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Abstract Casting a new concrete layer on the tensile or compressive side of a reinforced concrete 

element is a common technique that is used to increase the flexural capacity of weak reinforced 

concrete elements.  Until now however, a model has not been presented in the literature to evaluate 

the slip between the two components.  Usually, in common practical design, slip is ignored and the 

strengthened element is assumed monolithic.  This may not be a conservative assumption, as any 

slip would affect the ultimate resistance of the strengthened element.  In the present paper, an 

analytical procedure is presented that predicts the distribution of slip strain, slip and shear stress 

along a reinforced or unreinforced interface between an initial beam and a new concrete layer.  By 

following this process, the capacity of a strengthened beam is determined by taken slip into 

account.  In addition, a step-by-step design procedure is presented and then applied to an 

experimental result.  Good agreement if found.  Further verification of the analytical procedure is 

performed by comparison with finite element analysis and very good agreement is found. 

Keywords strengthening; concrete beams; concrete layers; interface; shear 

stress; slip strain; slip. 
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1. Introduction 

The addition of a new concrete layer on the compressive or tensile side of an 

element is a technique that is used to strengthen concrete elements that are weak 

in flexure.  This practice has been the object of many experimental investigations 

(Altun 2004; Banta 2005; Bass et al. 1985; Cheong and MacAlevey 2000; 

Dimitriadou et al. 2005; Dritsos 1994; Hanson 1960; Loov and Patnaik 1994; 

Mast 1968; Mattock 1976; Pauley et al. 1974; Saemann and Washa 1964; 

Silfwerbrand 1990; Silfwerbrand 2003; Tassios 1983; Trikha et al. 1991; 

Vassiliou 1975; Vintzeleou 1984; Vrontinos et al. 1989; Zervos and Beldekas 

1995).  Usually, in design, it is assumed that full interaction between old and new 

components exists across the interface.  However, in reality, slip and in some 

cases separation at the interface cannot be prevented.  Therefore, since the 

amplitude of slip at the interface may affect the stiffness and the ultimate 

resistance of a strengthened element, it may be necessary to consider it. 

In design, to simplify calculations, it is usual to consider monolithic behaviour of 

the concrete composite element and, in order to take into account the interface slip 

effect, the use of appropriate correction factors has been proposed in the literature 

(Dritsos 1996; Dritsos 2007; Thermou et al. 2007) to correct parameters or results 

obtained under the monolithic behaviour assumption.  This design practice has 

been adopted in recent design codes (CEN 2005, GRECO 2009).  Clearly, the 

amplitude of the interface slip directly affects the above correction factor values 

(Dritsos 1996; Dritsos 2007; Thermou et al. 2007). 

It is worth noting that slip along a joint is directly correlated with respective crack 

openings (CEB-FIP 2008; CEB-FIP Model Code 90 1993; Vintzileou 1986; 

Tsoukantas and Tassios 1989) and affects the level of damage to a strengthened 

element.  Therefore, interface slip is a critical parameter that should be assessed 

when the fulfillment of specific acceptance criteria for a desired damage or 

performance level of the strengthened element is to be examined. 

Obviously, if a composite concrete element has to remain practically free of 

damage, small slip values can be accepted.  On the other hand, if the limit state of 

significant damage or the performance level of life protection or failure prevention 

is desired, rather higher interface slip values are usually accepted.  It should be 

stated that in recent design codes (FEMA 2000; GRECO 2009), specific limit 

values for interface slip or crack openings are adopted with respect to desired 

performance or damage levels.  For example, according to the Greek Retrofitting 

Code (GRECO 2009), the maximum accepted value of interfacial slip for level A 

(corresponded to the immediate occupancy performance level or the damage 

limitation limit state) is 0.2 mm, for level B (corresponded to the life safety 

performance level or the significant damage limit state) it is 0.8 mm and for level 

C (corresponded to the collapse prevention performance level or the near collapse 

limit state) it is 1.5 mm.  Alternatively, in FEMA (FEMA 2000), maximum crack 

opening values should not exceed 1.6 mm or 3.2 mm for immediate occupancy 

and life safety respectively. 

Finally, the amplitude of interface slip is important as far as durability is 

considered, since it affects the transmission of water or de-icing salts along the 

interface. 

Obviously, in some design cases, the assessment of the interface slip amplitude is 

necessary.  The aim of this study is to model the interface slip effect and to 

propose an analytical procedure to evaluate the slip distribution of concrete 
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composite elements subjected to bending.  Subsequently, the corresponding 

flexural capacity of the composite element can be determined. 

2. Strengthening using concrete layers 

By adding a new concrete layer to an original beam, a concrete-to-concrete 

composite element is created.  The flexural behaviour of this composite element 

depends on the connection between the old and the new components.  There are a 

number of shear load transfer models in the literature that simulate the condition 

of the connection at the interface.  Most of these models (CEB-FIP 2008; GRECO 

2009; Tassios 1983; Vintzeleou 1984) give a relationship between the shear stress 

and the slip at the interface between the two components, while others give a 

relationship between the shear stress and the slip strain (Dritsos 1994; Dritsos and 

Pilakoutas 1995; Kotsira et al. 1993; Saidi et al. 1990).  Fig. 1 presents strain 

distribution profiles of a strengthened beam for different connection conditions 

between the two different concrete components.  If the connection is perfect, there 

is no slip at the interface between the new and the old concrete and the composite 

element behaves as if monolithic.  In this case, when the composite beam is 

loaded and bends, the strain distribution profile is continuous, as shown in Fig. 1a.  

If there is no connection at the interface, the old and the new concrete behave 

independently during loading and the strain distribution for this case is shown in 

Fig. 1b.  In most cases, there is a partial connection between the old and the new 

concrete.  Obviously, the slip between the two components depends on the shear 

stress activated at the interface.  In this situation, three main possible strain 

distribution profiles can be recognized, as shown in Figs. 1c, 1d and 1e, 

depending on the magnitude of the interface slip strain and the relevant position of 

the interface in relation to the height of the bent section.  The first type of strain 

distribution occurs when the interface lies in the tensile zone of the composite 

element, as shown in Fig. 1c.  When the interface lies in the compression zone, 

the strain distribution is as shown in Fig. 1d.  Fig. 1e presents the last type of 

strain distribution, which usually occurs when there are high values of slip at the 

interface resulting in tensile and compressive zones on either side of the interface. 
 

