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Abstract 

This article reports measurements of the concentration distribution of two model 

proteins adsorbed from aqueous solution by two different high surface area carbons, 

using small angle neutron and X-ray scattering (SANS and SAXS). The proteins 

investigated were bovine serum albumin (67 kDa), and bovine pancreatic trypsin 

inhibitor (BPTI), also known under the name aprotinin (6.5 kDa). The two carbon 

substrates were C1, an open structured carbon aerogel derived from a resorcinol–

formaldehyde polymer aerogel, and C2, a commercial nanoporous carbon from 
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MAST Carbon (UK). Although both C1 and C2 possess a high proportion of pores 

that are either closed or inaccessible to low temperature nitrogen vapour, the size 

distribution of the accessible pores is broad enough to accommodate BSA molecules. 

In C1, which is hydrophobic, the BSA molecules migrate individually into pores that 

are compatible with their size, whereas BPTI forms clusters having the same size as 

BSA. With C2, the hydrophilic internal surface limits the adsorption efficiency. The 

strong adhesion of proteins to hydrophilic surfaces prevents diffusion of either 

molecule into the micro- and nanopores. In this sample both BSA and BPTI form 

large clusters. These observations have relevance in biomedical applications, such as 

haemoperfusion or as a medium for protein storage. 

 

1. Introduction 

 The way in which biomolecules adsorb and migrate on solid surfaces, notably 

on porous substrates, is the focus of converging interests from investigations into 

protein conformation, [1-4] physical adsorption processes,[5,6,7] and medical 

applications.[8,9] Activated carbons are a class of porous substrates that have been 

widely employed for many centuries as general adsorbents. They are also invaluable 

as adsorbents of small molecules in numerous applications related to public health, 

such as drinking water purification, personnel protection, etc. More recently their 

range of uses has extended to medical applications, notably for purification of bio-

fluids. Treatment of patients suffering from acute poisoning, drug overdose, hepatic 

coma, or metabolic disturbances removes toxins from the bloodstream by circulating 

the patient’s blood through an adsorbent, usually activated carbon or resins. Such 

haemoperfusion procedures extract small to medium sized molecules that tend to be 

more difficult to remove by conventional haemodialysis. The adsorbent material may 
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be coated or immobilized to prevent fine particles from entering the patient's blood. 

[8,9] In such applications the size of the adsorbent pores relative to that of the target 

toxin is of critical importance, as many toxins are proteins of a size that excludes 

them from micropores. Carbons with larger pore size are required.  

 Adsorption techniques yield overall information on the amount of a target 

molecule adsorbed in a substrate, but say little about how the molecules are 

distributed inside it. By contrast, small angle X-ray scattering (SAXS),[10] and more 

particularly small angle neutron scattering (SANS),[11,12] are non-destructive 

techniques that can detect the spatial structure and organisation of molecules adsorbed 

inside a porous medium.[5] Such studies are of particular interest for biomolecules, 

where the conformation is not necessarily the same as in solution. In applications 

involving extraction and storage of proteins, for example, little is known of how 

associative behaviour or the uptake and release mechanisms affect the mobility of the 

adsorbate and the retention capacity of the porous medium.[5] For a fuller 

understanding of how a model protein is adsorbed in porous carbons of different pore 

size distribution, different surface chemistry and different hydrophobicity, both 

approaches are desirable. For clarity, this account is separated into two parts: the first 

part is a companion article [13], which describes the macroscopic adsorption 

measurements. The present paper focuses on the scattering results.  

 

2. Experimental  

2.1. Materials  

 Two porous carbons were studied: a carbon aerogel (C1), obtained from the 

resorcinol-formaldehyde polycondensation reaction [12,14], and a commercial 

medical grade porous carbon prepared from phenol formaldehyde resin (C2) (MAST 
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Carbon, UK) [15-17]. Neither sample C1 nor sample C2 was coated. The probe 

proteins were bovine serum albumin (BSA, molecular weight 66.1 kDa) supplied by 

Calbiochem, and bovine pancreatic trypsin inhibitor (BPTI, molecular weight 6.5 

kDa), also known under the name aprotinin (Sigma-Aldrich). The solubility of BSA 

in deionized water is 40 g/L.1 BPTI is also soluble both in H2O and D2O at 20ºC (>30 

g/L).[18] For the SANS measurements stock protein solutions at 10 g/L were 

prepared on site at the Institut Laue-Langevin in 99.7% D2O with no added buffer. 

The pH of the stock solution, measured with a pH meter, was 6.9. The value of pD is 

accordingly pD= 6.9+0.4= 7.3.[19] For the SANS measurements on BSA in acid 

conditions, 7.5 mL of the stock solution and its pH were adjusted to ~2.8 (pD=3.2) by 

adding 10 μL of a tenfold diluted solution of DCl in D2O.  

