributed to the primary and secondary amines 

present both in the poly(epsilon lysine) dendron core and in the terminal carboxybetaine [41]. 

These results were also corroborated by the presence of a large peak in the region ranging 

between 3000 and 3500 cm-1 that can be attributed to both the presence of amino groups and 

hydroxylic groups of water molecules bound by the highly hydrophilic carboxybetaine when 

exposed to air humidity [40]. The increased hydrophilicity of functionalized CB-MNP was 

also confirmed by work published elsewhere showing that the measured hydrodynamic radius 

increased from 18.46 nm to 33.37 nm after functionalization with dendrons (Meikle et al, 

manuscript submitted). 
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The cytotoxicity assay showed that the internalization of dendron-functionalized magnetic 

nanoparticles did not induce any apoptotic or necrotic effect, with excellent cytocompatibility 

(99% viability). The lack of toxicity was further corroborated by the TEM analysis, showing 

no alteration of the cell ultrastructure compared to the controls, and by the analysis of 

proliferation, showing similar population doublings between the magnetised cells and the 

controls. These results are in agreement with those reported by Wang et al. showing that 

functionalisation with carboxybetaine could greatly reduce the cytotoxicity of poly(amido 

amine) (PAMAM) dendrimers [42]. It should be noticed that cytocompatibility of CB-MNP 

was not decreased despite the fact that dendron functionalization greatly increased the 

labelling efficiency and the amount of nanoparticles that were internalized by each cell (Fig. 

8F-G). The amounts of nanoparticles used in this study align with the literature [35] and it 

should be underlined that these doses could efficiently achieve levels of cell magnetization 

suitable for biomedical applications requiring cell drive by magnetic forces, such as rapid 

isolation and loading onto tissue engineering scaffolds: in fact, we analysed only the cells that 

could be separated by an external magnet against the force of gravity, so that insufficiently 

labelled cells would be eliminated. Further, labelling efficiency was similar across an 8-fold 

range of CB-MNP doses, despite a very short incubation time of 30 minutes, indicating that 

even lower doses could be investigated in order to maximize safety in future in vivo studies. 

The lack of any obvious adverse effect was corroborated by the analysis of BMSC 

proliferation that showed the typical, progressive increase in doubling time upon 2 passages 

[36], but with no difference in comparison with control non-labelled BMSC. 

It was interesting to observe that both adipogenic and osteogenic in vitro differentiation 

were significantly enhanced in CB-MNP-labelled cells in comparison with non-magnetized 

control BMSC. Although it is not easy to postulate what could be the reason for this effect, it 

is possible to speculate about a possible mechanism. In fact, CB-MNP treatment caused 

labelled cells to more easily assemble in aggregates that required more forceful disruption for 
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e.g. cell counting and, since in vitro differentiation of BMSC is favoured by close cell-to-cell 

contact, the formation of such multicellular clusters could enhance the degree of BMSC 

differentiation, even when seeded at the same initial density. 

The coupling of MNP with dendrons specifically designed to enhance interactions with the 

cell glycocalyx led to a significant increase in the efficiency of magnetization (80% vs 20%) 

as well as to a significant reduction of the time required, with 60% of the cells being 

effectively magnetized in only 5 minutes of incubation in suspension and the plateau value of 

80% being reached already after 15 minutes. Apart from the greater affinity for the negatively 

charged glycocalix on the cell surface provided by the carboxybetaine moiety, causing more 

rapid and more stable association with the cell membrane and leading to a more efficient 

binding and internalization, another property of dendron functionalization may contribute to 

explaining these results. In fact, a comparative analysis showed that, although both types of 

MNP could form aggregates of similar sizes, dendron-functionalised MNP within aggregates 

were less densely packed (see high-magnification right panels in Figure 8B). Dynamic light 

scattering data published elsewhere have shown that the functionalisation of the surface with 

dendrons improves their polydispersity index (Meikle et al., manuscript submitted). This 

would lead to the formation of more aggregates containing less MNP for equivalent total 

doses, which is expected to increase the collective surface area of the aggregates, hence 

favouring its interaction with the cell surface. TEM showed that this process was not 

accompanied by the formation of a clathrin layer around the invagination areas of the 

plasmalemma (Figure 8) thus suggesting that for both types of MNP internalization was 

driven by macropinocitosis [43]. Such a mechanisms of internalization would emphasise the 

important role played by the glycocalyx in the early interaction of the MNP. 

Primary human BMSC are widely investigated in regenerative medicine, both in pre-

clinical research and in clinical trials, because of their recognized potential for differentiation 

in multiple mesenchymal lineages, as well as favourable immunomodulatory properties and 
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paracrine effects that can stimulate endogenous repair mechanisms [44]. However, their stem 

cell properties are easily lost during culture and their ability to regenerate tissue in vivo is 

rapidly jeopardized by in vitro expansion [28,29,36]. Therefore, it is desirable to minimize in 

vitro progenitor manipulation before in vivo delivery in order to maximize their therapeutic 

benefit. To this end, the intraoperative production of tissue-engineered grafts, i.e. the isolation 

of multipotent progenitors from a patient, their seeding on an appropriate scaffolding material 

and their re-implantation in a single-step procedure directly in the operating room, is an 

actively pursued strategy [45,46]. Magnetic scaffolds have been recently developed [47,48] 

and indeed magnetization can be exploited to rapidly and consistently drive cells prior to their 

transplantation. As a perspective in this direction, which should be further investigated in 

future experiments, the results we presented here offer a potential strategy for intraoperative 

magnetic labelling of BMSC without the need for plastic adhesion culture. 

