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ABSTRACT 

A common problem in high seismicity areas is the need for flexural strengthening of the weak 

reinforced concrete elements.  A popular technique for increasing the flexural capacity of reinforced 

concrete elements involves the casting of a new concrete layer, reinforced or not, on the tensile or the 

compressive side of the element.  Slip at the interface between the old and the new concrete affects 

the behaviour of the composite element.  However, it is common practice in design to ignore slip and 

consider the strengthened element as monolithic.  In the present paper, an approximate estimation of 

the maximum values of sliding, slip strain and shear stress of the strengthened element is presented.  

In addition, an analytical procedure for prediction of the distribution of sliding and slip strain along 

the interface between the initial beam and the new layer of concrete is presented.  Finally, the results 

of these two methods are compared. 
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INTRODUCTION AND BACKGROUND 

Many existing reinforced concrete structures, especially in high seismicity areas, require flexural 

strengthening of their weak elements.  The addition of a new concrete layer on the compressive or 

the tensile side of an element is a very common practice.  In the literature, there is little experimental 

data on the strengthening of beams by the addition of a new concrete layer (Vassiliou, 1975; Trikha 

et al., 1991; Zervos and Beldekas, 1995; Cheong and MacAlevey, 2000; Altun, 2004). 

An element strengthened with an additional concrete layer is a composite element and its behaviour 

depends on the connection between the old and the new concrete.  Figure 1 presents strain 

distributions for various cases of strengthening in the tensile region.  If the connection is perfect, 

which is the aim when strengthening, there is no slip at the interface between the new and the old 

concrete and the composite element behaves as a monolithic element.  In this case, the strain 

distribution against height of cross section is continuous, as can be seen in figure 1a.  If there is no 

connection at the interface, the old and the new concrete behave independently and the strain 

distribution for this case is shown in figure 1b. 

In reality, the behaviour of the composite element is somewhere between the two above cases.  The 

slip between the two layers is related to the shear stress at the interface and, in this situation, there 

are three types of strain distribution with height of cross section.  The first type of strain distribution 

occurs when only a part of the old concrete element is in the compression zone, as shown in figure 

1c.  When all of the old concrete and a part of the new concrete are in the compression zone, the 

strain distribution is as shown in figure 1d.  The last type of strain distribution occurs when the 

compression zone includes part of the old concrete and part of the new concrete as show in figure 1e. 
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Figure 1.  Strain distribution profiles for different connection conditions at the interface of a 

strengthened element a) perfect connection, b) no connection c), d) and e) partial connection. 

 

From the above considerations, it is obvious that the condition of the connection at the interface is 

very important for the behaviour of the strengthened element.  For analysis, a shear transfer model 

should be used to simulate the connection condition.  In the literature, there are many models for 

shear load transfer.  Most of them give a relationship between shear stress and sliding, s, by 

following relevant models for the shear transfer at the interface that occurs in cracks in concrete 

(Vintzeleou, 1984; Tassios and Tsoukantas, 1989; Tassios and Vintzeleou, 1990; Tassios, 2003; Nie 

et al., 2004; GRECO 2005).  Others use a relationship between the shear stress and the slip strain, εL, 

(Saidi et al., 1990; Kotsira et al., 1993; Dritsos, 1994; Dritsos and Pilakoutas, 1995).  Other relevant 

analytical studies can be found in the literature that considers the interface slip of composite steel 

concrete beams (Nie and Cai, 2003; Nie et al., 2004). 

Analytical procedures for the capacity evaluation of strengthened beams have been presented in the 

past (Saidi et al., 1990; Kotsira et al., 1993; Dritsos, 1994; Dritsos, 1996; Nie and Cai, 2003; Nie et 

al., 2004).  They consider the equilibrium between applied moments and internal forces acting in the 

cross section of the beam.  In addition, they consider the equilibrium of the old and new concrete 

elements separately and take into account a shear force against sliding model at the interface. 

In a previous study (Lampropoulos et al., 2004), a computer programme called ACESCL (Analysis 

Concrete Element Strengthened by Concrete Layers) was developed based on analytical work 

presented by Dritsos (1994).  This program used the following two assumptions:  a) the old and the 

new concrete had the same curvature and b) the relationship between the average value of shear 

stress along the beam and the slip strain at the mid span was linear.  By using the above software, the 

strength and the slip strain at the mid span of the composite element could be calculated.  However, 

no information could be obtained regarding the distribution of sliding along the interface between the 

two components.  In the present paper, an analytical procedure that predicts the distribution of 

sliding and slip strain along the interface between the initial beam and the additional concrete layer is 

presented for a simply supported beam. 

