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Abstract 

For 70 years antibiotics have saved countless lives and enabled the development of modern medicine, but it is 

becoming clear that the success of antibiotics may have only been temporary and we now anticipate a long-term, 

generational and perhaps never-ending challenge to find new therapies to combat antibiotic-resistant bacteria. As 

the search for new conventional antibiotics has become less productive and there are no clear strategies to improve 

success, a broader approach to address bacterial infection is needed. This review of potential alternatives to 

antibiotics (A2As) was commissioned by the Wellcome Trust, jointly funded by the Department of Health, and 

involved scientists and physicians from academia and industry. For the purpose of this review, A2As were defined 

as non-compound approaches (that is, products other than classical antibacterial agents) that target bacteria or 

approaches that target the host. In addition, the review was limited to agents that had potential to be administered 

orally, by inhalation or by injection for treatment of systemic/invasive infection. Within these criteria, the review 

has identified 19 A2A approaches now being actively progressed. The feasibility and potential clinical impact of 

each approach was considered. The most advanced approaches (and the only ones likely to deliver new treatments 

by 2025) are antibodies, probiotics, and vaccines now in Phase II and Phase III trials. These new agents will target 

infections caused by P. aeruginosa, C. difficile and S. aureus. However, other than probiotics for C. difficile, this 

first wave will likely best serve as adjunctive or preventive therapies. This suggests that conventional antibiotics 

will still be needed. The economics of pathogen-specific therapies must improve to encourage innovation, and 

greater investment into A2As with broad-spectrum activity (e.g. antimicrobial-, host defense- and, anti-biofilm 

peptides) is needed. Increased funding, estimated at >£1.5 bn over 10 years is required to validate and then develop 

these A2As. Investment needs to be partnered with translational expertise and targeted to support the validation 

of these approaches at Clinical Phase II proof of concept. Such an approach could transform our understanding of 

A2As as effective new therapies and should provide the catalyst required for both active engagement and 

investment by the pharma/biotech industry. Only a sustained, concerted and coordinated international effort will 

provide the solutions needed for the next decade. 
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Introduction 

Given the rise of antibacterial resistance and the challenges of conventional antibacterial agent discovery and 

development that have led to a very limited pipeline of new therapies, especially for Gram-negative bacterial 

infections, it may be prudent to consider the potential of non-conventional approaches.1-2 A review delivered by 

24 scientists from academia and industry was commissioned by the Wellcome Trust and jointly funded by the 

Department of Health to consider the prospects for alternatives to antibiotics (A2As). While there have been 

technical reviews of individual alternative approaches,3 this review seeks to define the current state of A2As at 

the portfolio level, prioritise approaches, and provide evidence-based expectations for their delivery in order to 

inform funding decisions and policy in this crucial area of healthcare. 

A2As were defined as non-compound approaches (that is, products other than classical antibacterial agents) that 

target bacteria or approaches that target the host. Thus an antibody targeting a virulence factor or quorum sensing 

would be included but a compound targeting these processes would not.4,5 Biologicals or compounds targeting the 

host were included. This review focused on therapies that could be developed to treat systemic/invasive rather 

than superficial infections and is therefore limited to therapies that are administered orally, by inhalation or by 

injection. External topical administration was beyond its scope. The primary objective was to identify and review 

prospective therapeutic replacements for antibiotics. Alternatives that could be used in combination with 

conventional antibiotics and prophylactic approaches were also considered.  

The review considered 1. Feasibility of informative clinical trials; 2. Magnitude of medical potential; 3. Likelihood 

and consequences of resistance; 4. Level of current research activity; 5. Likely timeline to registration, and 6. 

Activities that might enable validation and progression. The review process comprised (a) preparation of a ~50-

page working document summarising 19 current A2A within the scope of the review, (b) a meeting to review and 

prioritise approaches, and (c) collective preparation of a report for the funders which is summarised in this review. 

This allowed the group to compile and share broad and well-informed views on the state-of-the-art for A2As with 

a wider community.  

 

Text Box 1. Search strategy and selection criteria 

The review benefited from expert summaries and non-confidential information on approaches and 

projects provided by its members as well as comprehensive literature and database searching which was 

used to identify approaches, projects, companies and publications to inform the group. All current and 

ongoing projects identified that were within scope were included in the portfolio review. Historic projects 

informed the review but were not included in the portfolio analysis. 

Preclinical and clinical projects were identified through a series of searches of PubMed, the internet using 

Google and ClinTrials.gov up to 27 February 2015, by use of key terms such as “antibody”, “probiotic”, 

“lysin”, “bacteriophage”, “vaccines”, “antimicrobial peptide”, “lantibiotic”, “host defense peptide”, 

“innate defense peptide”, “antibiofilm peptide”, “immunomodulation”, “immune stimulation”, “immune 

suppression”, “vaccine”, “liposome”, “chelation” and, if necessary, their use with “E. coli OR P. 

aeruginosa OR K. pneumoniae OR A. baumannii OR C. difficile OR S. aureus OR infection OR bacteria” 

followed by inspection of the papers and top 30 websites listed. Once proteins or compounds (Tables 1 

and 2) and the organization developing them had been identified, their names were used for additional 

searches e.g. “Merck”. “MedImmune”, “Aridis”, “Seres”, “Rebiotix”, “Shire”, “Viropharma”, “Intron 

Biotechnology”, “ContraFect”, “Ampliphi”, “Phico”, “Akthelia”, “Sanofi Pasteur”, “Valneva”, “Pfizer”, 

“Roche”, “Novacta”, “Adenium” and the associated company website overview, pipeline and news 

pages. The state of alternative project pharmacology was assessed by searches of PubMed for articles to 

27 February 2015 by use of terms “pharmacokinetic OR safety” with “human OR mouse OR rat” in 

combination with “host defense peptide”; “antibiofilm peptide”; “lantibiotic”; “bacteriophage”; “lysin” 

and in the case of antimicrobial peptides “antimicrobial peptide” with “pharmacokinetic OR safety” and 

“E. coli OR P. aeruginosa OR C. difficile OR S. aureus” followed by inspection of the 238 papers listed. 