 

2.2. Adsorption measurements 

 The principal characteristics of the carbons obtained from the nitrogen 

adsorption isotherms at -196 °C [13] are reproduced in the tables below. Table 1 lists 

the surface area SSAS measured in the present work by SANS and SAXS, together 

 

Table 1. Measurements from SAS, nitrogen adsorption and pycnometry [13] 

Sample 
SSAS

a SBET  Vtot V0.95
b V  dC 

c  
pH 

m2/g cm3/g g/cm3 

C1 1784 847 1.69 0.80 0.34 0.075 8.6 

C2 2630 1248 1.27 0.96 0.50 0.44  6.6 

a see Supplementary Information, b V0.95: pore volume at p/p0=0.95; c macroscopic 
density from He pycnometry. 

                                                           
1 https://www.sigmaaldrich.com/content/dam/sigma-
aldrich/docs/Sigma/Product_Information_Sheet/a4919pis.pdf (retrieved 15/04/2016) 
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with the apparent surface area SBET calculated from the BET model [20]. The total 

pore volume (VTOT) was derived from the amount of vapour adsorbed at p/p0 1, 

assuming that the pores are then filled with liquid adsorbate. Similarly, the pore 

volume was determined at p/p0 = 0.95 (V0.95), just before the sharp increase of the 

isotherms. The micropore volume V . was determined using the Dubinin-Raduskevich 

(DR) model [21]. The pore size distribution (PSD) was calculated using quenched 

solid density functional theory (QSDFT) [22]. Slit pores were assumed. Table 2 

shows the incremental surface areas and volumes deduced from these models. 

 

Table 2. Incremental surface area S=SBET-Sd and pore volume V=Vtotal-Vd  

 

BSA BPTI 

C1  C2  C1  C2  

unbuffered 

pH 6.9 
pH3 unbuffered pH 6.9 

limiting pore 

widtha (Å) 
40 40 40 24.2 24.2 

S (m2/g) 203 203 105 279 125 

V (cm3/g) 1.20 1.20 0.87 1.41 0.80 

a smallest effective dimension of the free protein, or cluster (Supplementary 

Information) 

 

2.3. Methods: SANS and SAXS 

 The SANS measurements were made on the D11 instrument at the Institut 

Laue Langevin, Grenoble, at incident wavelength =7.8 Å, with wavelength spread 

/ =0.1. The carbon samples were powdered and placed in contact with either D2O 
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or the protein solution in D2O. Both protein solutions were prepared in 99.7% D2O at 

concentration 10 g/L, without buffer or added salt. The conditions applied here were 

identical to those in the uptake measurements in the saturation range of the 

isotherms.[13] After incubation overnight prior to the measurement the slurries were 

transferred to flat quartz cells of 2 mm path length. The dry carbon powders were 

contained in 1 mm quartz cells. 

 Since the intensity of the amorphous scattering peak of water at 2.0 Å-1 

defines the amount of water present in the samples, measurements at wider angles 

were also made on the D16 instrument at wavelength 4.74 Å. For this instrument, the 

samples were contained in cylindrical low boron content glass cells of outer diameter 

5 mm. Corrections for incoherent scattering were made using the expression [23] 

I(q)= Is(q)/Ts – Ib(q)Ts(1-Tb)/[Tb(1-Ts)]    (1) 

where I(q), Is(q) and Ib(q) are the normalized scattering intensities of the total signal, 

of the sample and of the background, respectively, and where Ts and Tb are the 

corresponding transmission factors. (Expression (1) is recommended in SANS 

measurements, where attenuation of the incident beam occurs through scattering, in 

contrast to SAXS, where the attenuation is dominated by absorption.) Intensities were 

normalised with respect to a standard detector calibration supplied by the Institut 

Laue-Langevin.  In Eq. 1, q is the transfer wave number q=(4 / )sin( /2),  is the 

incident wavelength and  is the scattering angle.  

 SAXS measurements, made at the French CRG beam line BM02 of the 

European Synchrotron Radiation Facility, Grenoble, were used as a reference to 

estimate the incoherent neutron scattering intensity from the dry carbon samples. 

 

3. Results and discussion 
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3.1. Bulk protein solutions 

3.1.1. BSA 

 The conformation of BSA is sensitive to external conditions such as pH 

[24,25]. Below pH 4.7, the isoelectric point of BSA,[2] the electrostatic interactions 

force the molecule into an extended shape. In this investigation the measurements on 

BSA were conducted at pH 6.9, as well as at pH 2.8.  