 

PREDICTING THE DISTRIBUTION OF SLIDING ALONG THE INTERFACE 

(1) Approximate estimation of maximum sliding, maximum slip strain and maximum shear stress 

For a simply supported symmetrically loaded beam with span length l, the boundary conditions are 

as follows:  The sliding at mid span and the slip strain at the supports equal zero (sm = 0 and εLA,B = 

0). 

Obviously, the maximum sliding occurs at the supports A and B for a centrally loaded simply 

supported beam and can be approximately estimated by the following equation: 
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Where:  L  is the average value of slip strain from the support to the mid span and 

              εLm is the slip strain at the mid span of the beam. 

The slip strain at mid span of the composite beam can be evaluated by using the computer 

programme ACESCL (Lampropoulos et al., 2004).  Furthermore: 



22

m  



                                                                                                                               (2) 

By assuming that the average shear stress,  , at the interface is given by the equation m,L  

and, by using equations (1) and (2), the shear stress at the supports is given by the following 

equation: 

l

s A
B  8                                                                                                                         (3) 

 

(2) Analytical procedure for determining the distribution of sliding and slip strain along the interface 

of a strengthened beam 

The computer program ACESCL assumed a linear relationship between the average value of shear 

stress and the slip strain at the mid span ( m,L ) and, as a result, the computer program 

required the input of reliable values for coefficient K.  In the literature (Vintzeleou, 1984; Tassios 

and Tsoukantas, 1989; Tassios and Vintzeleou, 1990; Tassios, 2003; Dritsos, 2001; GRECO 2005), 

shear stress is commonly given by shear stress against sliding curvatures and more simply by the 

equation )x(sK)x( s  , where s(x) is the sliding at the interface, τ(x) is the shear stress at the 

interface of a specific section and coefficient Ks depends on the connection conditions at the 

interface of the strengthened beam. 

With the assumption that the relationship between shear stress and sliding is given by the following 

equation (Tassios and Tsoukantas, 1989; Tassios and Vintzeleou, 1990; Tassios, 2003; Dritsos, 2001; 

GRECO, 2005): 

ss                                                                                                                                             (4) 

the shear stress at support A ( A ) is given by AsA s  

By comparing equations 3 and 4, it can be seen that: 

sKlK  )8/(                                                                                                                                  (5) 

For a centrally loaded simply supported beam with span length l, height h and width b, the strain 

distribution is given by figure 2. 

 

 
 

Figure 2.  Strain distribution of a strengthened beam. 

 

By assuming that the curvature for the initial beam and new concrete layer are the same, the 

following equation can be produced. 

 )(21 uoucocL xxh                                                                                                 (6) 

However, equation 6 is only valid at the mid span of the beam. 

For any other section, the respective equation is as follows: 

)x()x)(xxh()x( uoL                                                                                                              (7) 

For a centrally loaded simply supported beam, the bending moment at a distance x from the support 

is given the following equation: 
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Let )2/()( lxxh uo  , then 0)0(0)0(L  . 

It can be assumed that the distribution of Δ along the length of the beam is linear and is given by the 

following equation: 
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Figure 3 presents a bilinear idealization of the bending moment against curvature (M-φ) plot.  From 

figure 3, two different cases can be distinguished, as follows:  a) the examined section before 

yielding, x ≤ xy and b) the examined section after the yielding, x≥xy. 

 

 
 

Figure 3.  Bilinear idealization of the bending moment against curvature plot. 

 

In figure 3, EIo is the elastic stiffiness of the strengthened beam and EI1 is the inelastic stuffiness of 

the strengthened beam.  Figure 4 presents the bending moment distribution along the beam. 

 

 
 

Figure 4.  Bending moment distribution along the beam. 

 

When x < xy, the equation of curvature is as follows: 
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and slip strain is given by: 
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Therefore, the sliding can be obtained from: 
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and the force at the interface is given by the following equation: 
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At the support of the beam, the bending moment equals zero and, as a result, the force at the 

interface, Fτ, also equals zero. 