We also reviewed studies cited in articles identified by this search and included them when relevant. The 

primary focus of the review was on non-compound approaches that target bacteria and any approaches 

that target the host to provide alternatives to antibiotics and to address antibiotic resistance. Projects 

using compounds to directly target bacteria were excluded. This meant that compound-based approaches 
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targeting efflux pumps, regulators of transcription and antibiotic resistance breakers were excluded from 

this review. During the Lancet ID review process and in response to reviewer comments the searches 

were repeated and additional references added. Literature on potential modulators of innate immunity 

was identified by PubMed searching "TLR2, TLR4, NLRP3, AIM2, C5-cleavage" each in combination 

with "E. coli OR P. aeruginosa OR K. pneumoniae OR A. baumanii OR C. difficile OR S. aureus OR 

infection OR bacteria". The titles of the first 500 papers for each search were inspected for relevance and 

selected papers reviewed in detail. In addition, searches were refined by adding additional key words 

"agonist OR agonist OR inhibitor OR monoclonal OR polyclonal OR knockout" and the first 200 paper 

titles inspected for relevance. Further searches including the list of bacteria along with "innate immunity 

antibiotic resistance" with or without the keywords "TLR2, TLR4, NLRP3, AIM2, C5-cleavage" were 

performed and the first 200 paper titles inspected for relevance. Group members also provided key 

relevant references on modulating innate immunity that were known to them. 

 

The portfolio of alternative approaches 

The group identified 19 A2A approaches for consideration and recognised that the list may be incomplete (Tables 

1 and 2). Projects were not reviewed in sufficient detail to make individual funding recommendations. Technical 

feasibility and clinical potential of the approaches were considered at a high level across all the projects but the 

commercial attractiveness, potential return on investment, or potential for reimbursement of specific projects were 

not analyzed. Given the wide range of views within the group, this review does not represent a unanimous 

consensus. We recognise that perspectives differ, that there are gaps in available data, and that science will 

continue to advance. This review should be taken as a snapshot of A2As and their perceived potential. Ten 

alternatives were prioritised and considered in more detail (Table 1). The other 9 approaches were not prioritised 

at this time because (i) other projects were considered more advanced in the translational pipeline and/or (ii) there 

was insufficient peer-reviewed information to assess their potential clinical impact, feasibility, or safety (Table 

2).  

The potential of the top 10 approaches, with the exception of the recently discovered antibiofilm peptides, has 

been known for more than a decade but has not led to therapeutic breakthroughs for systemic treatments for 

reasons that are not entirely clear.104 New vaccines have been the most notable successes but are of course 

prophylatic.105  

The top 10 approaches which the group considered merited attention were placed into two tiers. The focus within 

Tier 1 was on clinical development and in Tier 2 on preclinical development over the next 5 years. The main 

reason peptides are not included in Tier 1 is that virtually all clinical trials to date were for topical usage while 

this review considers largely systemic usage. Success of Tier 1 projects in Phase II and Phase III studies could 

transform the perception of the A2As portfolio. Access to funding through key preclinical and clinical 

development steps (e.g. production and characterisation, formulation, pharmacokinetics and pharmacodynamics, 

toxicology and safety pharmacology) with subsequent publications showing how these data support continued 

drug development was considered to be critical to progress towards clinical validation and to build confidence in 

the field. Supported studies should define and test clear go/no-go decision points for product progression. 

Primarily in vitro programmes of work or those focused entirely on surrogate endpoints e.g. characterising 

cytokines rather than pathology or microbiology may not be competitive.  

Application of “major pharma” development resources and expertise will be critical to validation and progression 

of A2As in a timely manner. Reliance on the academic and biotech communities alone may not be sufficient to 

provide new products within a decade. Application of best practices in the definition of target product profiles, 

rigorous target validation, understanding bacterial species and strain differences, the mechanisms and 

consequences of resistance, differences in rodent and human responses, time and resources to adequately optimise 

and characterise potential products as they progress through in vitro and in vivo efficacy, safety and toxicology 

assays will all collectively contribute to a greater chance of success or at least enable definitive and evidence-

based decisions to stop exploring unproductive approaches.  

Unfortunately, and in contrast to classical antibiotics, the predictive value of preclinical studies for host-directed 

therapies may be limited. In particular, some A2As act via the immune system and this may mean that greater 
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preclinical use of non-human primates will be required.106 This all increases risk and averts funding. However, 

failure of the early clinical studies should not be allowed to block future exploitation.  

Based on a combination of high clinical impact and high technical feasibility, the approaches anticipated to have 

the greatest potential to provide A2As were: (a) phage lysins as replacements; (b) vaccines as prophylactics; (c) 

antibodies as prophylactics, and (d) probiotics as treatments or prophylactics for Clostridium difficile- and 

antibiotic- associated diarrhoea (CDAD/AAD). Bacteriophages (wild-type and engineered) were also considered 

to have potentially high impact as replacements but the feasibility of their entry into the market was unclear. 

