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Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but their use is limited

by inadequate mechanical strength and poor biocompatibility. In this study, to better mimic the mineral component

and the mechanical strength of natural bone, two biocompatible materials, 2-hydroxyethyl agarose and poly

(ethylene glycol) diacrylate, were combined with nanocrystalline hydroxyapatite (nHAp)-coated poly(lactic-co-glycolic

acid) (PLGA) microspheres. A novel composite interpenetrating network (IPN) hydrogel scaffold was created to

investigate its mechanical and osteoconductive performance for bone tissue engineering-related applications.

The inclusion of nHAp-coated PLGA microspheres in an IPN hydrogel led to an increase in compressive modulus.

In the absence of nHAp-coated microspheres, cell viability dropped to 59·1% at 3 weeks post-encapsulation.

However, by incorporating nHAp-coated microspheres, cell viability improved to 80·6%. The capacity of composite

IPN hydrogels to promote bone formation in cell culture was assessed. In the presence of mineralised microspheres,

a composite IPN gel showed a significant increase in alkaline phosphatase activity and calcium (Ca) deposition

following 3 weeks of incubation when compared with plain IPNs. This technology may be also applied to other cell-

based applications where the improved mechanical integrity and osteoconductivity of cell-containing IPN hydrogels

may be used to mimic bone tissue replacement.
1. Introduction
Polymeric hydrogels hold great potential for bone tissue
engineering, but their application is limited by the requirement for
a hydroxyapatite (HAp)-rich micro-environment, poor cell affinity
and mechanical properties, as well as by their limited ability
to allow cell spreading of anchorage-dependent cells such as
osteoblasts. Most synthetic hydrogels typically exhibit minimal
biological activity,1,2 with a lack of desired mechanical integrity,
and may not provide an ideal environment for encapsulated
cells. Mimicking the mechanical aspects and biological micro-
environment of natural tissues can be used to enhance the
functionality of engineered tissues, and the development of
hydrogels that are stronger mechanically may be beneficial for
various biomedical applications.3,4 By generating composite
hydrogels, it may be possible to reproduce the properties of a
natural extracellular matrix (ECM). One approach to creating
composite materials is the fabrication of an interpenetrating
network (IPN) of polymers.
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An IPN is a polymer comprising two or more networks that are
at least partially interlaced on a polymer scale, but not covalently
linked to each other. As the two networks are independent of
each other while being physically interlocked, this type of
network is termed an IPN. Several studies5–10 discovered that
for a variety of hydrogel IPNs and semi-IPNs, the mechanical
performance of the IPNs was far superior to either of the ‘parent’
networks. They reported the synthesis of IPNs and semi-
IPNs using various combinations of biological and synthetic
polymers with substantially improved mechanical properties.5–10

2-Hydroxyethyl agarose and poly(ethylene glycol) (PEG) were
selected as the materials to create a novel IPN scaffold
based on their common use in tissue engineering studies and
to approximate a combination of networks with asymmetric
mechanical properties. A rigid, brittle network interpenetrated
with a softer, more ductile network is theorised to serve as the key
to enhanced mechanical performance in composite IPN gels.
In addition, Ingavle et al.11–14 recently applied 2-hydroxyethyl
agarose-poly(ethylene glycol) diacrylate (PEG-DA) IPN hydrogels
to cartilage tissue engineering and showed that it was possible
to encapsulate viable cells and provide a significant improvement
in mechanical performance relative to the two constituent
hydrogels. Previous studies of 2-hydroxyethyl agarose/PEG-DA
IPNs showed improvement in mechanical performance compared
to both single networks, but it can be further improved by
increasing the concentration of either first or second network and
the molecular weight (MW) of PEG-DA while still maintaining
cell performance.

Synthetic IPN hydrogels alone cannot provide an ideal
environment to support cell adhesion and bone tissue formation
due to their biologically inert nature. ECM mimetic modifications
and the provision of a nanocrystalline hydroxyapatite (nHAp)-
rich micro-environment within synthetic hydrogels materials
may be used to modulate specific cellular responses.15 However,
the development of an IPN biomaterial with both biological
and synthetic components and ECM-mimetic modifications
remains a significant challenge. A range of bioactive, inorganic
nanoparticles such as nHAp, calcium phosphate, bioactive
glasses and silica consist of minerals that are already present
in the body, are necessary for the normal functioning of human
bone tissue and have shown favourable biological responses.16