 Figure 1 shows the SANS response of bulk solutions of BSA in D2O at pH 

6.9. In dilute solutions of neutral polymers the low q response can usually be 

approximated by the Debye expression for the scattering intensity from particles of 

radius of gyration RG, 

I(q)=I(0) exp[-(qRG)2/3]                          (2) 

 

Figure 1. SANS response of BSA in D2O at pH 6.9, after subtraction of the D2O 

signal. The maxima are due to residual electrostatic repulsion in the salt-free 

solutions. Inset: Guinier plot of the SANS response from the 10 g/L and 2.2 g/L 

solution of BSA (lower data set). In both cases the radius of gyration is RG = 27.6 Å.  
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 The difference between the experimental curves in the intermediate wave 

vector range q of Fig. 1 and the monotonic variation expressed in Eq. 2 stems from 

electrostatic repulsion between the molecules. The repulsion gives rise to interparticle 

structure in the form of a correlation peak, the position of which, qmax, defines the 

mean distance of separation between the proteins, d≈2 /qmax. When d is larger than 

the outer diameter of the coil 2R (i.e., non overlapping conditions), qmax varies with 

the concentration c as c1/3[26]. (For simplicity, in this paper we represent the protein 

shape as a solid sphere, for which R=(5/3)1/2RG.) With decreasing concentration the 

correlation peak disappears and the response in the region qRG<1 reverts to Eq 2. At 

very low q, additional scattering may arise due to a small fraction of larger clusters in 

the solution. 

 To minimise the principal effects of the interparticle structure [27, 28], and for 

consistency with the measurements of the proteins adsorbed inside the carbons, we 

apply Eq. 2 to the data in the q-range above qmax taken from the region 1≤ qRG ≤2. 

The inset of Figure 1 displays the data in the Guinier representation log[I(q)] vs q2. 

This representation yields acceptable fits both for the 10 g/L and the 2.2 g/L BSA 

solutions. The identical values obtained for the two concentrations, RG=27.6 Å, are 

also consistent with measurements reported in the literature [29– 31]. If we assume 

the globular BSA molecules to be uniform spheres of external radius R, then R=35.6 

Å, which, in spite of the oversimplification of the uniform sphere model, is in 

reasonable agreement with the measured hydrodynamic radius of BSA, RH =34.8 Å. 

[32] We recall that in measuring RG the range of q in the Guinier approximation is 

generally stated to be qRG  ≤ 1. In practice, the range of validity depends on the form 

factor P(q) of the particle, and can extend well beyond this limit. [33] To access the 

information below the correlation peak, we adopt the separability approximation for 
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the scattered intensity  

I(q)= S(q) P(q)     (3) 

together with the expression for the structure factor due to Posselt et al. [34] 

S(q)=1/{1+3p[sin(qD)-qDcos(qD)]/(qD)3}    (4)  

where p is a parameter that describes the strength of the interparticle repulsion and D 

is the mean interparticle distance. With D=140 Å and 232 Å respectively for the 10 

g/L and 2.2 g/L BSA solutions, the Guinier representation of P(q)= I(q)/S(q) yields an 

identical value for RG in the region 0.24≤qRG≤1 to that in the region 1≤qRG≤2, shown 

in the inset of Figure 1.  

 The extrapolated scattering intensity I(0) in Eq. 2 yields MW, the weight-

average molecular weight of the polymer. For a dilute solution of polymers of mass 

MW at concentration c, I(0) is defined by 

I(0)=K2cMW/NA    (5) 

where K2=( VP)2 is the neutron scattering contrast between the polymer and the 

solvent, and NA is Avogadro’s number. VP is the dry molar volume of the protein, and 

=( D2O- BSA)    (6)  

is the difference in scattering length density between the protein and the surrounding 

D2O.  

According to Nossal et al. [30], for BSA in D2O at pH=5.53, VP =0.734 cm3/g, 

and the value of 2 is 

pH 5.53:             2=13.0 1020 cm-4     (7) 

With this value of 2 and the extrapolated intensity I(0)=0.85 cm-1 from the inset of 

Figure 1, the apparent molecular weight for the BSA in the 10 g/L solution is 

Mw = 73 kDa      (8a) 

Similarly, for the solution at 2.2 g/L, where I(0)=0.181 cm-1, Eq. 5 yields  
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Mw =71 kDa      (8b) 

These estimates of Mw are sensitive to the scattering length density BSA. The 

discrepancy between the results in Eq. 8 and the known molecular weight of BSA, 

66.1 kDa, reflects the change in BSA due to ionisation of the protein when the pH 

exceeds the pKa of the acid groups. (BSA possesses two pKa values, 5.7 and 6.8 

[25].) In the protein solution with D2O, exchangeable protons are replaced by 

deuterium, and consequently ionisation of the dissolved BSA involves the loss of a 

deuteron and hence a reduction in the value of BSA. This change increases the 

contrast 2=( D2O- BSA)2 with respect to the surrounding D2O. The resulting 

overestimate of Mw of BSA at pH 6.9 in Eq. 8 can be brought into line with the known 

molecular weight by resetting 2 to  

pH 6.9:        2 = 72 13.0 1020/66.1 

     = 14.16 1020 cm-4      (9) 

These measurements incidentally imply that in solution the BSA molecules are 

present as monomers. 