Selected immune stimulation approaches were considered feasible as broad-spectrum prophylactics or adjuncts to 

conventional treatments but their clinical impact was also unclear at this time. 

Because of their potential for broad-spectrum activity, it was disappointing to find that antimicrobial peptides 

were best placed in Tier 2 rather than Tier 1. Antimicrobial peptides have been tested in clinical trials and failed 

but the tested products were focused on topical applications and, as such, are outside the scope of this review. The 

reasons for peptide “failure” at Phase III clinical trials and non-progression to product registration include lack of 

efficacy, non-superiority over standard care antibiotics and safety and it should be noted that the underlying 

reasons for these clinical outcomes have not been reported.107 We speculate that early attempts to deliver new 

therapies, and in particular peptides, were hampered by lack of investment, use of non-optimised peptides and 

insufficient development and clinical expertise.   

Some may consider past failure indicative of poor prospects for peptide-based therapies but the group took the 

longer term view that A2As, including peptides, are still an emerging field. For instance, there appear to be only 

6 published pharmacology studies (two for plectasin, two for lantibiotics and two for other peptides) in the 

antimicrobial peptide field, and two published safety studies across the fields of lysin, bacteriophage, 

antimicrobial-, host defense- and, antibiofilm- peptides.108-115 Thus, the literature base does not suggest a mature 

field. Most of the preclinical characterisation of projects remains proprietary with insufficient published peer-

reviewed evidence to understand the pharmacokinetic, pharmacodynamics, toxicology and safety strengths and 

liabilities of these approaches. Revisiting past programmes and applying new methods of PK/PD modelling could 

indicate improvements in dose regimens that could alter the outcome of new clinical trials.116Regulatory 

approaches to antibacterials also continue to evolve and may in the future permit narrowly focused programs in 

which some of these agents might better succeed.117  

A2As portfolio analysis 

To enable an evidence-based review of the current state of development and likelihood of success of the prioritised 

alternative approaches, extensive internet searching and knowledge within the working party were used to define 

the breadth (number of projects and targets) and depth (current phase of development) of the A2As portfolio. In 

particular, company websites and news releases were used to identify projects currently (Q1 2015) being actively 

progressed (Table 3). As companies quickly announce positive news but there may be a delay between companies 

halting projects and announcing project cessation in press releases or on websites, the project list is considered 

inclusive and likely to overstate rather than understate the active project portfolio. 

Industry standard timelines for clinical development phases (Phase I - 1 year, Phase II - 2 years, Phase III - 3 

years, and Registration - 1 year) were used to estimate the earliest likely date of product registration. 1, 132–133 The 

estimated year of registration will thus likely differ from a particular sponsor’s estimates or project timelines. Host 

defense peptides and antibiofilm peptides were excluded because they were too early for this analysis.  

Similarly, industry-standard probabilities of success across projects in different phases of development(preclinical 

to Phase I – 23%, Phase 1 – 45%, Phase II – 47%, Phase III – 71%, and Registration – 90%) were applied. 1, 132–

133 The estimates of the probability of success for individual projects within the class were summed. Values >100% 

for a given category indicate that there are sufficient project numbers and/or project maturity to anticipate that at 

least one product could be registered if access to sufficient funding and skilled development resources is provided.  

Industry standard costs for clinical development phases (Phase I - £6m, Phase II - £10m, Phase III - £45m, and 

Registration – £1.3m) were used to estimate the cost of portfolio projects. 1, 132–133 As with timing projections, the 

resulting estimated costs will likely differ from a particular sponsor’s estimates. 
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This uniform approach was taken because (a) similar levels of project planning data are not available for all 

projects, (b) when available, project-specific timelines developed by sponsors often shift, and (c) use of standard 

timelines allows uniform (re)calculation of the data as required. 

The strength of this type of analysis is that it removes any personal bias but its weakness is that it is almost always 

incorrect in the specifics of its details. 

Analysed by approach, the pipeline for antibodies, probiotics and vaccines was sufficient to anticipate success as 

the probability of registration is >100%. However, for other alternative areas there are too few projects ongoing 

and/or they are currently too early to allow for anticipated project attrition. For instance, on the basis of the current 

portfolio, we cannot assume that lysins, bacteriophages or antimicrobial peptides will contribute to new therapies. 

It is important to note that most of the current novel activity is focused on C. difficile, P. aeruginosa and S. aureus 

only. The timeline analysis suggests that if successful, registrations might be: antibodies – 2017; probiotics – 

2018; vaccines – 2019; immune stimulants 2021; lysins and antimicrobial peptides – 2022; bacteriophages – 2023; 

and host defense and antibiofilm peptides from 2027 onwards.  

When analysed by pathogen, the ‘probability of success’ analysis indicates that if the alternative portfolio is 

adequately funded, we could expect two new products (antibody, probiotic or vaccine) for CDAD/AAD by 2019; 

one for P. aeruginosa (antibody or vaccine) by 2021, and one for S. aureus (antibody, lysin, or vaccine) by 2022. 

The current portfolio lacks sufficient breadth and depth to anticipate multiple new products for these pathogens 

during this time frame. It is a matter of concern that there is little activity on the other ESKAPE pathogens (e.g., 

Enterococcus, Klebsiella, Acinetobacter or Enterobacter) or directed towards other Enterobacteriaceae. This 

indicates that it is most unlikely that A2As for these life-threatening pathogens, and others, will emerge in the 

next 10 years.  

As the portfolio advances through the later development phases, costs will increase and innovative funding 

arrangements will be required to maintain momentum given that most pharma companies have withdrawn from 

the “antibiotic arena”.  