Component

A

B

(a) (b) (c) (d) (e)

Component

 

Fig. 1 - Strain distribution profiles of a loaded strengthened composite beam for different interface 

connection conditions a) perfect connection, b) no connection c), d) and e) partial connections 

 

Apart from slip due to bending the composite element, there is also slip due to the 

new concrete layer shrinking after being placing.  The substrate concrete restrains 

this additional shrinkage and values of the concrete strain at the interface are less 

than free shrinkage strain.  Furthermore, there is an extra reduction of slip due to 

creep. These two mechanisms had been analysed and investigated and can be 

found in the literature (ACI 1971; Beushausen and Alexander 2006; Beushausen 

and Alexander 2007; Birkeland 1960; Silfwerbrand 1997; Yuan and Marsszeky 

1994; Yuan et al. 2003).  Usually, this extra slip due to shrinkage and creep is low 

when compared to the slip due to bending and it could be ignored (Lampropoulos 
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and Dritsos 2008).  Nevertheless, in the literature (Beushausen and Alexander 

2007; Birkeland 1960; Silfwerbrand 1997; Yuan et al. 2003; Yuan and Marsszeky 

1994; Zhou et al. 2008), there are analytical procedures to evaluate the effect of 

shrinkage stresses that may act on the new concrete layer. 

3. Shear force transfer mechanisms at the new-old 
concrete interface 

When a concrete element is strengthened by a new concrete layer, three 

mechanisms contribute to the shear resistance at the interface.  These are concrete 

to concrete adhesion, concrete to concrete friction and the connecting action from 

steel bars placed across the interface between the old and the new concrete.  These 

three mechanisms can be subdivided into the two groups of unreinforced and 

reinforced interfaces, depending on whether or not additional steel is placed 

across the interface of the old and new concrete. 

In the case of unreinforced interfaces, the two mechanisms acting at them are 

adhesion and friction.  It must be noted that maximum adhesion values are 

achieved for low interface slip values, while friction becomes important for much 

higher values of slip.  Therefore, the maximum resistances from adhesion and 

friction cannot be consider to act together. 

In the case of reinforced concrete interfaces, when the interface between the old 

and the new concrete is roughened or when shotcrete has been placed and the steel 

bars at the interface are well anchored, clamping action may occur.  When a shear 

stress is applied, a slip is produced and the contact surface between the old and the 

new concrete must open as one surface rides up the other due to the roughness.  

Therefore, a tensile stress is activated in the steel bar, which in turn produces a 

corresponding compressive stress, or clamping action, and a frictional resistance 

is mobilised.  Furthermore, the slip at the interface, deform the interface steel bars 

which in turn compress the concrete.  Because of equilibrium, concrete causes 

forces opposite to the interface slip activating the dowel action. 

Analytical τ against s models, concerning each possible interface mechanism, 

have been proposed in the literature (CEB Bulletin No 162 1983; CEB-FIP 2008; 

Tassios 1983; Vintzeleou 1984) and similar expressions have been adopted in 

design codes (CEB-FIP 1993; GRECO 2009) in the form presented in Fig. 2. 

 

 
(a)                                     (b)                                 (c) 

Fig. 2 - Theoretical τ against s models for a) adhesion, unreinforced interface and friction, 

unreinforced smooth interface, b) friction, unreinforced rough interface and c) reinforced interface 

 

In Fig. 2, τfud is the ultimate interface shear strength, sfud is the maximum slip, τo is 

the shear stress at the point where there is a change in the τ against s curve and so 

is the respective value of slip for shear stress τo. 

Values for coefficients so, τo, sfud and τfud and respective equations for the 

theoretical models shown in Fig. 2 can be found in the literature (CEB Bulletin 
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No 162 1983; CEB-FIP 1993; CEB-FIP 2008; GRECO 2009; Tassios 1983; 

Vintzeleou 1984).   

In reality, the total shear resistance between contact surfaces can be found by 

ssuming the individual shear resistances that are mobilised by each individual 

mechanism for a common interface slip.  Fig. 3 presents a plot of the 

superposition of slip from all the mechanisms discussed above for the transfer of 

shear stress at the interface.  

As it can be seen from Fig. 3, the problem becomes complicated when all the 

mechanisms are considered to act together.  When considering the required 

performance level, if an acceptable value of slip is determined, the respective 

interface resistance can be found by calculating the resistance for each mechanism 

and summing the results. 

For very low values of slip, only the mechanism of adhesion is activated.  After 

adhesion is destroyed, the other two mechanisms, friction and dowel action, are 

taking place.  Therefore, a general interface model could be adopted by 

superposing the above individual models, as in Eqs. (1) and (1a).   

)s(f xx   (1) 

where f(sx) is a polynomial function. In the case that accurate results are required, 

specific experiment, proper for the case which is examined, are required. 

Otherwise, approximately, a combination of the theoretical models given in 

literature (CEB Bulletin No 162 1983; CEB-FIP 1993; CEB-FIP 2008; GRECO 

2009; Tassios 1983; Vintzeleou 1984), can be used.  

In general, it can be considered: 

xsx sk)s(f   (1a) 

For low sx values 0 1x ss  , a linear relationship can be adopted (Fig. 3): 

xo,sx sk)s(f   (1b) 
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Fig. 3 - Combined mechanism τ against s model for a concrete interface 

 

In Fig. 3, τx and sx are the shear stress and respective slip at section x, s1 is the slip 

at adhesion failure, c
1  and b

1  are respectfully the maximum and minimum 

interface shear strength resistances before and after adhesion failure, ks,o is a 
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coefficient expressing the initial stiffness for s < s1, ks is the target stiffness for s = 

sx. 

Except for the analytical shear stress – slip curves presented above, existing 

design codes (ACI Committee 318 2004; BS 8110-1 1995; CEN 2004; CSA 

A23.3 1994; PCI 1992; SABS 0100-1 1992) suggest analytical equations in order 

to calculate the shear strength at the interface and there are also some analytical 

models presented in the literature (Birkeland and Birkeland 1966; CEB-FIP 2008; 

Loov and Patnaik 1994; Mast 1968; Mattock 1976; Saemann and Washa 1964; 

Shaikh 1978) in order to calculate the shear strength at the interface.   