 At low pH, both the state of ionisation and the conformation of BSA in 

solution differ from that prevailing at pH 6.9. Earlier measurements by SANS [31] 

and birefringence [32] showed that at low pH the shape of BSA is elongated.[35, 36] 

This elongation is the consequence of the protonated (/deuterated) state of the protein 

that occurs already at moderately low pH, which imposes a proxy polyelectrolyte 

character on the molecule. The flexibility of the BSA molecule, which stems from its 

high degree of hydration, allows its conformation to accommodate when the ionic 

environment is modified.[37] Figure 2 shows the SANS response of BSA in solution 

at pH 2.8. The increased radius of gyration (Fig. 2 inset) reflects the elongated 

conformation. The stretched cylindrical shape gives rise to the reduced slope in the 
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region 1/L<q<1/r0, where L is the length of the cylinder and r0 its radius, and to the 

shoulder at q≈0.1 Å-1. The latter feature indicates that the cross-sectional radius r0 of 

the cylinder is approximately 1/q≈10 Å.  

 

Figure 2. SANS response of 10 g/L solution of BSA in D2O at pH 2.8, after 

subtraction of the D2O signal; inset: Guinier plot of data from the range 

0.001≤q2≤0.002 Å-2.  

 

 The Guinier plot in the inset of Figure 2 yields RG = 39.9 Å and I(0)=0.685 

cm-1 for the extrapolated intensity. With the contrast factor of Eq.6, the resulting mass 

is Mw = 58.9 kDa, i.e., lower than the known molecular weight. Below the isoelectric 

point of BSA (pH 4.7) [2], however, the ionisation that occurred at high pH is now 

reversed: at pH 2.8 deuterons recombine with the acidic groups, thereby enhancing 

BSA and decreasing ( D2O- BSA)2. Correction for deuteron condensation on the BSA 

at pH 2.8 accordingly requires that 2 be reset to 

pH 2.8:   2=58.9 13.0 1020/66.1=11.6 1020 cm-4   (10)  
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3.1.2. BPTI 

For the lower molecular weight protein BPTI, all SANS measurements were made at 

pH 6.9. The high isoelectric point (≈10.5) of this molecule [38] implies that in 

physiological pH conditions its degree of ionization is small. As observed also by 

Appavou et al. [39], no sign of a correlation peak is visible in the signal from the 

solution (Figure 3), confirming the absence of ionization of this molecule in solution. 

The radius of gyration (Fig. 3 inset), RG= 9.8 Å, is somewhat smaller than that 

reported in ref. [39], where buffer solutions were employed. As the present samples 

were prepared without buffer, however, adsorption of ions from the solution does not 

occur and the conditions governing the hydration layer can be different. These 

measurements thus represent the undecorated BPTI molecule. It is notable that, just as 

with BSA, the q range in the Guinier representation over which the value of RG 

remains constant extends up to qRG =2. 

 

Figure 3. SANS response from a 10 g/L BPTI solution in D2O. Inset: Guinier plot 

from the low q region. This system displays no correlation peak.  

From the inset of Fig. 3, the extrapolated intensity for the 10 g/L solution is 

I(0)=0.0417 cm-1. Insertion of these values into Eq. 3 yields for the value of K  
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K= 2.03 1010 cm/g       (11) 

This lies close to the average of the range of K values listed in reference [39] 

observed during the pressure cycle in D2O. Table 3 summarizes the values of the 

contrast factor K for BSA and BPTI. 

Table 3: Neutron scattering contrast factor K= VP of proteins in D2O 

 

 

protein 

pH 6.9  pH 5.53   pH 2.8 
Acetic acid-D 

buffer 

(cm/g) 

this work [30] this work [39] 

BSA 2.76 1010 2.65 1010 2.50 1010 - 

BPTI 2.03 1010 - - 1.72-2.90 1010 

 

3.2. SANS measurements of protein solutions in the carbon matrices 

3.2.1. BSA 

 In the SANS measurements of the two nanoporous carbons in equilibrium 

with the D2O solutions of BSA (Figures 4 and 5), the scattering length density  of 

the D2O solvent approximately matches that of the signal from the carbon in the 

micropore (q > 0.3 Å-1) and mesopore size range (0.01< q < 0.3 Å-1). Since C and 

D2O are similar, the intensity I(q)= ( C- D2O)2S(q) is small, where S(q) is the structure 

factor of the carbon and ( C- D2O)2 is the contrast factor between the carbon and the 

D2O. At lower q (<0.01 Å-1), however, the signal of the carbons containing D2O alone 

displays strong residual scattering with power law behaviour of the form I(q) q-p, 

where the exponent is p=4.0 in C1, and p≈3 in C2. Power law responses with p≥3 are 

the signature of surface scattering [40,41]. The strong surface scattering feature of 

C1_D2O in Fig. 4 arises from a discontinuity in the contrast factor at an interface, i.e., 
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a layer between the carbon surface and the D2O where the value of  is smaller than 

C. This could either be a material layer with high proton density or a void layer 

resulting from incomplete wetting of the carbon by the D2O. The strongly 

hydrophobic surface of C1, as concluded from the water uptake isotherms [13], points 

to the latter explanation [40, 41]. Confirmation of this interpretation is found in Fig. 4, 

which shows how the SANS response changes when BSA is added to the solution: 

when the proteins adsorb on the walls of the larger pores, the discontinuity in the 

contrast factor ( C- )2 decreases between the carbon and the medium adjacent to the 

interface, and the surface scattering feature disappears.  