CONCLUSIONS 

The present study shows how the surface functionalization of poly(acrylic acid)-coated 

MNP with a highly branched poly(epsilon-lysine) dendrimer can increase the magnetization 

of human BMSC in a short time when cells are in suspension. The design of the dendron 

allowed the high-density exposure of a highly hydrophylic moiety (carboxybetaine) to the 

MNP surface that is likely to favour the interaction with the cell glycocalyx. While 

cytotoxicity, proliferation and differentiation tests showed no significant adverse effects of 

dendron-functionalised MNP, the presence of the dendron showed a clear improvement in the 

magnetisation process of the cells when in suspension and ultrastructural studies showed how 

their localization in relatively low endosomes did not alter the inner organization of the 

cytosol. These findings provide evidences that ad hoc design of MNP surface 

functionalization can indeed ensure a safer, more reliable and more effective magnetization of 

human BMSC as a means of their manipulation in biotechnological and biomedical 

applications. 
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FIGURE LEGENDS 

Figure 1. MNP design and characterization 

 (A) Schematic representation of PAA-MNP and CB-MNP design and production; (B-C) 

FTIR characterization of CB-MNP (B) and PAA-MNP (C): red arrows indicate the typical 

amine I and amine II peaks of the dendrons. 

Figure 2. BMSC labelling with CB-MNP and dose-dependent cytotoxycity 

(A) BMSC labelling procedure: cell suspensions were aliquoted in a 50mL tube with CB-

MNP (STEP1); cell suspension was incubated at 37°C on an orbital shaker for different times 

(STEP2); magnetized cells were isolated applying an external magnetic field for 10min 

(STEP 3); magnetized cells were seeded on tissue culture dishes for further evaluations 

(STEP 4). (B-C) Representative images of CB-MNP-labeled BMSC with large amounts of 

nanoparticles visible on cell membranes (red arrows in B) and much smaller aggregates 

visible in the culture dish not associated with cells (white arrows in C). (D) Cytotoxicity was 

assayed 24, 48 and 72 hours after labelling with three different concentrations of CB-MNP 

(low = 21.6 µg/ml for 3 x 104 cells; medium = 43.2 µg/ml for 3 x 104 cells; high = 86.4 µg/mL 

for 3 x 104 cells); n=3; p=n.s. for all comparisons. 

Figure 3. In vitro BMSC proliferation after labelling with CB-MNP 

Proliferation speed was measured as the number of population doublings/day over 2 passages 

for control BMSC (not magnetized, CTRL) and for BMSC labelled with the low, medium and 

high concentrations of CB-MNP; n=3, p=n.s. for all comparisons. 

Figure 4. In vitro adipogenic differentiation of CB-MNP-labelled BMSC. 

(A) Representative fields of Oil Red O staining and (B) quantification of Oil Red O staining 

of BMSC cultured in control (Ctrl) or adipogenic medium (Adipo), for control BMSC (not 

magnetized, Ctrl) and for BMSC labelled with the low, medium and high concentrations of 
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CB-MNP. Results are expressed as the mean ± SEM and normalized to the adipogenically 

differentiated control BMSC; n=3; ** p < 0.01 *** p < 0.001. Size bar = 200 µm. 

Figure 5. In vitro osteogenic differentiation of CB-MNP-labelled BMSC 

(A) Representative fields of Alizarin Red staining and (B) quantification of total calcium 

deposited of BMSC cultured in control (Ctrl) or osteogenic medium (Osteo) for control 

BMSC (not magnetized, Ctrl) and for BMSC labelled with the low, medium and high 

concentrations of CB-MNP. Results are expressed as the mean ± SEM; n=3; *** p < 0.001. 

Size bar = 200 µm. 

Figure 6. CB functionalization allows fast and efficient BMSC labelling 

Quantification of the percentage of labelled BMSC after incubation with CB-MNP or PAA-

MNP for 5, 15 or 30 minutes. Results are expressed as mean ± SD; n=3; *** p < 0.001. 

Figure 7. Confocal microscopy analysis of MNP cellular localization after labelling 

Representative z-stack images of BMSC after 30 minutes of labelling with CB-MNP (A) or 

PAA-MNP (B). BMSC were stained with anti-CD90 antibody (red) that marks the cell 

membrane, while nanoparticles were visualized by autofluorescence in the green channel. 

Left panels show a 3D reconstruction of all the confocal optical sections and the white square 

identifies the region magnified on the orthogonal projections on the right panels; size bars = 5 

µm. 

Figure 8. TEM analysis of MNP internalization 

(A-E) Representative transmission electron microscopy images of naïve non-magnetized 

BMSC (A) or after labelling with CB-MNP (B-C) or PAA-MNP (D-E) for 5 or 30 minutes; N 

= nucleus, Cy = cytoplasm, scale bar = 2µm. Arrows indicate extracellular MNP aggregates; 

arrowheads indicate nanoparticles that have been internalized in vacuoles/endosomes. The 

white squares identify the regions magnified on the right panels. (F) Quantification of the area 

occupied by PAA-MNP or CB-MNP in each intracellular vacuole after 5 or 30 minutes of 
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labelling. (G) Quantification of the number of intracellular vacuoles/image containing PAA-

MNP or CB-MNP after 5 or 30 minutes of labelling. 
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