All the above are about theoretical models for the shear transfer at the interface. In 

literature, a number of experimental test results have been presented (Banta 2005; 

Dimitriadou et al. 2005; Dritsos et al. 1996; Hanson 1960; Loov and Patnaik 

1994; Mattock 1976; Pauley et al. 1974; Saemann and Washa 1964; Vassiliou 

1975; Vintzeleu 1984) in the form of shear stress against slip diagrams for 

concrete interfaces.  A summary of the these results are presented in Fig. 4 in 

terms of the interface shear stress (τ), normalized by the average tensile strength 

(fcm) of the weakest concrete, against the slip (s).  The experimental set up, 

concrete strength, type of interface and dimensions of the interface are some of 

the parameters involved in these tests.  Three main groups of experimental results 

can be recognised with regard to the interface type and the mobilized shear 

mechanism.  Fig. 4a presents the first group, which represents experimental 

results for unreinforced smooth and rough concrete interfaces without normal to 

the interface stresses.  In this situation, adhesion could be considered as the main 

mobilized interface shear resistance.  Adhesion is the shear resistance of the 

interface in the absence of both a compressive force normal to the interface and of 

clamping reinforcement crossing it.  It is mainly due to chemical connection of the 

new concrete to the existing one (CEN 1998).  Adhesion is influenced by the 

roughness and the treatment of joint surface (CEB Bulletin No 162 1983) and as a 

result, interface interlock is concluded in this definition.  Fig. 2b presents the 

second group, which show experimental results for unreinforced smooth and 

rough concrete interfaces with a normal to the interface stress of 0.5 MPa (Vas.1, 

Vintz.1, Vas.3, Vintz.3) or a normal to the interface stress of 2.0 MPa (Vas.2, 

Vintz.2, Vas.4, Vintz.4).  In case of unreinforced concrete interface with normal 

to the interface stress, the shear resistance is made up by both friction and 

adhesion.  In both above experimental works (Vintzileou 1984, Vassiliou 1975), 

there is no adhesion at the interface.  In Vintzeleou’s (1984) work, the 

experiments were taken place after a crack was made in the specimen and in 

Vassiliou’s (1975) experiments, the two prisms were casted separately and then 

they were put in contact in order to create the composite specimen.  In this case, 

friction could be considered as the mobilized interface shear resistance.  Finally, 

Fig. 4c presents the third group, which are experimental results for reinforced 

smooth and rough concrete interfaces without normal to the interface stresses.  A 

push-off test set up was used in most of the experiments shown in Figs. 4a, 4b and 

4c.  Fig. 5a schematically presents some common push-off test arrangements 

(Hanson 1960, Vassiliou 1975, Banta 2005), while some other researchers 

(Vintzileou 1984, Dritsos et al. 1996, Dimitriadou et al. 2005, Mattock 1976) used 

the arrangement shown in Fig. 5b.  Briefly, new concrete is cast against a 

previously prepared surface or surfaces of old concrete and the arrangement is 

loaded in the presence or not of normal to the interface stress.  Alternatively, 

results from Saemann and Washa (SW) (Saemann and Washa 1964), Loov and 

Patnaik (LP) (Loov and Patnaik 1994) and some from Hanson (Hg) (Hanson 
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1960) concern concrete beams strengthened with concrete layers.  These results 

for concrete beams strengthened with concrete layers are depicted in Fig. 4d, for 

different types of surfaces.  Figs 4a-4c show the results of push-off tests in the 

type of one shown in Fig. 5.  For the case that the only interface mechanism is 

adhesion, the push-off test results shown in Fig. 4a, concern only maximum 

values of τ and s while, for beams shown in Fig. 4d, the whole interface behaviour 

is represented by τ against s curves. 

It can be seen from Fig. 4 that, depending on the parameters involved, there are a 

wide range of results.  In several cases, maximum values are obtained for very 

low values of slip.  Obviously, rough interfaces are better than smooth interfaces.  

It also can be seen that at reinforced interfaces, maximum value of shear stress is 

greater that in unreinforced interfaces.  Although experimental results depicted in 

Fig. 4b, are for unreinforced interfaces with normal stress, the maximum values of 

shear stress are almost in the same range as in the case of unreinforced interfaces 

without normal to the interface stress which is presented in Fig. 4a.  This happens 

because, as it has already been reported, in both experimental works of Vintzileou 

(1984) and Vassiliou (1975), there is no adhesion at the interface 
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Fig. 4 - Experimental τ/fcm against slip curves from push-off tests for a) unreinforced interfaces 

without normal to the interface stress (adhesion), b) unreinforced interfaces with normal to the 

interface stress (friction), c) reinforced interfaces without normal to the interface stress and d) 

experimental τ/fcm against slip curves for concrete beams strengthened with concrete layers 



8 

 

c
o
n

c
re

te
 A

c
o
n

c
re

te
 B

concrete A concrete B concrete A

 
                                           (a)                              (b) 

Fig. 5 - Common push-off test arrangements a) Hanson 1960, Vassiliou 1975, Banta 2005 and b) 

Vintzileou 1984, Dritsos et al. 1996, Dimitriadou et al. 2005, Mattock 1976 

 

By considering all the experimental results of Fig. 4 above, it can be deduced that 

values for ks range from 0.5 MPa/mm to 95 MPa/mm.  In every case, a τ - s 

experimental curve, from a specific experiment, should be chosen.  Otherwise, a 

theoretical and as a result, not so accurate, τ – s curve proposed in literature (CEB 

Bulletin No 162 1983; CEB-FIP 1993; CEB-FIP 2008; GRECO 2009; Tassios 

1983; Vintzeleou 1984), should be chosen. 

4. Assumptions 

The determination of the slip distribution along the interface due to bending a 

strengthened composite element is complicated.  In order to simplify the problem, 

the following assumptions have been made: 

During bending, plane sections of each element remain plane (Navier-Bernoulli’s 

assumption), 

The bond between the reinforcement and the concrete is perfect, so no slip 

between longitudinal reinforcement and concrete is assumed, 

The relationship between concrete compressive stress and strain is assumed to be 

parabolic-rectangular adopting the EC2 concrete model (CEN 2004) with an 

ultimate strain of -0.0035 and the maximum acceptable compressive stress is 

0.85fc, (where fc is the concrete compressive strength), 

The stress against strain relationship of the steel is assumed elastoplastic with a 

modulus of elasticity (Es) of 200 GPa. 

