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1. Introduction

The Great Oxidation Event (GOE; Holland, 2002) represents the first
sustained appearance of free oxygen in the atmosphere. This event
which was fundamental to the evolution of complex, multicellular life
on Earth (Caitling et al., 2005; Lane and Martin, 2010) occurred at
~2450 Ma with a shift from prevailing atmospheric anoxia to more
oxic conditions (e.g., Lyons et al., 2014). This change is evidenced in
the geological record by the absence of detrital minerals that are unsta-
ble in the presence of oxygen, in sediments younger than the Archean.
These minerals are however common in older rocks (Frimmel, 2005;
Rasmussen and Buick, 1999). Moreover, mass-independent fraction-
ation (MIF) of sulphur isotopes [proposed to indicate a reducing atmo-
sphere (Farquhar and Wing, 2003)] has not been found in rocks
deposited since the earliest Proterozoic (Johnston, 2011) (Fig. 1).
Indeed, it has been shown that in order to inhibit theMIF of sulphur iso-
topes, atmospheric oxygenmust have risen to at least 1 × 10−5 present
atmospheric levels at the start of the Proterozoic (e.g., Kump, 2008;
Pavlov and Kasting, 2002).

Although it has long been argued that atmospheric oxygenation at
2450 Ma was driven by cyanobacterial photosynthesis (e.g, Canfield,
2005; Kopp et al., 2005), the Archean stratigraphic record contains
even older evidence of Archean oxygenic photosynthesis in the form
of distinct isotopic signatures (e.g., δ98Mo values that are consistent
with interaction with Mn oxides, and strongly negative δ13C) and bio-
marker molecules (indicative of cyanobacterial metabolic processes)
are preserved within sediments that were deposited hundreds of mil-
lions of years prior to the GOE (Planavsky et al., 2014; Rosing and Frei,
2004). Aside from these isotopic data, paleontological evidence in the
form of fossilised tufted microbial mats – which in the modern era are
dominated by cyanobacteria – are preserved in rocks as old as 2.72 Ga
(Flannery andWalter, 2011). The time lag between the onset of photo-
synthesis and the GOE suggests that other mechanisms are likely to
have operated ~2450 Ma to either increase the rate of oxygen produc-
tion, or alternatively, inhibit the ability of the Archean sinks to remove
O2 as it was photosynthesised.

Various mechanisms have been suggested to explain the lag be-
tween the onset of photosynthesis and the GOE (see review in
Kasting, 2013). For example, partial cessation of ultramafic volcanism
towards the end of the Archean aeon may have caused a decrease in
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theflux of nickel into the oceans (Konhauser et al., 2009). Limited nickel
supply could have arrested the activity of Archeanmethanogens leading
to a decrease in the amount of atmospheric methanewhichwould have
otherwise consumed photosynthetic O2. Alternatively, periods of conti-
nental collision and orogenesis may have been the trigger for the GOE
by increasing primary productivity in the oceans through increased
nutrient supply, as well as increasing organic carbon burial rates
(Campbell and Allen, 2008). Other models propose that increasing the
size of the early Proterozoic continental shelf seas during episodes of
continental rifting promoted organic carbon burial (Lenton et al.,
2004). A change in the nature of volcanic gases frommore reduced com-
positions during the Archean tomore oxidised compositions during the
Proterozoic has also been suggested as a cause of the GOE (Kump and
Barley, 2007). However, all these mechanisms have difficulty in
explaining the apparent abruptness (see Lyons et al., 2014 for an alter-
native interpretation) of the change at the time of the GOE.

Alternatively, it has recently been proposed that O2 released by the
reduction of volcanogenic SO2 (as sulphate ions in seawater) derived
from Proterozoic subaerial volcanism may have driven the GOE
(Gaillard et al., 2011). In this paper, we propose that the Matachewan
LIP represents the main volcanic event responsible for the initial oxida-
tion of the Earth's atmosphere. During volcanic eruptions, volatile spe-
cies dissolved in the magma are released to a degree that is dictated
by the confining pressure at which the eruption occurs (Gaillard et al.,
2011). In modern systems, significant degassing of sulphur does not
occur during subaqueous eruptions under confining pressures
N100 bars, but can be almost total during subaerial eruptions (Rhodes
and Vollinger, 2005). Empirically estimating the amount of sulphur
(andhence, SO2) released by ancient volcanic eruptions can be achieved
by comparing the compositions of degassed lavas with those of related
(but undegassed) subsurface magmas (Thordarson and Self, 2003).
Here we focus on the Kaminak dyke swarm, a key component of the
Matachewan LIP, preserved in the Central Hearne Supracrustal Belt, Nu-
navut, Canada (Sandeman and Ryan, 2008).