 

Figure 4. SANS response of carbon aerogel C1 with D2O alone (o), and same sample 

with D2O and BSA at pH 6.9 ( ). The flat signal at high q is the contribution from 

D2O. 

 

Carbon C2 in D2O alone also displays a steep slope in the low q range (Figure 

5), but its weaker power law slope (-2.95±0.1) lies at the threshold between volume 

scattering and scattering from very rough surfaces [41]. The low q responses of the 

samples containing BSA also differ qualitatively from those of sample C1: in this case 
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the protein signal adds to, rather than subtracts from, that of the carbon-water system. 

In C2, therefore, the contrast mismatch at low q is not the result of poor wetting, as in 

C1, where, in the contrast factor ( C- )2, ≈0. Instead, it reflects the presence of 

surface groups associated with protons, which lower the neutron scattering length 

density. The difference in surface composition of the two carbons is reflected both in 

the difference of their surface pH (Table 1), and in their water vapour isotherms [13]. 

C2 exhibits much higher water uptake throughout the isotherm. The surface of C2 is 

therefore more hydrophilic than that of C1. These observations are consistent with the 

substantially larger incoherent scattering intensity in the dry C2 sample (0.011 cm-1), 

an unmistakable indicator of higher hydrogen content.  

 

Figure 5. SANS response of sample C2 containing (o): pure D2O, and ( ): BSA in 

D2O. The signal from the bulk solution (10 g/L) of BSA in D2O (+) is shown for 

comparison. The D2O signal has not been subtracted from these responses. 

  

Figure 6 shows the scattering signals from BSA in carbon C1 and C2, after 

subtraction of the response from D2O. As in the insets of Figures 1-3, the data are 

plotted in the Guinier representation logI(q) vs q2. Comparison of the values of RG 
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obtained from the fits to the data in the region above qmax (q>0.01 Å-1) with those in 

solution indicates that in C1 at pH 6.9 BSA is present as a monomer, while in C2 the 

much larger radius of gyration is characteristic of aggregates.  

 

Figure 6. Guinier plots of the scattering intensity I(q) at pH 6.9 (after subtraction of 

the D2O signal) in the q-region above qmax: (a) BSA in the carbon aerogel C1; (b) in 

the MAST carbon C2. The extrapolated intensities of these curves are I(0)=0.24 cm-1 

for BSA in C1, and I(0)=5.0 cm-1 for BSA in C2. 

 

At pH 2.8, the situation is similar. In C1, BSA displays a region of exponential 

decay in the Guinier representation of Figure 7a with a slope corresponding to 

RG=24.9 Å, i.e., similar to that at pH 6.9, but notably smaller than in free solution at 

pH 2.8. Here again, however, the radius of gyration is consistent with BSA in the 

form of a monomer. In C2, by contrast, the SANS curve appears featureless (Figure 

7b), being dominated by the power law response at low q. The lower curve in Figure 

7b shows the same data after subtraction of the asymptotic power law curve of slope -

2.9. Two features are revealed, a broad maximum at q≈0.0065 Å-1, and a weak 

shoulder at q≈0.026 Å-1. The latter feature possesses a short region that can be 

analyzed in a Guinier representation (Figure 7c). The value found for RG, 41.8 Å, 
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however, is significantly larger than in C1. To determine whether this component is a 

monomer or an oligomer requires an estimate of its mass. 

 

a     b 

 

c 

Figure 7. a) Guinier plot of the scattering intensity I(q) of BSA at pH 2.8 in the 

carbon aerogel C1; the extrapolated intensity of the linear behaviour is  

I(0)=0.197 cm-1. b) Total intensity I(q) of BSA at pH 2.8 in carbon C2; lower curve: 

same data after subtraction of low-q asymptotic power law. c) Guinier plot of the data 

of BSA at pH 2.8 in carbon C2 in the region of the inflection at qmax=0.026 Å-1 in the 

difference curve of Figure 7b. 