HAp is a mineral component of natural bone and exhibits
osteoconductive properties, osteoinductive properties, bone-
bonding abilities and slow degradation on site.17 It has been
well documented that synthetic nHAp can promote new bone
ingrowth through osteoconductive mechanisms without causing
any local or systemic toxicity, inflammation or a foreign body
response.18,19

The production of IPN hydrogels with improved cell adhesion to
enhance osteogenesis requires the use of materials with greater
osteoconductivity to nucleate calcium, integrate with surrounding
bone and promote bone formation. The osteoconductivity of
biodegradable polymers such as poly(lactic-co-glycolic acid)
(PLGA) can be successfully enhanced through substrate
immersion in simulated body fluid (SBF) to create an external-
environment carbonated apatite coating similar to that found on
native bones.20,21 Such coatings improve the osteoconductivity of
the polymer, provide nucleation sites for cell secreted calcium and
enhance the potential osseointegration with host tissue. Apatite-
coated substrata including scaffolds and injectable microspheres
have been examined by a number of investigators for their ability
to contribute towards bone defect repair.22–24 Recently, Davis
et al.25 examined the capacity of mineralised poly(lactide-co-
glycolide) (PLG) microspheres suspended within fibrin hydrogels
to enhance the osteoconductivity of fibrin gels. Pre-mineralised
PLGA microspheres suspended in a fibrin gel achieved significant
increases in bone mineral density over non-mineralised fibrin
gel when implanted in a rodent calvarial defect over 12 weeks.
Polymeric microspheres are less dense than bioceramics such as
b-tricalcium phosphate or HAp, thus allowing for improved
distribution throughout the gel and improved spatial interaction
with osteogenic cells.

Although several studies have investigated the effect of bioactive
nanoparticles on improved cell response and promotion of ECM
synthesis in a single network hydrogel,16,26–32 there have been
no reports investigating the performance of osteoblasts in IPN
hydrogels. In addition, to date, hybrids or composites of HAp with
some traditional hydrogels have been developed.33–36 However,
the combination of cell-containing 2-hydroxyethyl agarose/PEG-
DA IPN hydrogel with nHAp-coated PLGA microspheres and
its impact on cell behaviour have not yet been reported. This
study describes the development of a photo-cross-linked IPN
hydrogel of 2-hydroxyethyl agarose and PEG-DA for application
to bone tissue engineering. A photo-cross-linked 2-hydroxyethyl
agarose/PEG-DA IPN hydrogel incorporating nHAp-coated PLGA
microspheres was designed to provide improved mechanical
strength as well as to promote cell spreading, proliferation and
osteogenic differentiation. This study was innovative in two
primary aspects: bringing IPN technology to bone tissue
engineering and incorporating biomineralised microspheres as a
bioactive signal to promote osteoconductivity in mechanically
strong IPN scaffold. It is hypothesised that the inclusion of
mineralised polymeric microspheres within IPN hydrogels would
enhance viable cell growth and osteoconductivity and increase
the osteogenic potential of this composite gel as well as
stimulate bone formation in cell culture. A series of nHAp-
coated PLGA microsphere-incorporated hydrogels based on an
IPN of 2-hydroxyethyl agarose and PEG-DA were developed to
optimise material properties and support for pre-osteoblast
spreading and proliferation as well as osteogenic differentiation.
The ratio of 2-hydroxyethyl agarose and PEG-DA was varied
in order to fine-tune these properties. The pore structure, pore
wall morphology, mechanical properties, long-term cell survival
and the osteogenic response of human mesenchymal stem
cells (hMSCs) to the improved composite IPN scaffolds were
investigated in order to optimise these materials for bone-
substitution applications.
13
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2. Experimental

2.1 Materials
2-Hydroxyethyl agarose, PEG-DA (MW 6000 Da) and
photoinitiator 2,2-dimethoxy-2-phenylacetophenone (Irgacure 651),
PLGA pellets with a copolymer ratio of 85:15 (lactic:glycolic
DL (%)) and MWs of 50 000–70 000 were obtained from
Sigma–Aldrich (Steinheim, Germany). Modified simulated body
fluid (mSBF) was prepared as previously described37 and consisted
of the following reagents dissolved in distilled water (H2O):
141mM sodium chloride (NaCl), 5·0 mM calcium chloride
(CaCl2), 4·2 mM sodium bicarbonate (NaHCO3), 4·0 mM
potassium chloride (KCl), 2·0 mM monopotassium phosphate
(KH2PO4), 1·0 mM magnesium chloride (MgCl2) and 0·5mM
magnesium sulfate (MgSO4). The solution was held at pH = 6·8 to
avoid homogeneous precipitation of calcium phosphate (CaP)
phases.