The Matachewan LIP is a reconstructed magmatic system of dyke
swarms, layered intrusions, and the eroded remains of one of the largest
continental flood basalt provinces in the geological record, fragments of
which are now preserved in North America and Scandinavia (Fig. 2)
(Ciborowski et al., 2015). The radiating geometry of the dyke swarms
and high volumes of mafic rock preserved in this LIP imply a mantle
plume origin for the magmatism (Ernst and Buchan, 2002). U\\Pb
ages for the different igneous suites show that magmatism began with
the intrusion of the dyke swarms and layered intrusions ~2495 Ma
(Vogel et al., 1998). Following the establishment of this crustalmagmat-
ic system, continental flood basalts were erupted on the Karelia, Kola,
Hearne, and Superior cratons. Crucially, the preserved flood basalts re-
cord eruptive ages of between ~2432 and ~2453 Ma (Ketchum et al.,
2013; Melezhik, 2006) with an average age of 2442 Ma (Table 1;
Fig. 1) – indistinguishable from age estimates of the GOE (Johnston,
2011). Given the remarkably coeval nature of the GOE andMatachewan
LIP volcanism, especially in light of previous studies that have
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/188254807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.lithos.2015.12.017&domain=pdf
www.elsevier.com/locate/lithos
http://dx.doi.org/10.1016/j.lithos.2015.12.017
http://creativecommons.org/licenses/by/4.0/


Fig. 1. Δ33S versus age. Note the prevalence of MIF of sulphur isotopes in rocks older than 2450 Ma and absence in rocks deposited after. Also plotted are age estimates for each of the
individual Matachewan LIP flood basalt formations (Table 1). Δ33S data from (Johnston, 2011). Superscripts: 1 – Flannery and Walter (2011), 2 – Planavsky et al. (2014), 3 – Rosing
and Frei (2004).

129Letter
demonstrated the ability of LIPs to help drive fundamental change in the
biosphere (e.g., Courtillot et al., 1986; Renne et al., 1995), the potential
of a causal link between the Matachewan LIP and the GOE must be
explored.

The Kaminak dyke swarm is made up of hundreds of NNE trending
gabbroic dykes, which range in thickness from1 to 40m. Stratigraphically
above, and orientated parallel to the strike of, the Kaminak dykes is the
8 km2 Spi Basin which contains a 75–100 m thick sequence of basaltic
lava flows and intercalated sediments. These basalts have identical trace
element (Fig. 3) and radiogenic isotopic compositions to the Kaminak
dykes and are interpreted to be their eruptive equivalents, emplaced
into the basin during a period of crustal extension (Sandeman and
Ryan, 2008). The Kaminak dykes and the cogenetic Spi Basin lavas are
therefore an ideal system for investigating the amount of sulphur released
by the Matachewan LIP.

2. Results

Using a thickness of 75m for the Spi Basin lavas across the 8 km2 basin
and an average basaltic density of 2900 kg m−3, the mass of lava can be
estimated as 1.74 × 1012 kg. Whole rock data (15 samples) for the
Kaminak dykes and Spi Basin lavas, on average, show that they contain
1036 and 710 ppm sulphur, respectively (Sandeman and Ryan, 2008),
which implies that the 326 ppmdeficitwas lost to the atmosphere during
degassing of the erupted lava. Using established methods used for calcu-
lating volatile release in modern eruptions (Thordarson and Self, 2003),
the sulphur difference between the degassed lavas and undegassed
dykes can be calculated to represent an absolute flux of 5.67 × 1010 kg
of sulphur released into the Archean–early Proterozoic atmosphere
during the eruption of the Spi Basin lavas (1).