 



 18 

To estimate the mass and aggregation number n of the BSA clusters in the 

carbon host we employ a model, based on the following assumptions. Protein clusters, 

each of mass Mc = nMW, are assumed to adsorb on the internal surfaces of the carbon 

in a random two-dimensional array, with a local order that gives rise to the correlation 

peak at qmax in the scattering pattern. With a triangular array of side 2 /qmax the 

number of clusters adsorbed on an area S of the sample can thus be evaluated, and 

hence the concentration of the proteins in the sample that contribute to the correlation 

peak. Thus 

c=Mc qmax
2 S dC f / [4 2( 3/2)]    (12)  

where dC is the density of the carbon powder and f its filling factor in the sample cell. 

Elimination of the concentration c from Eqs. 5 and 12 yields for the mass Mc of the 

clusters 

Mc=[2 NA/(Kqmax)] [ 3 I(0)/(2S f dC)]1/2     (13) 

Eq. 13 contains six parameters. K is determined for BSA either from Eq. 9 or 10, dC is 

listed in Table 1, while S is the incremental mesopore surface area available to 

particles of diameter 2R (Table 2). The filling factor f of the carbon particles in the 

carbon-water slurry is estimated by comparing the intensity of the characteristic 

scattering peak at 2.0 Å-1 from the water in the sample with that in pure D2O. For C1, 

the resulting value is f =0.26, while for C2, f=0.35.  

 Each of the six parameters in the above model is known with a precision of 

better than 10%. A larger uncertainty, however, is associated with the estimate of the 

available surface area S (Table 2), which is derived from the adsorption isotherms of 

nitrogen molecules. [13] For the protein molecules, which are much bulkier than 

nitrogen, account must be taken of the fact that in the narrowest of the accessible 

pores, [44] adsorbed proteins are in contact with both walls of the slit. Second and 
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further layers of proteins can be accommodated only in wider slits, which are less 

numerous. The effective available surface area may thus be expressed as  

Seff = S/      (14) 

where the reduction factor  (1 <  < 2) is a descriptor of the pore size distribution:   

 -1 is the fraction of accessible pores that can accommodate no more than one 

protein layer. Its value is found by comparing Mc calculated from Eq. 13 with the 

expected mass of the protein clusters, using the appropriate contrast factor (Eq. 9 or 

10). Thus, for BSA adsorbed in C1 at pH 6.9, where qmax=0.061 Å-1 and I(0)=0.24 cm-

1, the apparent mass of the BSA cluster is 

 Mc app= 51.5 kDa     (15) 

Likewise, for BSA adsorbed in C1 at pH 2.8, where qmax=0.056 Å-1and I(0)=0.197 

cm-1 the apparent mass of the BSA cluster is 

 Mc app= 56.1 kDa     (16) 

The evidence from the radius of gyration indicates that in both cases the aggregation 

number is 1 (i.e., Mc = 66.1 kDa). For consistency with this condition, the surface 

reduction factor must take the value 

 = 1.5±0.1      (17) 

In other words, in about one half ( -1=0.5) of the incremental surface area the 

adsorbed BSA molecules are either in contact with both walls or, by occupying just 

one wall, prevent a second layer from forming. Although this model is simplistic, the 

physically plausible value found for  suggests that it captures the basic features of 

the correlation peak. The consistency of these findings is evidence that the mass and 

the radius of gyration of the adsorbed BSA aggregates in C1 are those of a single 

BSA molecule, both at pH 2.8 and at pH 6.9. The aggregation number of the BSA 

clusters in C1 is therefore n = 1. The finding that the radius of gyration of BSA in C1 
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is independent of pH is striking. It suggests that the induced polyelectrolyte character 

of BSA, which causes it to expand in solution, disappears when the molecule is 

adsorbed in the carbon pores. In view of the basic nature of this carbon, it seems 

probable that the excess protons, which in free solution accrete to the basic groups, 

migrate to the pore walls. 

 For BSA in carbon C2 at pH 6.9, the value of Mc found in the same way (still 

assuming  = 1.5) is 1.16 MDa, i.e., 17 times the mass of the BSA monomer. These 

results are listed in Table 4. In C2 the situation is thus different from in C1. At pH 

6.9, BSA forms large clusters, rather than adsorbing as a monomer. At pH 2.8, by 

contrast, the correlation peak in the SANS response (Figure 7b) is not immediately 

apparent, being masked by the strong scattering signal at low q from the C2 carbon 

matrix. Subtraction of the low q asymptotic behaviour (lower curve, Figure 7b) 

reveals a shoulder at qmax~0.026 Å-1, in addition to a broad distribution of diffuse low 

density clusters. The Guinier plot of the poorly resolved shoulder (Figure 7c) is open 

to greater error, but in this case both the cluster mass Mc =120 kDa, and the radius of 

gyration RG = 41.8 Å are consistent with BSA dimers, i.e., the aggregation number is 

n=2 (Table 4). For consistency, all values of Mc of the adsorbed proteins in Table 4 

are calculated taking  = 1.5. 