The depth of a bonding layer, if existing, is assumed zero.  This means that even 

there is a bonding layer, as for instance a layer of resin, the layer thickness is 

assumed zero and it is taken into account through specific interface conditions. 

The composite element is considered to fail when the top fibre of the upper 

element reaches the ultimate strain (-0.0035), 

The composite element is consider to yield when the strain of the upper or the 

lower component steel reaches its yield value (εsy = fy/Es, where fy is the yield 

stress of the steel) and 

The curvature of the beam and the additional layer is the same at any section 

through the strengthened beam and, therefore, only longitudinal separation is 

considered. 

A more analytical explanation of these assumptions is presented in the following 

section.  Shrinkage stresses are ignored and the relationship between the shear 

stress and the bending slip is assumed to be given by Eq. (1) above.  In order to 

give reliable results, coefficient ks must take reliable values. 
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5. Analytical evaluation of bending slip along the 
interface of a strengthened beam 

Consider a concrete beam strengthened by the addition of a new concrete layer.  

Fig. 6 presents a part of the loaded beam and the respective bending moment 

diagram.  In Fig. 6, A and B are points of contraflexure at sections x = 0 and x =   

where the bending moment is zero, while x = xy and x = xul respectively indicate 

sections where the steel of the beam yields and the beam fails.  Subscripts y and u 

refer to the yield and ultimate moment sections respectively, x refers to a section 

at a distance x from the point A and M refers to the moment.  Typical possible 

strain and force distributions at a cross section through the strengthened beam are 

presented in Fig. 7.  When the interface lies in the tension zone of the composite 

element, the strain distribution profile is as shown in Fig. 7a.  When the interface 

lies in the compression zone, the strain distribution is as shown in Fig. 7b.  Fig. 7c 

shows the last type of strain distribution, which usually occurs when there are 

high values of slip at the interface resulting in tensile and compressive zones on 

either side of the interface. 
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Fig. 6 - Geometry of the beam and bending moment distribution 
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Fig. 7 - Typical strain and force distributions of a beam with an additional new concrete layer (a) 

on the tensile side and (b) and (c) on the compressive side 

 

In Fig. 7, h is the distance from the top of the strengthened beam to the interface, 

b is the width of the interface, do is the distance of the upper component steel from 

the top of the beam, du is the distance from the interface to the lower steel, dt is the 

distance from the top of the beam to the lower steel, Aso and Asu are respectively 

the amounts of steel in the upper and lower components of the beam, εc1o and εc2o 

are respectively the bottom and top fibre concrete strains of the upper component 

of the beam, εc2u is the top fibre concrete strain of the lower component of the 

beam, εso and εsu are respectively the steel strains of the upper and lower 

components of the beam, yo and yu are the neutral axis depths of the upper and 

lower components of the beam respectively, z, z΄΄, z΄ are the lever arms between 

the respective internal concrete forces Fco1, Fco2 and Fcu and the force in the steel 

of the lower component of the beam, Fsu, and Fso is the force in the steel of the 

upper component of the beam. 

In all following equations, strains are taken into account with their sign, positive 

for tensile strain and negative for compressive strain.  

As stated above, it is assumed that the curvature of the upper component of the 

beam (φx) is the same as the curvature of the lower component of the beam (φx,u), 

that is: 

u,xx    (2) 

Using Eq. (2), for all possible strain distribution profiles of Fig. 7, the curvature of 

a typical section of the strengthened element can be expressed as follows: 

 

u

u2csu

o

o2csoo2co1c
x

ddh











  (3) 

From Fig. 7, when the interface lies in the tension zone of the composite element 

(yo < h), or there are compressive and tensile zones on either side of the interface, 

the force of the upper component concrete, Fco, is equal to Fco1.  When the 

interface lies in the compression zone, two compressive blocks define Fco where 

the respective concrete forces are Fco1 and Fco2.  The total concrete force of the 

upper component is given by Eq. (4): 

2co1coco FFF   (4) 

Fig. 8 presents the force distribution in a strengthened beam subjected to bending. 

 

M   = 0

F

F

F

F

F

F

co

so

cu

su

x M  x

x

τ

τ

 

Fig. 8 - Force distribution in a strengthened beam subjected to bending 

 

Taking into account the equilibrium between the internal forces at any section: 
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 sucusoco FFFF 0 (5) 

and the equilibrium between forces acting on the lower component of the 

strengthened beam can be expressed as: 

FFF sucu   (6) 

Let  

x

oco
coocco bf.ybf.F




 2

1 850850


 , (7) 

 
x

oc
cocco bf.hybf.F




 11

12 850850


  (8) 

For the cases that Figs.7a and 7c represent, Fco2 equals zero and the total 

compressive concrete force of the upper component is equal to Fco1. 

By considering the strain distribution profiles given in Fig. 7 above and Eqs. (4), 

(7) and (8), Fco is given by the following equation: 

 

x

ococo
cco bf.F



 112850


  (10) 

In Eqs. (7-10), αo, α1 and αu (CEN 2004) are coefficients that specify the average 

value of the compressive stress of each part as a fraction of the maximum 

acceptable compressive stress, which is equal to 0.85fc.  Adopting the EC2 

concrete stress against strain relationship (CEN 2004), values of the above 

coefficients can be obtained as follows: 





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


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
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003500020
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..for,

.for),(
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ci
ci

ci

i









  (11) 

where i is o, 1 or u and αo is α(εc2o), α1 is α(εc1o), αu is α(εc2u) and ci is 2o, 1o or 2u. 

The steel forces are given by the following equations: 

 

sososo AF   (12) 

and 

sususu AF   
(13) 

where σso and σsu are the steel stresses of the upper and lower components 

respectively and are a function of the steel strains εso and εsu as follows: 

and 

x

u2cu
cuuccu bf85.0ybf85.0F




  (9) 
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
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where j is o for the upper component and u for the under component and εs is the 

steel strain. 