2.2 Culture of hMSCs
The hMSCs were purchased from Lonza (Walkersville, MD,
USA) and were cultured in minimum essential culture medium
(alpha-MEM) (Gibco, Invitrogen, Grand Island, NY, USA)
supplemented with 10% fetal bovine serum and 1% penicillin/
streptomycin at 37°C in a 5% carbon dioxide (CO2) incubator.
The hMSCs between passages 5 and 8 were used for all
experiments with seeding density of 1 × 106 cells/ml.

2.3 2-Hydroxyethyl agarose network synthesis
2-Hydroxyethyl agarose powder was added to alpha-MEM to
yield a 4% w/v solution and autoclaved for 30 min. Solutions
were then pipetted into cylindrical silicon rubber moulds (~5 mm
diameter, ~2 mm height), pressed between glass plates, and cooled
at 4°C for at least 10 min. Gels were then placed in alpha-MEM
to equilibrate for at least 24 h before use.

2.4 Acellular IPN formation
A 20% w/v solution of PEG-DA (MW 6000 Da) in alpha-MEM
was prepared, and 5 ml of Irgacure 651 photoinitiator solution
(0·05% w/v in deionised (DI) water) was added to each millilitre
of PEG-DA solution. Four cylindrical 2-hydroxyethyl agarose
gels were added per millilitre of PEG-DA/photoinitiator solution
and soaked under constant agitation at room temperature. The
length of soaking time needed for adequate diffusion was
calculated based on data from the literature38 and was dependent
on the PEG-DA MW. The 2-hydroxyethyl agarose gels were then
placed in rectangular moulds (~2 mm height) between two optical
glass microscope slides, and the surrounding volume was filled
with excess PEG-DA/alpha-MEM soaking solution. The gels were
exposed to ultraviolet (UV) light 2 min on each side using 365 nm
light (9 mW/cm2, Uvitec, Cambridge, UK). Samples were then cut
using a 3 mm biopsy punch and added to phosphate-buffered
saline (PBS) to equilibrate for at least 24 h before use. The
formulations are reported according to the following structure:
2-hydroxyethyl agarose concentration/PEG-DA concentration
(PEG-DA MW). As an example, the formulation 4-20 IPN is
14
an IPN with 4% w/v 2-hydroxyethyl agarose soaked in a
20% w/v PEG-DA (6000 Da MW) monomer solution prior to
photopolymerisation.

2.5 Fabrication of nHAp-coated-PLGA microspheres
PLGA microspheres were fabricated using a water-in-oil-in-water
(W1/O/W2) double-emulsion method. Briefly, 100 µl of double
distilled water was poured into a 1 ml solution of PLGA in ethyl
acetate (Fisher Scientific) with 5% w/v concentration. The mixture
was mixed using a probe sonicator at 40W power output for 15 s
to form the first inner water-in-oil emulsion (W1/O). This W1/O
emulsion was poured into 1 ml of 5% polyvinyl alcohol (PVA)
saturated with ethyl acetate and mixed using a vortex mixer for
15 s to form a second W1/O/W2 emulsion. The resulting W1/O/
W2 double emulsion was poured into 200 ml of 0·3% PVA and
continuously stirred at room temperature for 3 h until most of
the ethyl acetate evaporated, leaving solid microspheres. The
microspheres were collected using 0·22 µm Steritop filter
(Millipore Corp., Billerica, MA, USA) and transferred to a 50 ml
conical tube using a minimum amount of DI water. The
microspheres were collected as a pellet by spinning in an ALC
PK121 centrifuge (ALC International, Italy) at 4000 revolutions
per minute (rpm) for 10 min. The microspheres were washed with
double-distilled water twice. After washing, the microspheres
were hydrolysed for 10 min in 0·5 M sodium hydroxide (NaOH)
to functionalise the polymer surface and were rinsed in distilled
water. The microspheres were immediately placed in mSBF (pH =
6·8), incubated at 37°C for 7 d, making sure to change the
solution daily to maintain appropriate ion concentrations, frozen
overnight at −80°C and lyophilised for 3 d. Both non-mineralised
and mineralised microspheres were strained through a testing
sieve to collect particles with a diameter of less than 250 mm to
avoid microsphere clumping. The microspheres were sterilised
under UV light for 16–18 h prior to use.