0:1036–0:0710ð Þ � 1:74� 1012kg
� �

¼ 5:67� 1010kg ð1Þ

The remaining Matachewan LIP flood basalts are preserved in
the Huronian Supergroup (southern Ontario) and Sumi Group (Kola-
Kaleria), the volcanic portions of which have average thicknesses
of 1200 and 2500 m, respectively (Ketchum et al., 2013; Melezhik,
2006). Based on the presently exposed areas of these two groups,
a minimum quantity of lava erupted as part of the Matachewan LIP
may be estimated to be ~34,000 km3 or ~ 9.91 × 1016 kg of basalt. If
we assume that theHuronian Supergroup and SumiGroup basalts emit-
ted sulphur in the same way as the coeval (and potentially cogenetic)
Spi Basin lavas, the Matachewan LIP flood basalts would have released
~3.23 × 1015 kg of S into the early Proterozoic atmosphere. It is critical
to note that these estimates of lava volumes are based on current eroded
remnants of the province which, in comparison to modern, less-eroded
LIPs, are significantly smaller. If instead, we were to assume that the



Fig. 2. (a) Early Proterozoic Matachewan LIP reconstruction (Modified after Bleeker and Ernst, 2006) and the Matachewan LIP’s constituent suites’ present-day distribution (b) and (c).
When reconstructed to their inferred primary distribution, the composite radiating dyke swarm defines a mantle plume locus, melting at which triggered the emplacement of the LIP.
Mafic dyke swarms: MA – Matachewan, VI – Viianki, LE – Leopard, KA – Kaminak, ST – Streich; Volcano-sedimentary rift basins: HU – Huronian Supergoup, KS – Karelia Supergroup,
SP Snowy Pass Supergroup, SG – Spi Group; Layered Intrusions: EBL – East Bull Lake Suite, FI – Fennoscandian Intrusions, BDM – Blue Draw Metagabbro.
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original Matachewan LIP was comparable in size to Phanerozoic ana-
logues (as is suggested by the spatial distribution of the radiating dyke
swarms of the province), then the estimates presented here should be
increased by at least an order of magnitude.

During volcanic eruptions, sulphur is not emitted from lava in its na-
tive state and is instead lost as amixture of S2, H2S, and SO2. The relative
proportions of these species vary as a function of pressure (Gaillard
et al., 2011). The lack of pillow lavaswithin, and the preservation of reg-
olith below, the Spi Basin, Huronian Supergroup, and Sumi Group lavas
suggest that they were erupted subaerially under normal atmospheric
Table 1
Summary of cited U\\Pb ages for constituent Matachewan LIP Flood Basalt Provinces.
Abbreviations: bad – baddeleyite, zir – zircon.

Flood Basalt Province Age (Ma) Analysis
type

Reference

Huronian Supergroup
Thessalon Formation 2450−10

+25 zir Krogh et al. (1984)
2453 ± 3 zir Ketchum et al. (2013)

Karelia Supergroup
Seidorechka Formation

Seidorechka 2434 ± 15 bad + zir Bayanova and Balashov (1995)
Imandra 2442 ± 2 bad Amelin et al. (1995)
Paanajärvi 2432 ± 22 zir Buiko et al. (1995)
Lekhta 2443 ± 5 zir Levchenkov et al. (1994)
Vetreny Belt 2437 ± 3 zir Puchtel et al. (1997)
Sakiamaa 2438 ± 11 zir Räsänen and Huhma (2001)
Rookkiaapa 2438 ± 14 zir Manninen et al. (2001)
Khibiny 2448 ± 8 zir Chashchin et al. (2008)

Spi Group
Spi Lake Formation 2450 ± 2 bad Heaman (1994)

2498 ± 1 bad Sandeman et al. (2013)
pressures (Ketchum et al., 2013; Melezhik, 2006; Sandeman and Ryan,
2008). Under such conditions, tholeiitic-basalt eruptions emit SO2, S2,
and H2S in a molar ratio of approximately 2.5:1:1 (Fig. 4) (Gaillard
et al., 2011). Thus, for every mole of sulphur emitted by volcanic erup-
tions, 0.544 moles of SO2 and 0.222 and 0.234 moles each of H2S and
S2 are released. By converting the 3.23 × 1015 kg of sulphur released by
Fig. 3. Primitive Mantle-normalised trace element diagram showing the compositions of
the Spi Group basalts (black lines) and the cogenetic Kaminak dykes (grey field). The
Spi Group data (n = 7) are from Sandeman and Ryan (2008) while the Kaminak dyke
data (n = 57) are from Ciborowski et al. (2015). Primitive Mantle normalising values
from McDonough and Sun (1995).



Fig. 4. Calculated compositions of volcanic gases as a function of pressure (Gaillard et al.,
2011). During subaerial eruptions at very low degassing pressures, tholeiitic lavas lose
sulphur as a mixture of SO2, H2S, and S2.
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the Matachewan lavas into moles of S (1.01 × 1017) and using the erup-
tive molar ratios noted above, the number of moles of SO2, S2, and H2S
emitted to the atmosphere during the eruptions of the Matachewan
LIP lavas can be estimated to be at least 5.49 × 1016, 2.24 × 1016, and
2.36 × 1016, respectively.