By assuming that the shear stress at any section is a cubic function of distance x 

(justification for this assumption can be found in Appendix A): 

1Bx1A 3
x   (15) 

where A1 and B1 are constants.  Then, the shear force along the interface of the 

strengthened beam from section A (x = 0, Mx = 0) to a section at a distance x from 

A, is given by Eq. (16): 

bx1B
4

x
1AdxbF

4x

0

x 












   (16) 

From Eq. (15), the average value of shear stress between the zero moment section 

and section x ( x ) is given by Eq. (17): 

1B
4

x
1Adxx

3

x

x

0

xx     (17) 

By considering a linear relationship between the average value of shear stress 

( m ) and the slip strain ( m,L ) at section x = xul, the ultimate moment section 

(Dritsos 1994; Dritsos and Pilakoutas 1995; Kotsira et al. 1993; Saidi et al. 1990), 

it follows that: 

m,Lm    (18) 

where K is a coefficient expressing the relationship between m  and m,L . 

Using the initial condition that at the ultimate moment section (x = xul) shear stress 

and as a result from Eq. (1a) slip, is equal to zero and that m  at the same section 

is given by Eq. (17), coefficients A1 and B1 can be determined and Eq. (15) 

becomes: 

mm

l,u

x x
x

 





3

4

3

4 3

3
 (19) 

Moreover, the slip strain at any section x (εL,x) can be defined as the concrete 

strain difference between the two concrete components at the interface, that is: 

x,u2cx,o1cx,L    (20) 

Therefore, using Eqs. (1), (3-13), (16) and (18-20), the strain distribution profile 

at any position x from a zero moment section (A or B) can be calculated. 

In order to calculate the bending moment (Mx) at a distance x from the zero 

moment section A, lever arms z, z΄ and z΄΄ need to be determined.  From Fig 7 

above: 
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and 

x

o1c
1uo1u Cd)hy(Cdz




  (23) 

where Co, C1 and Cu are coefficients that specify the centre weight distance of 

Fco1, Fco2 and Fcu from the top of each component as a function of εc2o, εc1o and 

εc2u respectively and are given by Eq. (24) (CEN 2004). 
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 (24) 

where i and ci are as previous defined for Eq. (11). 

Therefore, the bending moment at a distance x is as follows: 
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(25) 

By assuming that at the ultimate section the top fibre concrete strain is equal to -

0.0035 and by assuming a value of curvature of φx equal to the value of curvature 

of a monolithic element, Eqs. (3), (5) and (6) can be used to calculate the concrete 

and steel strains.  Next, coefficients αο, 6α1, αu, Co, C1 and Cu and steel stresses σso 

and σsu can be determined using Eqs. (11), (24) and (14) respectively.  Then, by 

using trial and error, iteration and Eqs. (9)-(13), the concrete and steel forces can 

be calculated.  If Eq. (5) is satisfied, results are acceptable and the ultimate 

bending moment can be determined using Eqs. (21)-(24).  If results do not satisfy 

Eq. (5), a new value for the curvature is assumed and the procedure is repeated 

until force equilibrium at the section and at the interface is achieved. 

The same procedure can be repeated for the steel strain at the yield section (εso or 

εsu = fy/Es, whichever yields first) rather than using εc2o = -0.0035.  Therefore, the 

section of steel yield (xy), the yield moment (My) and the yield curvature (φy) can 

also be determined. 

The slip strain at a section x (εL,x) can be found from the following equation (see 

Fig. 7 and Eq. (20) above): 

xxx,u2cx,o1cx,L    (26) 
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where x  is a function which gives the relationship between the slip strain and the 

curvature at any section at a distance of x from section A. 

Assuming that at section xul, where the bending moment takes its maximum value, 

Δx also takes a maximum value of Δm and the value of the curvature is equal to 

u .  Therefore, at section xul for strengthening on the tensile side (Fig. 7a above): 

umum,um,om,u2cm,o1cm,L )yyh(    (27a) 

and for strengthening on the compressive side (Figs. 7b and 7c) 

umum,um,om,u2cm,o1cm,L )yyh(    (27b) 

By assuming a linear distribution of Δ along the length of the beam, at any section 

x of the strengthened beam, respective values for coefficient Δx can be calculated 

as follows: 

x
xul

m
x 


  

(28) 

where 

ulxxm,um,om )yyh(    
(29a) 

for strengthening on the tensile side, 

ulxxm,um,om )yyh(    
(29b) 

for strengthening on the compressive side and 00 00   xx,L  . 

A typical bending moment against curvature plot can be idealized for simplicity as 

bilinear, as shown in Fig. 9.  From Fig. 9, two different cases can be 

distinguished:  a) the case when the examined section is before the yield section 

(Mx ≤ My for x ≤ xy) and b) the case when the examined section is after the yield 

section (Mx ≥ My for x ≥ xy). 
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Fig. 9 - Bilinear idealization of the bending moment against curvature plot 

 

In Fig. 9, EIo is the elastic stiffness of the strengthened beam, EI1 is the inelastic 

stiffness of the strengthened beam, My is the bending moment when the steel of 

the beam begins to yield (x = xy), Mu is the ultimate bending moment at x = xul and 

φy and φu are the respective yield and ultimate curvatures. 

By considering a section at a distance of x less than xy, the curvature is as follows: 
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o

x
x

EI

M
  (30) 

It is assumed that the beam is reinforced so that the steel would yield before the 

ultimate strength of the element is reached (xy < xul). 

From Eqs. (26), (28) and (30) the slip strain is given by: 

x
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2
, for yxx 0  (31) 

Therefore, the slip can be obtained from: 
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and by considering Eqs. (1a) and (32): 
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From the bilinear idealization of Fig. 9, when uly xxx  , the inelastic stiffness 

is given by: 

yx

yx
1EI








  (34) 

By rearranging Eq. (34), the following equation for the curvature at any section x 

between uly xxx   can be obtained: 

y
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  (35) 

By considering Eqs. (26), (28) and (35), the slip strain is given as follows: 
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Moreover, from Eqs. (32) and (35): 
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In addition, from Eqs. (1) and (37): 
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If for the ultimate strength of the element there is not steel yield, the relationship 

between bending moment Mx and curvature φx is linear according to Eq. (30) and 

the slip strain, slip and shear stress distribution along the interface of the 

strengthened element, are given by Eqs. (31-33).  

It should also be mentioned that, the whole procedure can be used for every other 

phase, except of ultimate limit state, in which maximum value of bending moment 

is known.  The only difference is that at section at xul distance from A the bending 

moment Mmax instead of concrete strain εc2o is now given.  