 The radius of gyration of the BSA molecules adsorbed in the pores of C1 

suggests that they are slightly compressed with respect to their size in free solution. In 

C2, where the BSA clusters contain about 17 monomers, the density of packing 

3Mc/(4 R3) (assuming solid spheres with R=(5/3)1/2RG) is only slightly lower than that 

inside the free monomer in solution. This suggests that the monomer-monomer 

interaction is weakly repulsive. These findings yield the following estimate for the 

fractal dimension df of the clusters,  
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df=log(mass ratio)/log(size ratio) =log(19)/log(99.4/35.6)≈2.87.   (18)  

This value is consistent with the slope –df of the scattering curves in the high q region 

of Figures 1 and 2. Such a steep slope of the scattering function of BSA reflects the 

relatively dense internal structure of the BSA molecule. 

 

Table 4 

Characteristics of BSA and BPTI aggregates from SANS results  

Condition 

with D2O 

qmax I(0) Mc  RG  n (a)  

Å-1 cm-1 kDa Å  

BSA solution pH 6.9 

(10 g/L) 

0.031 0.885 66.1(b) 27.6 1 

BSA solution pH 2.8 0.027 0.685 66.1(b) 38.9 1 

BSA in C1 pH 6.9 0.061 0.24 63.1(c) 24.9 1 

BSA in C2 pH 6.9 0.048 5.0 1250(c) 77 17 

BSA in C1 pH 2.8 0.056 0.197 68.7(c) 24.9 1 

BSA in C2 pH 2.8 0.026 0.531 120±15(c) 41.8 2 

      

BPTI solution - 0.0417 6.51(b) 9.8 1 

BPTI in C1 pH 6.9 0.048 0.149 73.2(c) 23.5 11 

BPTI in C2 pH 6.9 0.0071 2.03 1170(c) 122 175 

(a) aggregation number, n; (b) Mc = MW,  (c)  = 1.5  

 

3.2.2. BPTI 

 Measurements of the BPTI molecules adsorbed in the carbons were made only 
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at pH 6.9. The SANS response of BPTI in C1 is shown in the Guinier representation 

in Figure 8a. With the correlation peak qmax=0.048 Å-1 and the extrapolated intensity 

I(0)=0.149 cm-1, Eq. 13 yields for this system (still assuming =1.5) 

Mc=73.2 kDa     (19) 

 

Figure 8. a) Guinier plot of the scattering intensity I(q) of BPTI in the carbon aerogel 

C1; the extrapolated intensity of the linear behaviour is I(0)=0.149 cm-1, with 

RG=23.5Å; b) Total intensity I(q) of BPTI in carbon C2; lower curve: same data after 

subtraction of low q asymptote. 

 

 The above estimated value of Mc assumes that the contrast factor K2 for BPTI 

in the carbon remains the same as in free solution (Eq. 11). The apparent fractal 

dimension of the BPTI clusters, calculated according to Eq. 19, is  

 df  ≈ 2.5     (20) 

This packing, which is more open than that of BSA, is consistent with a branched like 

arrangement of the BPTI monomers. 

 For BPTI in C2, as with BSA in C2, the total scattering curve (Figure 8b) 

displays no clearly resolved correlation peak. At low q the response exhibits power 

law behaviour with a slope of approximately -2.9. Subtraction of the power law yields 
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the lower curve in Figure 8b, with a maximum at qmax=0.00708 Å-1. In a Guinier 

representation similar to Figure 8a (not shown) these data yield I(0)=2.93 cm-1, with 

RG=122 Å, which corresponds to an aggregation number n=175. The internal 

concentration of these clusters is much smaller than those in C1. They are the 

counterpart of the similar broad peak noted above at q≈0.0065 Å-1 in Figure 7b.  

 

3.3. Protein concentration distribution 

The above model counts only those protein molecules that contribute to the 

correlation peak in the SANS response. However, clusters of proteins occupying 

pores that are too large to be detected by the measurements, and molecules that do not 

possess the local order assumed in the model, also contribute to the total 

concentration. The concentration c defined in Eq. 12 is therefore not the total 

concentration of protein adsorbed in the carbons. The total concentration must be 

estimated from the whole scattering curve.  

The overall protein distribution can be found by using the q-dependent 

intensity ratios u1(q)=IC_D2O(q)/IC(q) and u2(q)=IC_protein_D2O(q)/IC(q) to derive the 

concentration distribution c(q) of the proteins in reciprocal space (see Supplementary 

Information). In these ratios the numerators are respectively the signal from a carbon 

sample containing D2O and the same carbon sample with the protein solution, while 

the denominator is that of the dry carbon. For BSA at pH 6.9, the result (Figure 9) 

shows, firstly, that segments larger than about 2 /0.31 20 Å do not penetrate into 

either carbon, and, secondly, that in C2 the smaller pores (higher q range) are 

substantially less populated than those in C1.  