2.6 nHAp-coated microspheres and hMSC
encapsulation in IPN network

A solution of 5% w/v 2-hydroxyethyl agarose in alpha-MEM was
prepared and autoclaved for 30 min. Meanwhile, cells were
detached from their flasks with trypsin-ethylenediaminetetraacetic
acid and labelled as passage 1 (P1). At this point, P1 cells were
pooled and resuspended in PBS at 1 × 106 cells/ml to begin
the encapsulation procedure. Once cooled to 39°C, the cell
suspension was added to a solution of molten 2-hydroxyethyl
agarose in a 1:2 ratio to produce a 4% 2-hydroxyethyl agarose
solution with a seeding density of 1 × 106 cells/ml (hMSCs) along
with nHAp-coated PLGA microspheres (10 mg/ml). Each solution
was pipetted into sterilised silicon rubber moulds (~5 mm
diameter, ~2 mm height), pressed between two glass plates, and
cooled at 4°C for 10 min. The cell-encapsulated gels were then
added to the wells of an untreated 24-well plate in 1·5 ml growth
medium (alpha-MEM) and incubated at 37°C/5% carbon dioxide.
After 24 h, the gels were added to sterile filtered solutions of 20%
w/v PEG-DA (6000 Da MW) with 0·05% w/v Irgacure 651
photoinitiator in alpha-MEM growth medium. Cell and nHAp-
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coated microsphere-encapsulated 2-hydroxyethyl agarose gels
were incubated at 37°C for 6 h with constant agitation for
diffusion times dependent on the MW of PEG-DA. Afterwards,
the gels were placed in sterilised rectangular silicon moulds (filled
with excess PEG-DA/alpha-MEM soaking solution) between
sterilised optical glass microscope slides and exposed for 2 min
on each side to 365 nm light (9 mW/cm2). The gel samples were
then cut using a 3 mm biopsy punch and returned to growth
media for 24 h before analysis.

2.7 Swelling degree measurement
Acellular IPN gels were placed in excess DI water for at least 24 h
to remove extractable materials from the polymer networks.
Equilibrated cell-free gel samples were weighed and dried in a
lyophiliser. After at least 48 h, the dried gel samples were removed
and weighed again. The swelling degree Q was calculated as the
ratio of the weight of the equilibrated hydrogel sample to its dry
weight.

2.8 Mechanical testing
The compressive modulus of the IPN hydrogels was determined at
room temperature on a TA.XTplus texture analyser (from Stable
Micro Systems) and tested under unconfined uniaxial compression
with a 5 N load cell (n = 5). All measurements and mechanical
testing were performed on IPN gels swollen to equilibrium in
alpha-MEM, and compression plates were lubricated with mineral
oil both to minimise any gel–plate adhesion and to prevent gel
drying during testing. Following a tare load of 5 N, the hydrogels
were then compressed in the direction normal to the circular face
of the IPN gel at a rate of 0·05 mm/s (1·7%/min) until fracture
occurred. The compressive elastic modulus, defined as the slope
of the linear region of the stress–strain curve of a material under
compression, was calculated from the initial linear portion of the
curve (<20% strain). Fracture points were identified at the peak
stress after which a significant (>10%) decrease in stress occurred.
The compressive moduli were calculated using the neo-Hookean
model for ideal elastomers. For this model, a plot of stress against
the strain function l − 1/l2 yields a straight line up to a strain e
of 0·5 or greater, where l = L/L0 = 1 + e.39 The compressive
moduli were reported as mean values from sets of at least five
samples.

2.9 Scanning electron microscopy and transmission
electron microscopy analysis

For scanning electron microscopy (SEM) imaging, the fully
hydrated IPN samples were sectioned to a thickness of 1 mm. To
avoid ice formation altering the existing IPN internal structure,
low-temperature instant freezing was employed to encourage the
formation of smaller ice crystals prior to the freeze-drying process.
Sections of IPN samples were frozen at −80°C before being
transferred to a Christ freeze-dryer to remove the water from the
IPN matrix over night at 0·200 mbar vacuum pressures. The freeze-
dried IPN slices were mounted on a sample holder and coated with
a 4-nm-thick layer of platinum using a Quorum (Q150T ES) coater.
The sections were examined using a Zeiss Sigma field-emission
gun SEM (Zeiss NTS) at an accelerating voltage of 5 kV at
different magnifications. The nanocoating of HAp on PLGA
surface was investigated by high-resolution transmission electron
microscopy (TEM) on a JEM-2100 microscope (Jeol, Tokyo,
Japan). For TEM observation, nHAp-coated PLGA microspheres
were suspended in ethanol and sprayed over a copper (Cu) TEM
grid with a holey carbon (C) film before TEM imaging.