By assuming that the relationship between the shear stress and slip is given by Eq. 

(1a), the shear stress at the zero moment section A (  ) is given by AsA sk   

where sA is the slip at section A.  Furthermore, the maximum slip occurs at 

sections A and B, the sections of zero moment, and can be approximated by the 

following equation: 

ulm,L1ulLBA xaxss    (39) 

where L  is the average value of slip strain from the zero moment section to the 

ultimate moment section, a1 is a coefficient that depends on the distribution of slip 

strain along the strengthened beam and εLm is the slip strain at the ultimate 

moment section of the beam. 

The slip strain at the ultimate moment section of the composite beam can be 

evaluated by using Eqs. (3), (5), (6), (12), (13), (16) and (20) for x = xul.  

Additionally: 

A2m a    (40) 

where a2 is a coefficient that depends on the distribution of shear stress along the 

strengthened beam.  Using Eqs. (18), (39) and (40), the shear stress at sections A 

and B is given by the following equation (denoting 21 aa   as 2,1a ): 

ul

A

2,1ul

A

21
B

x

s

a

1

x

s

aa

1



   (41) 

By comparing Eqs. (1a) and (41), it can be seen that: 

sul2,1 kxaK   (42) 

Obviously, by definition a1,2 < 1.0.  However, it should be noted that in the most 

practical cases examined in the framework of this research, values of coefficient 

a1,2 were found to range from 0.2 to 0.3. 

6. Analytical Procedure 

According to the above analysis, an iterative procedure is required to define the 

distribution of slip along the interface of a strengthened beam.  The procedure 

encompasses the following steps: 

Step 1:  Input and assumption data. 

A τ against s interface model, as in Fig. 5 above or as experimentally determined, 

is adopted regarding the type of the interface (smooth, rough, reinforced or 

unreinforced).  The choice could be made to start with any possible ks between 1.0 

MPa/mm and 2.0 MPa/mm.  Alternatively, in cases where low values of interface 

shear stresses are expected (lower than τ1), it is better to start with ks = ks,o.  In 

addition, a value for a1,2 ≤ 1.0 is assumed.  A reasonable value to begin with 
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would be a1,2 in the range of 0.2 to 0.3.  Coefficient K is then calculated from Eq. 

(42). 

Step 2:  Ultimate moment section internal forces and strain distribution. 

Using Eqs. (4)-(13), (16) and (18) and assuming that failure occurs when εc2o 

equals -0.0035, the strain distribution profile at the section xul of ultimate moment 

and the resulting strains (εc1o and εc2u), the ultimate moment (Mu) and the ultimate 

curvature (φu) can be calculated.  Substituting results from the strain distribution 

profile into Eqs. (29a) or (29b), coefficient Δm can be determined. 

Step 3:  Yield section internal forces and strain distribution. 

Using Eqs. (4)-(20), coefficient K from step 1, Mu from step 2 and by assuming 

the yield section is the section where the steel strain equals the steel yield strain 

(εsy), the distance between the zero moment section and the yield section (xy), the 

moment at yield (My) and the curvature at yield (φy) can be calculated.  Here, two 

cases can be examined.  Either the steel of the initial beam or the steel of the 

additional layer yields first and one of these two cases can be eliminated.  By first 

assuming the steel strain of the initial beam is at the yield point, it can be 

determined if the steel strain of the additional layer is below or above the yield 

point.  If the steel strain of the additional layer is found to be above the yield 

point, it means that this steel would yield first. 

Step 4:  Initial shear stress and slip strain distribution. 

Using the results from steps 2 and 3 with Eqs. (30) and (33), EIo and EI1 can be 

calculated.  Now, the slip strain and shear stress distributions along the interface 

of the strengthened beam can be determined using Eqs. (31)-(33) and (36)-(38).  

According to these distributions, εL,m and τA are the maximum values of slip strain 

and shear stress respectfully and, using Eq. (32), the maximum slip value sA can 

be determined. 

Step 5:  Verification of a1,2 value. 

Coefficients a1 and a2 can be calculated from the distributions of step 4.  If a1,2 is 

found to be close to the value assumed in step 1, the results of step 4 are correct.  

If not, the whole procedure is repeated from step 1 using the new a1,2 value.  

Iterations stop when the result of step 4 is almost the same as the assumption of 

step 1. 

Step 6:  Verification of the stiffness ks value. 

By considering that τx = τA and using the τ against s curve adopted in step 1, a 

corresponding slip value (sx) can be calculated.  If %s/ss AxA 5 , the initially 

assumed value of ks is acceptable.  Using Eq. (1), τA and sx, a new value for 

coefficient ks = τΑ/sx can be determined and the whole procedure from steps 2 to 5 

is iteratively repeated until the values of sA and sx are found to be very close. 

Step 7:  Slip distribution. 

From Eq. (19), a τA value can be obtained by substituting m,Lm K   .  If this 

shear stress value is close to that as obtained in step 6, the shear stress, the slip 

strain and the slip distribution of step 6 is valid.  If not, the whole procedure is 

repeated with a new Eq. (19) obtained from Eqs. (15) and (17) considering that for 

x = ulx , τx = 0 and m  is the value obtained from shear stress distribution of step 

4. 

7. Verification of the method 

For verification purposes, the method is compared to both experimental results 

and finite element analysis.  The beam investigated by Loov and Patnaik (1994) 
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was chosen for this purpose and was analyzed using the method proposed in this 

paper and the finite element method. 

The beam of Loov and Patnaik (1994) was a simply supported T concrete beam 

consisting of two concrete elements, loaded with a concentrated load at the mid 

span of the beam.  The web portion was first fabricated with a rectangular cross 

section of 150 mm by 230 mm with 1600 mm2 tensile reinforcement and 55 mm 

cover (Fig. 10).  The flange was cast in place over the web and had a cross section 

of 400 mm by 120 mm.  The yield strength of the reinforcement was found to be 

454 MPa, while the concrete strength was 38.0 MPa for the initial beam and 35.6 

MPa for the flange. 

For the connection between the two elements, the τ against s relationship was 

found experimentally by Loov and Patnaik (1994) and is presented in Fig. 11.  