Closely similar results are found for pH 2.8. The mean concentration of BSA 

inside the carbon samples (in g/mL) can then be found from the second moment of 
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this concentration distribution 

 (21) 

where qmax = 0.31 Å-1 is the point of cut-off in Figure 9 imposed by steric exclusion. 

Finally, multiplication by the available volume V in each sample (Table 2) yields the 

total BSA content in the carbons. Thus 

for C1,    <c>V = 0.40 g/g  

and for C2,    <c>V = 0.14 g/g. 

 

Figure 9. Concentration distribution c(q) of BSA in the C1 and C2 carbon particles 

(see Supplementary Information). The cut-off at high q occurs in both samples at q 

≈0.31 Å-1. The trend c(q) 0 at q<0.01 Å-1 in C1 is an artefact from the excess surface 

scattering of C1 in pure D2O. Continuous lines are guides for the eye. 

 

 Table 5 compares the above findings with the direct measurements of protein 

adsorption from reference [13]. The total amount of protein adsorbed by the carbons 

found from SANS is in semi-quantitative agreement with the direct findings. In these 

estimates, however, it should be recalled, firstly, that precise equality of the filling 

factors of the corresponding dry and wet carbons is difficult to achieve, and secondly, 
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the region close to the cut-off point qmax, which contributes the most to the second 

moment (Eq. 21), is the region of greatest uncertainty in c(q). Nevertheless, the 

concentration distributions c(q) obtained by this method offer an indicator of the real 

distribution of the proteins in the sample.  

 

 

Table 5. Protein adsorption capacity of carbons C1 and C2  

Sample 

adsorbed BSA 

(direct 

measurement) 

adsorbed BSA  

(SANS) 

adsorbed BPTI 

(direct 

measurement) 

adsorbed 

BPTI 

(SANS)  

 g/g 

C1 in water pH 

6.9 (unbuffered) 
0.42 

0.38 1.1 0.60 

C2 in water pH 

6.9 (unbuffered) 
0.09 

0.16 0.27 0.16 

C1 pH 3 0.28 0.42 -  

C2 pH 3 0.07 0.08 -  

   

 Although the nitrogen adsorption measurements of ref. [13] show that in both 

of the dry carbons C1 and C2 the pore sizes are sufficient to accommodate single 

BSA molecules, the present observations indicate that the hydrophobic carbon C1 

absorbs BSA more readily than the hydrophilic C2. The latter result appears at first 

sight to contradict observations according to which BSA becomes less mobile and 

more strongly attached to hydrophilic surfaces than to hydrophobic surfaces [6, 45]. 

Strong adhesion, however, hinders the diffusion of proteins in small pores: when the 
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BSA solution enters the hydrophilic C2 carbon, the proteins penetrate no farther than 

the pore entrance, where they are immediately immobilised, blocking access to other 

molecules. In C1, by contrast, where adhesive forces are weaker because of the 

absence of polar groups, the proteins diffuse more freely inside the pores and occupy 

the available surface area. The difference in hydrophilic character between C1 and C2 

is sufficient to explain their different adsorption capacities. 

 

4. Conclusions 

 BSA is adsorbed by both the carbon aerogels C1 and C2, the former of which 

has a higher mesopore content. In spite of its larger BET surface area, the adsorption 

capacity of C2 for both BSA and BPTI is only about a quarter of that of C1. The 

SANS observations indicate that clusters of proteins may form in the pores. In C1, the 

aggregation number for BSA is n=1, i.e., the protein is adsorbed in the form of 

monomers, with a slightly compressed radius of gyration. In the same carbon at pH 

2.8, the extended conformation adopted in free solution by BSA at low pH does not 

occur: in the basic environment of carbon C1 the indirect polyelectrolyte character of 

this molecule induced by the pH disappears as the excess proton amount is transferred 

to the pore walls. In C2 the aggregation number for BSA is larger, about 17, 

confirming the aggregated state of the protein. For the smaller BPTI molecule, the 

aggregation number is of the order of 10 in C1, and more than an order of magnitude 

greater in C2. The model employed to obtain these results is based on the incremental 

surface area S of the carbon deduced from the nitrogen adsorption measurements. 

Owing to the size of the proteins, this surface area is further diminished by a factor , 

where -1 is the fraction of pores of width that accommodate no more than one layer 

of protein molecules. The finding here that ~1.5 in the carbon C1 implies that in 
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about 50% of the incremental surface the proteins are in contact with both walls. 

 In the hydrophilic carbon sample C2, both proteins form aggregates. The 

comparison of these two carbons implies that the greater adsorption capacity of C1 is 

in part attributable to its wider pores, but also to weak adhesion of the proteins to the 

hydrophobic surfaces, which allows them to migrate inside the pores. In C2, by 

contrast, the proteins are immobilised by their strong attraction to the hydrophilic 

surface, thus blocking access to and preventing penetration into the smaller pores. 

This finding illustrates the important role of surface chemistry in the adsorption of 

proteins in porous substrates.  
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