The group recognised that by 2018/2019 we could anticipate observing success in multiple projects at Phase II 

and that this could encourage greater investment in the sector. New projects starting in 2018/2019 might be 

expected to reach registration by 2030.  

The group found that A2As have the potential to deliver clinical benefit but the scale of current activity and 

availability of funding will have to increase substantially to achieve that benefit. 

What will the portfolio cost? 

To estimate funding requirements, the named projects from Table 3 were budgeted to 2025 using industry standard 

costs for clinical development phases. Although some organisations may currently aim to deliver with smaller 

budgets, the application of standard costs serves to reflect prior reality for delivery and to remove bias.  

The funds for the current phase of the project are assumed to be in place and committed. By adding the cost of 

each subsequent stage that each project has to pass up to registration and application of the risk estimates at each 

stage of development, as described above, the risk-adjusted funds required to registration were calculated. 

Where the alternative project portfolio is too thin or early to anticipate success, additional funding is required to 

strengthen the portfolio. A key objective should be to test A2As at Phase II to validate the approach. To adequately 

understand the clinical potential of an approach it may be necessary to take several projects that represent the 

approach into Phase II. The lysins, bacteriophage and antimicrobial peptides approaches have advancing projects 

but there are currently too few projects to be able to anticipate adequate testing of the concepts. They require 

additional investment to build capacity and translational expertise to exploit their full potential.  

Allowing for anticipated project attrition, a pipeline to support the evaluation of a single project at Phase II would 

require 9 preclinical projects at £12.5 m/project over 5 years, leading to two Phase I and potentially one Phase II 

study with a total budget of £135m. Any funding should be dependent on the results being peer reviewed and 

accessible via open access publication to provide the requisite evidence-base to inform future R&D. 
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The host defense and antibiofilm peptide approaches are attractive because of their broad spectrum potential. It 

may be necessary to advance the first wave of these innovative projects beyond Phase II to validate the approaches 

and to convince pharma, investors and clinicians. A greater level of investment (£575m) would be required to 

build a pipeline of host defense peptide and antibiofilm peptide projects because they are currently in an early 

stage of development. An estimated 34 preclinical projects are required to provide 8 Phase I and 4 Phase II studies 

to get at least one project through to Phase III and product registration (Table 4). There are several natural and 

synthetic host defense peptides and antibiofilm peptides as potential starting points. Chemical modifications, 

hybrid peptides and chemical mimetics could be explored.134, 135 Project creation and translational research in this 

area could be accelerated by committing £85m/year for 5 years. This would provide a powerful incentive to build 

capacity and to progress towards clinical validation of these peptide based approaches. 

Our analysis assumes that funding for named projects of £227m is available to complete their progression 

through their current project phase. Additional risk adjusted funding of £48 m will be required for subsequent 

phases and should support development of one new product for each of P. aeruginosa, C. difficile and S. aureus 

by 2022. This level of investment would enable validation of antibodies, probiotics, and novel vaccines as 

A2As.  

The lysin, bacteriophage and antimicrobial peptide portfolios need to be increased in order to adequately test these 

approaches in a timely manner. This could be achieved with risk adjusted investment of £405m. Building an 

adequate host defense peptide and antibiofilm peptide portfolio will require £604m.  

The working party therefore identified ~£1.5 billion of risk-adjusted funding that will be required to validate and 

exploit the current 10 high priority A2A approaches in a timely manner. We did not forecast the funding 

requirements for the remaining 10 approaches or for additional blue-sky activity to add to the pipeline in the 

future.  

Challenges to developing and deploying A2As 

1. Innovation must be linked to translation expertise  

The innovators in this space (largely academics and biotechs) often lack industry-level development and clinical 

skills. Hence, increased funding needs to be partnered with investment in translational skills development. A2A 

programmes may benefit from greater access to PK/PD, formulation, toxicology and manufacturing expertise. 

Provision of adequate funding for the multi-disciplinary teams and costs associated with the preclinical 

characterization and delivery of competitive lead candidates for clinical development will be a critical factor for 

success. Pre-competitive partnerships and the creation of development hubs might be one way to support this area. 

Calls to tender for and purchase desired research and development activities from contract research organisations 

and pharma on behalf of the academic and SME/biotech alternative community is another innovative way to 

support this area. Such activities might encourage industry to become involved in a manner that develops both 

critical mass and sustainability. 

2. Clinical Trials 

Careful clinical trial design will be critical. Projects need to ensure that endpoints are relevant to both the patient 

and the physician, often but not necessarily exclusively based on endpoints grounded in how patients feel, function 

and survive. Unless the clinical signal is strong, there is a risk that the size and cost of the clinical trials required 

to demonstrate an incremental benefit will be too large to support. Thus, it will be important to be willing to 

terminate projects if clinical success is either low probability or likely to have low impact. This could have been 

one reason for the cessation of previous peptide trials. As with trials of new antibiotics, surrogate endpoints that 

are predictive of clinical efficacy should be included as secondary endpoints (e.g., changes in cytokine levels or 

changes in imaging of infections) but are unlikely to be acceptable as the basis for registration for life-threatening 

infections. 