This experimental τ against s interface relationship was adopted for the analysis. 
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Fig. 10 - Geometry and loading condition for the beam strengthened with concrete layer on the 

compressive side (Loov and Patnaik 1994) 
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Fig. 11 - Experimental τ against interface s curve (Loov and Patnaik 1994) 

 

As the beam in question was a T beam, Ft, and Fcu are determined by considering 

that b = b1 = 150 mm, while Fco, Fco1 and Fco2 are determined by considering b = 

b2 = 400 mm.  In order to illustrate the application of the described analytical 

method, the seven-step procedure proposed above is followed. 

Step 1:  Input and assumption data. 

Initially, assume that a1,2 = 0.3 and ks = 1.1 MPa/mm.  Therefore, from Eq. (42), 

50315251130  ..K MPa. 

Step 2:  Ultimate moment section internal forces and strain distribution. 

From Eqs. (4)-(13), (16) and (18) and assuming that at the ultimate stage εc2o = -

0.0035, the strain distribution profile at the ultimate moment section 

( 15252  /xu  mm) is obtained as shown in Fig. 12a, where yo,m = 62.7 mm, 

yu,m = 45.0 mm and εL,m = εc1o - εc2u = 0.00319-(-0.00251) = 0.00570.  
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Consequently, from Eq. (29b), Δm = 102 mm, from Eq. (25), Mu = 200 kNm and 

from Eq. (3), u  = 0.0558 m-1.  It can also be determined from Eq. (18) that m  = 

00570503 . = 2.87 MPa. 
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                                                                                     (a)                                           (b) 

Fig. 12 - Strain (x10-3) distribution profile a) at the ultimate moment section and b) at the yield 

section 

 

Step 3:  Yield section internal forces and strain distribution. 

Using Eqs. (4)-(20), setting K = 503 MPa from step 1, Mu = 200 kNm and εL,m = 

0.00570 from step 2 and assuming that the yield point is when εsu = fy/Es = 

0.00227, the distance between the zero moment section and the yield section (xy), 

the moment at yield (My) and the curvature at yield (φy), using Eqs (6), (9), (13) 

and (16), (25) and (3), are determined to be xy = 913 mm, My = 168 kNm and φy = 

0.0240 m1.  Fig 12b above presents the yield section strain distribution. 

Step 4:  Initial shear stress and slip strain distribution. 

Using steps 2 and 3 results and from Eqs. (30) and (34), EIo and EI1 are calculated 

to be 7.00x103 kNm2 and 1.01x103 kNm2 respectively and using Eqs. (31) and 

(36) and Eqs. (33) and (38), the slip strain and the shear stress distribution can be 

found as in Figs. 13a and 13b.  From these figures, maximum values are τA = 3.09 

MPa and εL,m = 5.70x10-3.  From Eq. (32), it can be determined that sA = 2.81 mm. 
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          (a)                                                                                      (b) 

Fig. 13 - Distributions a) of slip strain and b) of shear stress, along the interface of the 

strengthened beam for ks = 1.1 MPa/mm and a1,2 = 0.3 and ks = 1.37 MPa/mm and a1,2 = 0.240 

 

Step 5:  Verification of the a1,2 value. 

From the slip strain and shear stress distributions of Fig. 13, the average values of 

slip strain and shear stress can be calculated as 3
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.
 .  Consequently, 2,1a 3000246076103230 ....  . 

The whole procedure is repeated using 2,1a  = 0.246.  It is finally determined that 

2,1a  = 0.240 is correct and 4031525112400  ..K MPa  the maximum slip sA 

= 3.3 mm and the maximum shear stress τA = 3.63 MPa. 

Step 6:  Verification of the stiffness ks. 

For τA = 3.63 MPa and from the theoretical curve adopted in step 1 (Fig.11 

above), sA,n = 2.40 mm and %%s/ss An,AA 527  .  Therefore, the whole 

procedure (steps 2 to 5) is repeated using n,AAs s/k  = 3.63/2.40 = 1.51 

MPa/mm. 

The process is repeated until there is a converge between sA,n and sA.  

After some iterations, it is found that ks = 1.37 MPa/mm, K  = 501 MPa, sA = 2.80 

mm, τA = 3.84 MPa and εL,m = 0.00570.  From the τ against s curve adopted in step 

1, for τA = 3.84 MPa, it is found that sA,n = 2.90 mm  and 

%%.s/ss An,AA 563  , an acceptable difference.  The slip strain, shear stress 

and slip distribution for this case are presented in Figs. 13 and 14.  From the shear 

stress distribution of Fig. 13b, 902.m  MPa. 

Step 7:  Final slip distribution. 

From Eq. (19), by substituting 86200570501 ..K m,Lm   MPa a value of 

τA = 3.81 MPa is obtained.  This shear stress value is almost equal to the value of 

τΑ obtained in step 6.  Therefore, the shear stress, the slip strain and the slip 

distributions of step 6 are valid and the results of this step can be considered as 

acceptable. 
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Fig. 14 - Distribution of slip along the interface of the strengthened beam  

 

From Figs. 13 and 14, the distribution of slip and shear stress along the interface 

of the beam was found to be almost parabolic with maximum values at the 

supports and minimum values at the mid span.  Furthermore, from the distribution 

of slip strain along the interface, maximum values occur at mid span and 

minimum values occur at the supports.   
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7.1 Comparison with experimental results 

For the above experimentally tested beam, Loov and Patnaik (1994) reported that 

the maximum slippage recorded at the support section was “greater than 2 mm”.  

Therefore, the analytical maximum slip value of 2.80 mm found above through 

the proposed method can be considered in good agreement with the experimental 

result.  Furthermore, Loov and Patnaik (1994) approximately evaluated the 

maximum shear stress experimental value as 3.12 MPa, which is close to value of 

3.84 MPa obtained from the present analytical method. 

7.2 Comparison with numerical analysis 

In the following, the analytical results of the proposed method are compared with 

respective numerical results.  Firstly, the beam of Loov and Patnaik (1994) is 

examined.  Then, a simply supported rectangular concrete beam strengthened by 

adding a concrete layer to the tensile side, as described in Appendix A, is 

examined considering a number of possible interface conditions.  For the 

numerical analysis, the ATENA (2005) finite element program was used.  Fig. 15 

presents the adopted models for the concrete and steel reinforcement. 