2.10 Live/dead assay
To compare the viability of cells cultured in the IPN with
and without nHAp-coated microspheres, a live/dead assay
was performed immediately after 24 h, 48 h and 1 week of culture
(n = 3) using a live/dead viability cytotoxicity kit (Molecular
Probes). This kit contains 2 mM calcein AM to stain the living
cells and 4 mM ethidium homodimer-1 to stain the dead
cells. Cylindrical hydrogel constructs (n = 3) were sectioned
horizontally into two equal halves and incubated in the Live/
Dead reagents for 30 min before imaging to promote thorough
staining. Fluorescence spinning-disc confocal microscopy was
used to visualise the green living cells and the red dead cells,
using a Zeiss LSM-410 confocal microscope with 488 nm
excitation/515–540 nm emission and 561 nm excitation/585 long-
pass emission filters with a charge-coupled device camera. Z
scans were performed to 350–500 mm resolution depth in areas
representative of the overall IPN gels. Images were acquired in
2 × 2 binning mode. The three-dimensional (3D) images were
deconvoluted using a constrained iterative algorithm (SlideBook).
The percentage of total viable cells was calculated using the
SlideBook (version 5.0) Mask Statistics module.

2.11 Osteogenic response in cell culture
The 4-20 IPN and composite 4-20 IPN + nHAp gel samples
(n = 4 per group) were subsequently rinsed with PBS (Sigma) and
collected in 400 µl of passive lysis buffer (Promega, Madison, WI,
USA). Immediately following one freeze–thaw cycle, lysates were
sonicated briefly and centrifuged for 5 min at 10 000 rpm, and the
supernatant was used to determine deoxyribonucleic acid (DNA)
content, calcium content and intracellular alkaline phosphatase
(ALP) activity. The total DNA present in each hydrogel construct
was quantified using the Quant-iT PicoGreen double-stranded
DNA kit (Invitrogen) in comparison to a known standard curve.
Intracellular ALP from hMSC-seeded IPN scaffolds was quantified
using a p-nitrophenyl phosphate colorimetric assay at 405 nm as
described.25 The ALP activity was normalised to DNA content
determined as described above. The total calcium present on
hMSC-seeded IPN hydrogel scaffolds was measured using an
o-cresolphthalein complexon colorimetric assay similar to that
previously described.25 Briefly, minced hydrogel discs were
incubated in 0·9 N sulfuric acid (H2SO4) overnight to solubilise
surface calcium deposits. The calcium concentration in solution
was then quantified and compared with a known standard curve.
To account for the calcium present in the nHAp-coated PLGA
microsphere-loaded IPN samples, the calcium in acellular IPN gels
was quantified at each time point and subtracted from the calcium
values obtained from IPN gels containing cells at each time point.
15
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2.12 Statistical analysis
Statistical analysis was performed using two-way analysis of
variance with the Bonferroni post-test, applying the correction for
multiple comparisons at a significance level of p < 0·05 with
Graph-Pad Prism 5 for Windows (GraphPad Software, La Jolla,
CA, USA).

3. Results and discussion
In recent years, tailor-made hydrogels have demonstrated their
capacity to guide tissue growth by biomolecular interactions with
cells or adjacent tissues, in order to fine-tune their basic functions.40