3. Economic models in this therapy area must be improved 

In addition to adequate funding and expertise, development and deployment of alternative antibacterial medicines 

is dependent on a return on investment. The working party did not consider the economics of A2As but noted that 

replacing antibiotics will be a major challenge. At present, many of the A2As are pathogen- or strain-specific. By 

comparison, most modern antibiotics have a broad spectrum of activity. For example, the recently approved 

combination of ceftolozane and tazobactam, for cIAI, cUTI and pyelonephritis, has clinical efficacy data for 10 

pathogens including Klebsiella spp, Escherichia coli and Pseudomonas aeruginosa with clinical microbiology 
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suggesting potential against another 20 pathogens.136,137 Multiple alternative therapies would be required to 

provide similar spectrum of coverage. In the first instance, A2As are likely to focus on the most prevalent 

infections and may provide sufficient clinical benefit to ensure a return on investment. At best, they will be a 

partial replacement for antibiotics. 

4. Diagnostics/Theranostics 

The future role of innovative diagnostics, their use in combination with innovative targeted therapies (sometimes 

referred to as “theranostics”) and the likelihood or timescale of their delivery and costs were not within the scope 

of this review. However, the group recognised that for single species targeted therapies, these enablers will be 

critical for widespread clinical use and patient benefit and that their introduction into clinical practice would be a 

strong support as well for improved antibiotic stewardship.138  

5. Innovative regulation 

Innovative therapies may require innovative regulation.117 Bacteriophage therapies currently in development are 

an example of the kind of product driving the evolution of regulatory approaches. Broad conversations about 

options for the unique challenges of each alternative are required: a recent workshop hosted by EMA on 

bacteriophage is an example of how this work needs to be progressed.139  

6. Flexible delivery models 

Some A2As could be delivered by different mechanisms to those currently used for traditional antibiotics. Instead 

of a single global manufacturing pipeline, the development of localised services akin to blood transfusion or stem 

cell harvesting and transplantation could facilitate patient benefit and should be considered. For example, localised 

bacteriophage therapy attuned to patient need within a hospital might be an appropriate model for some products. 

7. One Health: the potential for alternatives in animal health 

All of the A2As have potential uses in animal health and demonstration of efficacy in companion and agricultural 

animals could be important steps in de-risking an approach before its clinical development in humans. The 

anticipated costs for many of the approaches may however, be prohibitive for animal use. Commitment to 

substantial subsidies may be required to incentivise alternative development for animal health where their use 

could contribute to reduction in antibiotic use. Epibiome is an example of a company targeting animal health with 

bacteriophages before human use but their programmes are too early to be included in this review.140  

8. Conventional antibiotics will still be needed 

At least initially, many of the A2As are likely to be trialled and used as adjuncts to antibiotics because their 

activities may not provide sufficient therapeutic benefit on their own. While effective antibiotics are still 

available it may prove difficult to demonstrate superiority over standard of care when comparing an antibiotic 

with an antibiotic plus an A2A adjunct treatment. If resistance to the antibiotic develops, then its use in 

combination therapies will be compromised. A2As which are primarily adjunctive therapies may have narrow 

window of opportunity in which to demonstrate benefit. In the longer term, it may be possible to demonstrate 

that combinations of A2A therapies could be used without antibiotics. 

9. We anticipate that deployment of Alternatives will: 

I. In some cases entail reliance on improved and faster diagnostic technology to enable targeting of 

individual bacterial species, or even strains of species, rather than clinical indications. 

II. Be more often used for prophylaxis than for treatment. 

III. Require multiple products to replace a single antibiotic. 

IV. Involve substantially higher costs than for traditional antibiotics. 

V. Require access to sufficient and sustained funding to enable timely R&D and prompt clinical 

evaluation. 

 

Future outlook 

The objective of this portfolio review was to define which Alternatives to Antibiotics are most likely to deliver 

new therapies with clinical utility. The group recognised that academic researchers and industry have successfully 

generated a diverse portfolio of potential A2As comprising projects from preclinical optimisation to Phase III 
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studies and prioritised 10 approaches for more detailed review. The field is still emerging and holds promise 

provided that adequate funding is available to build capacity and a preclinical evidence-base is created to enable 

prioritisation and to progress optimised drugs to critical Phase II validation.  

There was little doubt that the field might deliver new medicines for P. aeruginosa, S. aureus and C. difficile. 

However, other than probiotics for C. difficile, this first wave of new agents is likely to serve best as adjunctive 

or preventive therapy. Therefore, traditional antibiotics will still be required.  

If we have to depend on A2As in the future, we need to build capacity now and substantially increase the 

throughput of projects.141 The working party estimated that the priority A2A approaches alone require an 

investment of at least £1.5bn, committed in the next 5 years and spent within 10 years to initiate a pipeline of 

translational projects that would deliver these new therapies. An investment of this scale will enable a better 

understanding of which approaches are most likely to deliver and ideally identify those that will not. Additional 

investment will be required to bring products to market and into clinical use. Longer term significant and 

sustainable funding will be required to advance and exploit the wider A2A portfolio. Policy and funding must 

now be linked. Without adequate funding we must assume that new treatments to replace and/or supplement 

antibiotics will not be available for more than a decade, if at all, and the consequences of such a prolonged delay 

for global healthcare systems needs to be considered now.  Our analysis of just a subset of all of the activities that 

could contribute towards the fight against antimicrobial resistance suggests that funding is now the key limiting 

factor that is stalling a global response. Antimicrobial resistance has to become a major international science 

programme in order to deliver the solutions that society needs now. By comparison the Large Hadron Collider 

project cost ~£6bn and the International Space Station £96bn. 142, 143 Antimicrobial research and development to 

address the problem of antibiotic resistance probably requires an effort somewhere between the two.  