 

 
(a)                                                                                 (b) 

Fig. 15 – a) Concrete and b) steel model (adopted for the numerical analysis) 

 

Solid elements were used to simulate the concrete using the stress against strain 

behaviour in compression proposed by CEB-FIP Model Code (1990), as shown in 

Fig. 15a.  The element used to simulate the reinforcement (Fig. 15b) was a link 

element with bilinear stress against strain behaviour, strain hardening and relative 

slip with the concrete element using the bond model proposed by the CEB-FIP 

Model Code (1990).  The interface between the old and new concrete was 

simulated using special contact elements (a pair of two elements) considering 

appropriate values for the coefficients of friction μ and adhesion c regarding the 

interface type (Lampropoulos and Dritsos 2008). 

For the numerical analysis of the tested beam, values of μ = 1.0 and c = 1.0 MPa 

were adopted as the interface in the Loov and Patnaik (1994) experiment was 

rough.  The numerical results for the maximum interface shear stress and the 

maximum slippage, are 3.89 MPa and 2.60 mm  respectively.  Comparing 

analytical and numerical results for the slip distribution, as presented above in Fig. 

14, very good agreement can be observed. 

For the numerical analyses of the strengthened rectangular concrete beam (details 

are presented in Appendix A), six cases concerning six different interface 

conditions were examined.  Namely:  a) μ = 0.5, c = 0.0 MPa, b) μ = 0.5, c = 0.5 

MPa, c) μ = 0.5, c = 1.0 MPa, d) μ = 1.0, c = 0.0 MPa, e) μ = 1.5, c = 0.0 MPa and 

f) μ = 1.5, c = 1.0 MPa. 
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For the numerical analyses, the above coefficients of friction and adhesion were 

used to derive different τ against s relationships at the support positions, which 

were then used in the analytical work. 

In Fig. 16, numerical results of two characteristic cases (case b:  μ = 0.5 c = 0.5 

MPa and case f:  μ = 1.5 c = 1.0 MPa) are demonstrated. 

 
 

Fig. 16 – Numerical slip distribution at the interface a) case b and b) case f 

 

In Fig. 17, numerical and analytical results concerning the maximum slippage of 

each case examined are compared and very good agreement can be seen. 
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Fig. 17 – Comparison between analytical and numerical maximum slip at the interface  

 

Obviously, very good agreement between analytical and numerical results has 

been demonstrated. 

 

8. Conclusions 

The practice of adding a new concrete layer to the compressive or tensile side of 

an element is a technique that is used to strengthen concrete elements that are 

weak in flexure and has been the object of many experimental investigations.  

However, a model has not yet been presented in the literature to evaluate the slip 

between the two components.  In common practical design, slip is ignored and 

strengthened elements are assumed monolithic.  Ignoring slip at the interface may 

not be a conservative assumption. 

The present study has developed general equations to calculate the distribution of 

slip, shear stress and slip strain at the interface between two reinforced concrete 
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components.  An accurate procedure for calculating the distribution of slip, shear 

stress and slip strain along the length of the interface has been presented.  It was 

found that there is a relationship between the slip strain and the slip at the 

interface, which is given approximately through the relationship between the two 

coefficients K and ks.  Here, K is the average value of the shear stress divided by 

the slip strain at ultimate moment section and ks is the shear stress divided by the 

slip at any section at a distance x from a section of zero moment.  When the 

procedure was applied to a simply supported beam example, the distribution of 

slip and shear stress along the interface of the beam was found to be almost 

parabolic with maximum values at the supports and minimum values at the mid 

span.  Furthermore, from the distribution of slip strain along the interface, 

maximum values occur at mid span and minimum values occur at the supports.  

When comparing results of analytical procedure with respective experimental and 

numerical ones, a good agreement was observed. 

Finally, further results of the proposed analytical procedure concerning a 

rectangular concrete beam strengthened with a concrete layer at its tensile side 

were checked using ATENA (2005) software for different types of the interface.  

The comparison between maximum slip at the interface of the strengthened beam 

showed very good agreement. 
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APPENDIX A 

Approximation of the interface shear stress distribution 

In the absence of any experimental verification, several numerical analyses using 

ATENA finite element software (ATENA 2005) have been performed in order to 

define the type of shear stress distribution function along the interface.  It was 

found that the shear stress distribution along the interface can be assumed as a 

cubic function of distance x.  In the following, the results of one of these analyses 

is presented. 

A simply supported concrete beam strengthened with a new concrete layer on the 

tensile side (Fig. 18), has been analysed using ATENA (2005) software.  Details 

concerning ATENA modelling are presented in section 8.2 above.  Specific 

contact elements were used in this analysis to simulate the interface behaviour, 

with specific values for the coefficients of friction and adhesion.  

The cross sectional dimensions of the initial beam were 250 mm by 400 mm and 

the span length was 5000 mm.  The longitudinal tensile reinforcement was four 12 

mm diameter steel bars of 500 MPa yield strength and the concrete cover was 40 

mm.  The thickness of the additional layer was 100 mm and the additional 

reinforcement was two 14 mm diameter steel bars of 500 MPa yield strength, also 

with a concrete cover of 40 mm.  The concrete strength of the beam was 

considered to equal 16.0 MPa something very common for old structures which 

need strengthening.  A concentrated load was applied at mid span. 
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Fig. 18 - Geometry and load condition for the beam strengthened with concrete layer on the tensile 

side 

 

In Table 1, information about the concrete strength of the new layer and the 

interface, of the two specimens have been examined, is given. 

 
Table 1 Analyzed specimens 

Name of specimen Concrete layer strength Interface  

S1 16 MPa μ = 0.5 c = 0.5 

S2 25 MPa μ = 0.9 c = 1 

 

Taking into account the slip distribution derived from ATENA analysis and using 

Eq. (1a), the shear stress distribution along the interface of the strengthened beam 

can obtained, as shown in Fig. 19, together with the fitted curve described by the 

following equation: 

1Bx1A 3
x   (43) 

where A1 = -0.043 and B1 = 0.67 for specimen S1, and A1 = -0,042 and B1 = 0.66 

for specimen S2. 
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Therefore, in the present study, the interface shear stress distribution according to 

the general form of Eq. (43) has been adopted. 
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Fig. 19 – Shear stress distribution along the interface of the strengthened beam 