Still, several disadvantages of traditionally synthesised hydrogels
particularly with regard to the loss of mechanical properties
over time make their use for hard tissue applications often
unsatisfactory.41 Designing tissue-engineered scaffolds for bone
tissue regeneration with the essential mechanical properties and
favourable HA-rich micro-environment to promote cell attachment,
growth and new tissue formation is one of the key challenges
facing the bone tissue-engineering field. Previously, the authors
investigated 2-hydroxyethyl agarose-PEG-based (IPN hydrogels
that exhibited cytocompatibility and improved mechanical
properties relative to its component networks).12 The current study
focused on further improving the mechanical properties of these
composite IPNs by incorporating nHAp and investigating ECM
mimetic bone-like micro-environments, essential for promoting cell
growth and biosynthesis in IPNs.
16
3.1 nHAp-coated PLGA microspheres
nHAp-coated polymer microspheres were prepared here by way
of a two-step process involving (a) formation of biodegradable
PLGA microspheres using a standard water-in-oil-in-water
(W/O/W) double-emulsion process42 and (b) coating of PLGA
microspheres with an inorganic nHAp by way of incubation in an
mSBF, an aqueous solution that contains the ionic constituents of
blood plasma with two-fold higher concentrations of calcium and
phosphate ions43 (Figure 1). The presence of Ca and phosphorus
(P) peaks, along with carbon and oxygen (O) peaks associated
with the PLGA polymer, were confirmed by energy-dispersive X-
ray spectroscopy (EDX) (Figure 2(a)). The average calcium/
phosphorus ratio is 2·3, which is within the range of biological
apatites.44 SEM (Figure 2(b)) and TEM images (Figures 2(c) and
2(d)) indicate that the nHAp mineral film is continuous on the
microsphere surface and has a plate-like nanostructure. Therefore,
the nHAp mineral layer grown on biodegradable polymer
microspheres is similar in composition and morphology to bone
mineral. In addition, the nHAp-coated PLGA microspheres have
shown a rougher surface. It has been shown that this rough
surface stimulates osteoblastic cell adhesion, growth and
proliferation45 and provides good biological fixation to the
surrounding tissue.46 Besides the carboxyl group of the PLGA
microsphere, there are two other main factors that can affect
nHAp growth: the concentration of calcium and phosphorus in the
solution and the incubation time. Since mSBF contains
Water

W1/O emulsion W1/O/W2 emulsion

W1/O emulsionPLGA in ethyl
acetate

Evaporation

Continuous
aqueous

phase

Centrifugation

Microsphere
separation

Filtration Hydrolysis

Lyophilisation

nHAp-coated PLGA
microspheres

Mineral formation in
SBF (pH = 6∙8, 37°C)

Uncoated PLGA
microspheres
Figure 1. Schematic illustration of the formation of PLGA

microspheres by the double-emulsion method and nHAp coating on

microsphere surface. Mineralisation was carried out on hydrolysed

PLGA microspheres using an mSBF for 5–7 d at 37°C, and the
solutions were changed daily in order to replenish the ion

concentration to supersaturated levels. SEM images show uncoated

and mineral-coated microspheres after incubation in mSBF solutions
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magnesium (II) (Mg2+), sodium (Na+) or carbonate (CO3
2−) ions,

which can also affect the nucleation and growth of nHAp coating,
6–7 d are needed at 37°C (pH = 6·8) to precipitate nHAp coating
on the microspheres.

3.2 Physical and mechanical properties of composite
nHAp/IPN hydrogel

The IPN gels were synthesised by way of a two-step network
formation: the first step was the formation of a rigid, brittle
2-hydroxyethyl agarose gel network and the second was the
formation of a softer and more ductile PEG-DA (20% w/v,
MW = 6000) network within the first network by way of UV
photo-cross-linking (Figure 3). In a previous study, Dekosky
et al.12 introduced a rationally designed 2-hydroxyethyl agarose/
PEG-DA IPN hydrogel that exhibited dramatically improved
mechanical properties relative to its component networks while
maintaining cell viability for cartilage tissue-engineering application.
However, there was still an opportunity for improvement in both
mechanical properties and cell performance, which the authors
hypothesised could be achieved with the inclusion of biomineralised
nHAp-coated PLGA microspheres within the IPN gel. Compression
analysis was carried out to assess the mechanical properties using a
mechanical texture analyser fitted with a 5 N load cell (Figure 4(a)).
The representative stress–strain curves for the plain IPN and
nHAp-coated PLGA microsphere-loaded IPN hydrogel groups are
displayed in Figure 4(b). The compressive moduli were calculated
from the slope of the initial linear neo-Hookean region of the
stress–strain (<20% strain) curves. The inclusion of biomineralised
nHAp-coated PLGA microspheres showed improvement in the
amount of stress the gels could withstand before failure (Figure
4(b)). The inclusion of nHAp-coated PLGA microspheres in
the composite IPN hydrogel (4-20 IPN + nHAp) produced a
2·7-fold (p < 0·05) increase in compressive modulus relative to a
plain IPN hydrogel (4-20 IPN) (7500 against 2800 Pa) (inset of
Figure 4(b)).