Key Messages (as a text box) 

 Alternatives to antibiotics: Non-compound approaches that target bacteria or approaches that target the 

host to treat bacterial infection 

 Academics and industry have created at least 19 approaches that need to be further evaluated 

 Understanding the potential of A2As will require experimental clinical medicine and not just drug 

discovery 

 Enhanced translational expertise must be deployed to aid validation and progression of these A2As 

 Exemplar projects must be advanced to Clinical Phase II to enable validation of approaches 

 Antimicrobial resistance needs to grow into big science to deliver new innovative therapies 

 The Large Hadron Collider project cost ~£6bn and the International Space Station £96bn: antimicrobial 

research and development to address the problem of antibiotic resistance probably requires an effort 

somewhere between the two. 
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Tables 
Table 1. Prioritised alternative approaches 

Alternative 

Approach 

Comment Likely 

spectrum of 

activity and 

initial use 

Recommendation 

over the next 5 

years 

Refs 

Tier 1 (Primarily translational - funding to clinical evaluation at Phase 2)  

Antibodies Antibodies that bind to and inactivate a pathogen, its virulence factors, 

or its toxin(s) were widely considered one of the alternative 
approaches most likely to have major clinical impact. Antibodies were 

considered a relatively low risk area with strong underpinning science, 

safe history of use, and a high degree of technical feasibility. 

Prevent 

G+ and G- 
infection, 

possibly also 

adjunct use 

Basic R&D and 

Translational 

4, 

6–13 

Probiotics Probiotics are defined as “live microorganisms which when 
administered in adequate amounts confer a health benefit on the host 

organism”. It is considered likely that defined mixtures of bacteria or 

the use of non-toxigenic spores of C. difficile will provide therapeutic 
and prophylactic therapies that will improve on current clinical 

practice for the treatment of CDAD/AAD. Basic research to 

understand the mechanism of action of probiotics in different settings 
and how they might be used in combination with antibiotics and other 

A2As e.g. bacteriophages could enable their wider use in other 

indications. 

Prevent 
or treat 

CDAD/AAD 

Translational 14–
18 

Lysins Phage lysins are enzymes used by bacteriophages to destroy the cell 
wall of a target bacterium and are potential replacements for 

antibiotics because of their direct antibacterial action, and also as 

adjuncts because they act to reduce bacterial burden and/or weaken 
biofilms. Emphasis on Lysins active against Gram-negative pathogens 

would be beneficial. 

Treat G+ 
infection 

Basic R&D and 
Translational 

19–
27 

Wild-type 

Bacteriophages 

Wild-type bacteriophage that infect and kill bacteria have the potential 

to replace antibiotics for some indications. Bacteriophage may be used 
in a comparatively small dose because they replicate when their host 

bacterium is present. During treatment of an infection they may also 

evolve to infect the strains causing the disease. This replication and 

evolution makes them unique in pharmaceutical product development. 

In terms of pharmacology, the subject experiences more product than 

was dosed and that product can change over time so that what is 
sampled after dosing is not exactly what was given to the patient. 

Treat 

G+ and G- 
infection 

Basic R&D and 

Translational 

28–

32 

Engineered 

Bacteriophages 

The ability to genetically engineer phages with new properties for 

therapeutic use is strong. Early indications are that many of the 

challenges associated with mixtures of wild-type phages, such as 
breadth of strain coverage, development of resistance, and rapid 

elimination after systemic administration could be addressed. One of 

the advantages of non-replicating phages might be in dose selection 
but there could be issues with exposure to the larger doses of non-

replicating phage required to treat infection.  

Treat 

G+ and G- 

infection 

Basic R&D and 

Translational 

33–

36 

Immune 

Stimulation 

Successful antimicrobial therapy depends on a supportive immune 

response. Immune stimulation has been proposed as a potential 

adjunct approach in conjunction with antibiotic therapy. Re-purposing 

of phenyl butyrate and vitamin D to enhance expression of innate 

antimicrobial peptides seems feasible.  

Oral bacterial extracts are registered and used clinically to reduce the 

incidence of respiratory tract infections in some at risk groups in some 

regions. If successful, additional clinical trials to confirm their 

efficacy in other populations would encourage wider use. The 

mechanisms by which these extracts might work are unclear but may 

involve Toll-Like Receptors e.g. TLR2 and TLR9. Once this is 

understood, it may be possible to devise targeted interventions. 

The working group focused on evaluation of repurposed drugs for 

immune stimulation rather than evaluation of  early translational 

research in this area. In general, there was insufficient target validation 

for bacterial infection, a high potential for side effects, variable 

responses/polymorphisms in patient populations, and bacterial species 

and strain specific responses. The clinical development path for host 

targeted therapies is also likely to require the use  of non-human 

primates during product development. 

Prevent or 

provide 
adjunct 

therapy for 
G+ and G- 

infection 

Basic R&D and 

Translational 

37–

45 

Vaccines With potential to substantially reduce the incidence of infection and 
therefore the need to use antibiotics, the long established investment 

Prevention, 
G+ more 

Basic R&D, esp. 
on new adjuvants 

46–
60 
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in vaccines for new targets should continue. Given the ageing human 

population, we need better knowledge of the potential for vaccination 

in the elderly and how to dose to achieve protection in immune 
compromised individuals. 

than G- 

infection 

Tier 2 (strong support for judicious funding while monitoring for breakthrough insights regarding systemic therapy) 

Antimicrobial 

Peptides 

(AMPs) 
 

 

The advantages of AMPs are their broad spectrum activity which 

includes most major Gram-negative and Gram-positive bacteria; their 

bactericidal and rapid action; low target-based resistance and their 
lack of immunogenicity. The extensive academic literature and early 

clinical trials have not yet led to a therapeutic breakthrough for 

systemic treatments. It will require studies aimed at understanding 
why they have largely not been utilized systemically (e.g. toxicity, 

cost, lability to proteases, etc) and how to overcome these deficiencies 

(e.g. formulation, redesign or use of non-natural amino acids, etc). In 
some instances topical application e.g. by aerosol might supplement 

systemic therapy. The reasons why projects were stopped are not in 

the public domain. Public-private partnerships to fund and test the 
potential of AMPs in well-designed clinical trials and to publish the 

outcomes will be necessary to inform future investment into this 

approach.  