By using the boundary conditions at the supports (M(0) = 0 and Fτ = 0) the following equations can 

be produced: 
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When xy ≤ x ≤ l/2 and from figure 3, it is obvious that: 
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By replacing the curvature in equations 11 and 12 with equation 15, the following equations for 

sliding and slip strain can be produced: 
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By using the boundary conditions at mid span ( 0)2/( ls ), the following equations can be 

determined: 
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The above calculations can be summarised by the following equations: 
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and 






























































2/),()
33

(

)()(
12

)
12
(

0),
12
(

)(

213

1

3

331444

4

lxxxxcx
l

x
lEI

P
x

lEI

P

xx
l

xx
lEI

P
xcx

lEI

P
bk

xxxcx
lEI

P
bk

xF

yyyyy

o

o

y
o

y

o

yy

o

o
s

y

o

s

   (22) 

 

All the variables of the above equations are known and the above equations can be used in the 

computer program ACESCL (Lampropoulos et al., 2004).  Therefore, for different values of x, the 

sliding (s), the slip strain (εL) and the shear stress ( ss  ) can be determined. 

 

(3) A numerical example 

In the following, a numerical application of the previous analytical procedure is presented.  A 

strengthened concrete beam used in a previous study (Lampropoulos et al., 2004) is further analysed 

to evaluate the sliding, slip strain and shear stress distribution along the interface.  The cross 

sectional dimensions of the initial beam were 130 mm by 70 mm and the span length was 750 mm.  

The longitudinal tensile reinforcement was two 6 mm diameter bars of steel grade S400 and the 

concrete cover was 10 mm.  The thickness, t, of the additional layer was 20 mm and the 

reinforcement was two 6 mm diameter bars of steel grade S400.  The concrete cover was again 10 

mm.  The concrete strength of both the beam and the new layer was considered to equal 25 MPa and 

the ultimate compressive strain was considered to equal 0.35%.  An increment load was applied at 

mid span.  The dimensions, loading conditions and cross section of the strengthened beam are 

presented in Fig. 5. 

 

 
Figure 5.  Geometry and loading conditions of the strengthened beam. 

 

In the previous analytical work (Lampropoulos et al., 2004), the slip strain and the sliding at mid 

span of the beam were calculated by assuming that K equalled 600 MPa.  The slip strain and the 

mean value of shear stress were found to equal 0,16% and 0.96 Mpa respectively.  Therefore, for the 

analytical procedure it was assumed that 38 /1064)/8( mNKKlK ss  .  It was also 

assumed that the point of steel yield (xy) for the strengthened and the respective monolithic beams 

were the same and that EI1 equals EIo/10.  By using equations 20, 21 and 22, distributions of sliding, 

slip strain and shear stress along the interface of the beam can be calculated. 

As far as the approximate estimation of the maximum sliding, slip strain and shear stress is 

concerned from equations 1, 2 and 3, the following results can be obtained: 

By using equation 1, the sliding at supports A and B can be calculated as follows: 
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The results from both the above methodologies are given in figures 6, 7 and 8 for the respective 

sliding, slip strain and shear stress distribution along the interface of the strengthened beam. 
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Figure 6.  Distribution of sliding along the interface of the strengthened beam. 
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Figure 7.  Distribution of slip strain along the interface of the strengthened beam. 
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Figure 8.  Distribution of shear stress along the interface of the strengthened beam. 



 

From figures 6 and 8, it is obvious that the distributions of sliding and shear stress along the interface 

of the beam from equations 20 and 22 are almost parabolic with maximum values at the supports and 

minimum values at the mid span where τ equals 0.00 MPa and s equals 0.00 mm.  Moreover, from 

the distribution of slip strain along the interface from equation 21 and figure 7, it is obvious that the 

slip strain achieves its maximum value at the mid span and its minimum value at the supports of the 

beam where εL equals zero. 

Furthermore, when comparing the two methods, it is obvious that the approximate equations give 

greater values (almost double) than the analytical procedure for sliding and shear stress while, for the 

maximum slip strain, the values from both methods are very close.  There is a difference in 

maximum value of the slip strain at mid span between the analytical procedure and the approximate 

estimation and this would be due to the assumption that KlK s  )/8( . 

 

CONCLUSIONS 

According to the present study for typical central loaded simply supported concrete beams 

strengthened by placing a new concrete layer, there is a relationship between slip strain and sliding at 

the interface which is given approximately by equation 5.  In addition, a more accurate procedure for 

calculating the distribution of sliding, shear stress and slip strain along the length of the interface has 

been presented.  Through this procedure, the distribution of sliding and shear stress along the 

interface of the beam was found to be almost parabolic with maximum values at the supports and a 

minimum value at mid span where τ equals 0.00 MPa and s equals 0.00 mm.  In addition, from the 

distribution of slip strain along the interface, it is obvious that the maximum slip strain occurs at mid 

span and its minimum value is at the supports of the beam where εL is equal to zero.  Finally, when 

comparing the two methods, it is obvious that approximate equations give greater values for sliding 

and shear stress but, when considering the maximum slip strain, the values from both methods are 

very close. 
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