Swelling degree is an important parameter of hydrogel networks
since it determines whether the IPN hydrogels provide a micro-
environment favourable to waste/nutrient transport. The swelling
degree is a key property for the hydrogels, because not only does
it affect the mechanical properties of the material but also it
impacts solute transport, influences cell behaviour and thus
overall cell viability. Thus, the swelling degrees of acellular gels
with and without nHAp were characterised. Macroscopic images
of gels are displayed in Figure 5(a). The swelling degrees of
equilibrium-swollen plain 4-20 IPN and 4-20 IPN hydrogel with
encapsulated nHAp-coated PLGA microspheres are shown in
Figure 5(b). The inclusion of nHAp-coated PLGA microspheres
4
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produced a 20% decrease in swelling degree compared to the
plain IPN hydrogel, but this decrease in swelling degree was not
statistically significant.

The hMSCs and nHAp-coated PLGA microspheres are entrapped
homogeneously inside the Ag/PEG-DA IPN gels during the
gelation process aseptically in order to create 3D cell-seeded
constructs. Microscopic image analysis revealed a uniform
distribution of nHAp-coated PLGA microspheres and hMSCs
inside the 2-mm-thick composite IPN hydrogels (Figure 6).
SEM images of the acellular composite IPN show the uniform
distribution of embedded nHAp-coated PLGA microspheres at
the surface of (Figure 6(a)) and inside (Figure 6(b)) the IPN
hydrogel. The beaded morphology of the nHAp-coated PLGA
microspheres in the cross-sectional SEM images (Figure 6(b))
18
suggests a uniform distribution and confirms the presence of a
highly percolative and interconnected macroporous network with
a highly ordered architecture and well-defined pore boundaries.
The phase-contrast micrographs (Figure 6(c)) indicate that the
encapsulated hMSCs were homogeneously distributed with a
rounded morphology within the composite IPN gel, while live/
dead (calcein AM-ethidium dye) cell staining indicated that the
majority of cells encapsulated in the composite IPN hydrogels
remained viable during the photo-polymerisation process upon
UV exposure (Figure 6(d)).

3.3 Cell viability
A live/dead assay was used to determine cell viability at different
time intervals after hMSC encapsulation (Figure 7). Comparison
of cells at incubation days 1 and 21 using live/dead (calcein AM-
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ethidium dye) cell staining indicated that the majority of cells
encapsulated in composite hydrogels containing nHAp-coated
PLGA microspheres remained viable (stained fluorescent green
with calcein AM) over the culture period of 3 weeks (Figure 7).
The viability of hMSCs in nHAp-coated PLGA microsphere-free
IPN hydrogels was high, but less than optimal. At day 21, the cell
viability in 4-20 IPN+ nHAp hydrogel was higher than that in
the plain 4-20 IPN hydrogel by a factor of 1·4 (p < 0·05).
An additional observation was that encapsulated hMSCs in nHAp-
free IPN gel were homogeneously distributed and isolated from
each other (Figure 7(b)) compared with the hMSCs encapsulated
in the presence of nHAp-coated PLGA microspheres, which
appeared as clusters (Figure 7(d)). This indicated that good
adhesion and proliferation of hMSCs on the surface of PLGA
(a) (b)

(c) (d)
Figure 6. Representative SEM micrographs showing (a) surface and

(b) internal morphologies of acellular IPN gel with uniformly

distributed nHAp-coated PLGA microspheres (scale bar = 100 µm).

(c) Phase-contrast photomicrograph of encapsulated hMSCs along with
nHAp-coated microspheres. The dotted spots indicate encapsulated