Treat or 

Adjunct for 

G+ and G- 
infection 

Translational 61–

72 

Host/Innate 

Defense 

Peptides 

(HDPs/IDRs) 

Host defense peptides and innate defense regulators are small natural 
peptides or synthetic peptides respectively, which have indirect 

antimicrobial effects. They act primarily by increasing expression of 

anti-inflammatory chemokines and cytokines, and by reducing the 
expression of pro-inflammatory cytokines. Additional resources are 

required to accelerate their preclinical evaluation and progression into 
clinical trials to provide clinical validation of the approach. Targeting 

host responses could carry a greater risk and introduce the 

complication of distinguishing and understanding the immunological 
differences between rodents and humans at the population level.  

Adjunct for 
G+ and G- 

infection 

Basic R&D 36, 
73–

76 

Antibiofilm 

Peptides 

Peptides that specifically inhibit bacterial biofilm formation have been 

identified and are in preclinical development. Their use as adjunctive 

therapy could improve outcomes. 

Adjunct for 

G+ and G- 

infections 

Basic R&D 77, 

78 

G+ = Gram-positive, G- = Gram-negative, Basic R&D = provide support for fundamental research and preclinical 

proof of concept studies to validate approaches and extend into early translational work to characterise efficacy, 

pharmacology, pharmacodynamics and preliminary toxicology so that potential liabilities can be defined. 

Translational = focus support on bringing products into the clinic.  
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Table 2: Additional alternative approaches 

Alternative Approach Comment Refs 

Immune Suppression A bacterial infection can lead to an excessive host innate immune response (ranging from the 

systemic inflammatory response syndrome (SIRS) to septic shock) in which the injury to the 

host is made much worse by the host’s pro-inflammatory cytokine response. Selective 
manipulation of this cytokine response has the potential to be used in synergy with antibiotics 

to reduce pathogen-induced tissue damage mediated by cytokines and neutrophils, and to 

accelerate the time to patient recovery. The medical need is high but past failures of Phase III 
clinical trials, despite promising preclinical, Phase I and Phase II data, suggests that this area of 

sepsis and septic shock carries a great risk and has therefore not been prioritised. New concepts 

are needed to develop novel small as well as large molecule drugs for this high mortality area 
of infection whose incidence is increasing. In contrast to antibiotics, the healthcare sector 

would pay a large premium for a drug that was effective at reducing morbidity and mortality. 

The immune system is complex and changing the balance of pro- and anti-inflammatory 
activities in the context of bacterial infection in order to achieve a therapeutic benefit will 

require new paradigms of thinking in systems biology.  A detailed academic review of this area 

was beyond the scope of this review. 

36, 

79–82 

Anti-resistance nucleic 

acids 

Antibiotic resistance genes are frequently spread by highly transmissible plasmids, particularly 
in Gram-negative pathogens. Effective removal of resistance genes could resensitise bacteria to 

conventional antibiotics. Some perceive that this approach may not reach all of the resistance 

targets in a complex environment (e.g. gut or abscess) in the absence of selection, while 
containment of a transmissible genetically modified vector that delivers the anti-resistance 

nucleic acid in an open system could face significant regulatory challenges. 

83–88 

Antibacterial nucleic 

acids 

The use of nucleic acids to directly kill bacteria is being explored in a variety of formats in both 

academia and biotech. In terms of their therapeutic potential, studies are at an early stage. At 
the very least, these tools will continue to be developed to support fundamental microbial 

genetics studies. 

87–89 

Toxin sequestration using 

liposomes 

Pathogens often secrete toxins that damage mammalian cells and drive inflammation. 

Administration of liposomes to act as decoys for toxin binding has been shown to reduce 
damage to cells and reduce disease severity. 

90 

Antibiotic-degrading 

enzymes to reduce 

selection of resistance 

When antibiotics are eliminated via the gut, exposure of the normal gut bacteria to the 

antibiotic may lead to development of resistance and drive CDAD/AAD. Phase II studies 

demonstrate that oral beta-lactamase can destroy beta-lactams in the faeces. The perceived 
challenge of demonstrating the clinical benefit of degrading enzyme administration at Phase III 

led to this approach not being prioritised. 

91-94 

Metal Chelation Bacterial pathogens require zinc, manganese and iron ions to fully express their 

pathogenicity/virulence, biofilm formation and multiple essential enzymatic and metallo-beta 
lactamase activities. Metal chelation may deny pathogens these key processes. Discussion with 

pharmacologists and toxicologists suggests that this approach is speculative and could present 
safety concerns. 

95-99 

Alphamers  Alphamers are immune modifiers comprising an α-Gal epitope fused to a bacterial pathogen 

binding aptamer to redirect endogenous anti-Gal antibodies to the pathogen and hence enhance 

immune clearance. 

100 

Apheresis of protective 

antibodies 

In some patients with P. aeruginosa lung infection, antibodies bind to the pathogen and protect 
it from serum-mediated killing. Depletion of these antibodies restores the ability of serum to 

kill bacteria and initial clinical data suggest an improved clinical outcome. 

101 

Immune Stimulation by 

P4 Peptide 

Phagocytic killing of bacteria can be enhanced by P4 Peptide, a chemically synthesised 28 

amino acid peptide derived from the S. pneumoniae surface exposed virulence factor PsaA. P4 
peptide stimulates opsonophagocytic uptake and killing in invasive disease models of S. 

pneumoniae infection in mice. The combination of P4 intranasally and i.p. IgG provided 100% 

survival in the mouse model and significantly reduced bacterial burden. A therapy based on P4, 

IgG and antibiotic is proposed. However, additional evidence may be required to support the 

use of iv IgG in severe pneumonia. The project recently received MRC DPFS funding to 

progress to Phase I studies. 

102, 

103 
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Table 3. A2A Portfolio Review as at Q1 2015 

Approach Probability of 

Registration by 

2025+ and Sponsor 

Risk Adjusted Cost of 

Projects  
(current/subsequent 
phases) 

and Target 

Pipeline investment to 

enable additional Phase 2 

validation#, Name and ref. 

Phase at Q1 2015 Earliest 

Anticipated 

Registration* 

Antibodies 183%+ £60m/£120m -   

 Merck C. difficile Bezlotoxumab119, 120 P3 ongoing 2017 

 MedImmune  S. aureus MEDI48936, 120 P2 ongoing 2021 

 Aridis P. aeruginosa AR-101121 P2a complete 2021 

 Aridis S. aureus AR-301121 P2a ready 2022 

 MedImmune P. aeruginosa  MEDI39029 P1 ongoing 2023 

 XBiotech S. aureus 514G313 P1 ongoing 2023 

 Aridis P. aeruginosa Aerucin10 IND ready 2025 

Probiotics 124%+ £52m/£53m -   

 Seres C. difficile SER-109122 P3 ready 2018 

 Rebiotix C. difficile RBX2660123 P2 ongoing 2019 

 Shire (Viropharma) C. difficile VP20621124 P2 ready 2022 

Lysins 26%+ £12m/£28m £135m   

 Intron 

Biotechnology 

S. aureus SAL20027 P1 ongoing 2022 

 ContraFect S. aureus CF-30119 P1 ongoing 2022 

Bacteriophages 9%+ £13m/£57m £135m   

Wild-type      

 AmpliPhi C. difficile AmpliPhage-004125 Pre-P1 2023 

 AmpliPhi P. aeruginosa AmpliPhage-001125 Pre-P1 2023 

Engineered      

 Phico Therapeutics P. aeruginosa PT-3.136 Pre-P1 2023 

Immune 

Stimulation 

43%+ £0m/£55m -   

 Akthelia C. difficile Phenylbutyrate/vitD38,40 P2 ready 2021 

 - Various Bacterial extracts43 P1 ready 2022 

Vaccines 188%+ £74m/£66m -   

 Sanofi Pasteur C. difficile C. difficile toxoid vaccine126 P3 2019 

 Valneva P. aeruginosa IC43127, 128 P2/P3 ongoing 2019 

 Valneva C. difficile IC84128 P2 ongoing 2021 

 Pfizer S. aureus SA4Ag129 P2 ready 2021 

Antimicrobial 

Peptides 

52%+ £16m/£104m £135m   

 Roche P. aeruginosa POL7080130 P2 ongoing 2022 

 Novacta Biosystems C. difficile NVB302131 P1 ongoing 2022 

 Adenium S. aureus AP-13864 Pre-P1 2023 

 Adenium UTI AP-13964 Pre-P1 2023 

 Adenium C. difficile AP-11464 Pre-P1 2023 

Other Peptides - - £604m   

 - Gram-ve and Gram+ve - Preclinical 2027 

The A2A portfolio contains 25 projects representing 8 alternative approaches from preclinical to Phase III 

studies at 18 companies from 6 countries. The probability of registration for a single project is estimated by 

multiplying the probabilities of success through each stage of development from its current position to 

successful registration. The probability of registration of a product from an approach is estimated by summing 

the individual project probabilities. An approach with a probability of registration greater than or equal to 100% 

suggests that if adequate funding and expertise is applied across the projects, then successful registration is 

anticipated from that category. The risk-adjusted cost of each project was estimated by applying standard project 

risks at each stage to the standard costs for each phase of development. The risk-adjusted cost for the approach 

was estimated by summing the individual project risk-adjusted costs. The cost per approach assumes that 

companies have the funds for the current phase of the project but have to justify the need for additional funds for 

further product development. The pipeline investment is an estimate of the funding required to enable new 

project activity to expand those approaches with insufficient activity to adequately test the concept of the 

approach at Phase II. The current phase of the projects, and if successful, the earliest date that registration can be 
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anticipated using standard metrics is shown. The group note that funding of ~£160 m into these projects has 

been secured during the last 12 months.13, 26, 122, 125 

 

Table 4: Estimate of the project pipeline cost for Host Defense and Antibiofilm peptides 

Phase Preclinical Phase I Phase II Phase III Registration Total 

Stage probability of success 23% 45% 47% 71% 90%  

Number of projects 34 8 4 2 1  

Cost of Phase £m 12.5 6 10 45 1.3  

Portfolio cost £m 425 48 40 90 1.3 £604 

The calculation used to estimate the costs of funding a relatively new alternative approach to provide sufficient 

number of preclinical projects to survive standard rates of attrition and to have a reasonable chance of product 

registration is shown.  
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