PLGA microspheres (scale bar = 200 µm). (d) Confocal laser scanning

fluorescence microscope image of composite IPN hydrogel, showing

live (green fluorescence) hMSCs at day 1 (scale bar = 300 µm)
(a) (b)
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with encapsulated mineral-coated microspheres
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microspheres resulted in the formation of microsphere-cell
clusters. Mask statistics analysis showed that in the absence of
nHAp-coated PLGA microspheres (4-20 IPN), viability dropped
significantly (p < 0·05) from 95·9% to 59·1% at 3 weeks
post-encapsulation in culture respectively, while incorporating
nHAp-coated PLGA microsphere within the IPN (4-20 IPN +
nHAp) improved cell viability to 80·6% (Figure 8). The inclusion
of mineralised nHAp-coated PLGA microspheres provided
nucleation sites for calcium and phosphate secreted by entrapped
hMSCs and improved cell viability.
20
3.4 Osteogenic response in cell culture
Production and accumulation of major bone components such as
ALP and calcium were measured (Figure 9). ALP activity is an
important marker of early osteogenic differentiation. The ALP
activity within hMSC-seeded 4-20 IPN and 4-20 IPN + nHAp
gel scaffolds displayed significant differences (Figure 9(a)). A
time-dependent increase in ALP activity was observed in all
gel groups from day 1 to day 21. There were no statistically
significant differences in ALP expression among groups at day 1.
At day 14, there was a significant difference in ALP activity
within the plain IPN and nHAp-coated microsphere-incorporated
IPN hydrogel groups. ALP expression in the composite 4-20 IPN
+ nHAp gel was 1·6 times higher than that in the plain 4-20 IPN
gel. At day 21, the ALP activity in the composite 4-20 IPN +
nHAp gel was 2·6 times higher than in the plain 4-20 IPN gel. At
days 14 and 21, the composite 4-20 IPN + nHAp gel group
showed a 2·7- and 4·6-fold increase in ALP activity respectively
relative to their values at day 1 (p < 0·05, n = 3). The higher
values of ALP activity indicated enhanced early osteogenic
differentiation of hMSCs cultured in the composite IPN hydrogel.

Calcium content was measured to assess the extent of matrix
mineralisation in the IPN hydrogel scaffolds (Figure 9(b)).
Calcium deposition or mineralisation occurs during the late stage
of osteogenesis and is considered a marker of full osteogenic
differentiation. Total calcium deposition from osteogenically
induced hMSCs cultured in the plain 4-20 IPN and composite
4-20 IPN + nHAp gels was quantified after days 1, 14 and 21
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Figure 7. 3D projections of spinning disc confocal microscope

showing live/dead images for plain IPN and composite IPN groups.

(a, b) Plain 4-20 IPN gels with encapsulated hMSCs at days 1 and 21

respectively. (c, d) Composite 4-20 IPN + nHAp gels with encapsulated
hMSCs at days 1 and 21 respectively. Green (calcein AM) dye indicates

viable (live) cell populations, while red (ethidium homodimer) dye

indicates dead cells. Scale bar = 100 µm
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(Figure 9(b)). There was no statistically significant difference in
total calcium deposition content among groups at day 1. At day
14, the total calcium deposition in the composite 4-20 IPN +
nHAp gel group was 2·2 times higher than in the plain 4-20 IPN
gel group, which in turn showed a threefold increase (p < 0·05) in
total calcium deposition relative to values at day 1. Similarly, at
day 21, the composite 4-20 IPN + nHAp gel alone also resulted in
significantly greater (p < 0·05) calcium deposition by a factor of
6·6 than in the plain 4-20 IPN gel group. A composite 4-20 IPN +
nHAp gel deposited almost tenfold higher calcium relative to its
value at day 1 (p < 0·05). In contrast, at days 14 and 21 the plain
4-20 IPN gel group showed no significant difference in calcium
deposition values relative to day 1.

4. Conclusions
Double-network hydrogels have traditionally been restricted
to soft tissue engineering because of their poor mechanical
stability. The current study aimed to incorporate nHAp (bone-
like mineral)-coated polymeric microspheres into IPN hydrogel
scaffolds in order to improve the scaffolds’ properties for hard
tissue-engineering applications. A three-component IPN hydrogel
composite was optimised, combining 2-hydroxyethyl agarose/
PEG-DA, nHAp-coated PLGA microspheres and cells for
augmented mechanical strength and cell support. By combining
the polymer characteristics of 2-hydroxyethyl agarose/PEG-DA
IPN hydrogels with those of HAp nanoparticles, elastomeric
composite IPN hydrogels were synthesised with unique
mechanical properties related to compressibility and toughness.
This approach demonstrated the optimal number of nHAp-
coated PLGA microsphere nanoparticles (10mg/ml) to achieve
significantly improved composite IPN hydrogel strength and
bioactivity. In addition, the current method produced for the first
time a homogeneous structure with superior stiffness in which a
hydrated IPN matrix was highly mineralised and allowed cells to
continuously proliferate. The addition of nHAp-coated PLGA
microspheres provided cell adhesion sites for cell attachment to
the PLGA microsphere surface and showed cell clustering around
HAp-rich areas within the IPN matrix. The enhancement in the
mechanical strength and the 3D deposition of bone apatite in the
cell-laden composite indicates a new strategy by which IPN
hydrogel-based supports may be augmented to direct bone tissue
replacement and regeneration.
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