3. Discussion

Recent work by Gaillard et al. (2011) suggests that decomposition
of the SO2 released by Paleoproterozoic subaerial volcanism (like
that which characterised the Matachewan LIP) would have resulted
in significant amounts of sulphuric acid (H2SO4) forming (2) in the at-
mosphere (Symonds et al., 2001):

4SO2 þ 4H2O→H2S þ 3H2SO4 ð2Þ
Dissolution of this H2SO4 in the Paleoproterozoic oceans produced

sulphate (SO4
2−) ions which would have been metabolised by sulphate-

reducing bacteria to produce sedimentary pyrite (FeS2) (Berner and
Canfield, 1989; Kasting, 2013). The net result of sulphate reduction and
subsequent pyrite formation (and burial) is an increase in atmospheric
O2 that can be summarised (3) by the following reaction (Lyons and
Gill, 2010):

2Fe2O3 þ 16Ca2þ þ 16HCO−
3 þ 8SO2−

4 →4FeS2 þ 16CaCO3 þ 8H2O þ 15O2 ð3Þ

Balancing the two reactions presented above in terms of SO4
2−

shows that for every 32 moles of SO2 released into the atmosphere
by subaerial volcanism, 45moles of O2may be produced via sulphate re-
duction in the oceans (4).

32SO2 + 32H2O → 8H2S + 24H2SO4

6Fe2O3 þ 48Ca2þ þ 48HCO−
3 þ 24SO2−

4 →12FeS2 þ 48CaCO3 þ 24H2O þ 45O2 ð4Þ
Using the 5.49 × 1016 moles of SO2 estimated to have been released

by theMatachewan LIP, we can calculate that the number ofmoles of O2

produced by these reactions would have 7.72 × 1016. This equates to a
mass of O2 of 2.47 × 1015 kg. Themass of themodern atmosphere is ap-
proximately 5.15 × 1018 kg (Trenberth and Smith, 2005) of which 23%
(1.18 × 1018 kg) is O2. Thus, the eruption of the Matachewan LIP flood
basalts may have released an amount of O2 equivalent to ~0.2% of that
in the present-day atmosphere. This value is significant as it represents
a potential oxygen input, greater in magnitude than that required to ar-
rest theMIF of sulphur observed in the Archean geological record before
the GOE (Kump, 2008; Pavlov and Kasting, 2002).
In comparison to the largest lava flow in recorded history – the
1783–1784 Laki eruption (15.3 km3) –where the SO2 releasedwas sim-
ilarly calculated to have been 1.22 × 1011 kg (Thordarson and Self,
2003), the Matachewan LIP is a truly enormous eruption. More signifi-
cantly, the estimated eruptive volumes of theMatachewan LIP flood ba-
salts are calculated from the size of current exposures and thus represent
an absolute minimum estimate. Given the ages and post-intrusion tec-
tonic histories of the constituent volcanic provinces, the modern day
exposures represent only a small fraction of the original erupted
Matachewan LIP flood basalt volume (Ernst and Buchan, 2002). Thus,
the calculations above may significantly underestimate the actual
amount of SO2 released into the early Proterozoic atmosphere via the
eruption of the Matachewan LIP. Indeed, if we were to assume that the
original volume of the Matachewan LIP prior to its erosion was similar
to that of the Siberian Traps (~4 × 106 km3; i.e., ~120 times larger) see
Maysatis, 1983), then the mass of oxygen released via the mechanisms
explained above could have been up to 2.89 × 1017 kg – equivalent to
~20% of that in the present-day atmosphere.

It is important to note that the calculations above are underpinned
by several assumptions. Firstly, estimating eruptive rates and associated
fluxes of gas species to the atmosphere is difficult. This is largely the re-
sult of (often poor) temporal constraints on regions of theMatachewan
LIP, with many of the constituent flood basalt provinces (currently)
being constrained by one – very occasionally two – U\\Pb radiometric
ages. That said, the age of the Matachewan LIP volcanic rocks hosted
within the Huronian Supergroup is bracketed by the ~2491 Ma Agnew
lake intrusion, upon which the Huronian Supergroup sits unconform-
ably (Vogel et al., 1998), and the ~2450 Ma Copper Cliff Rhyolite
(Ketchum et al., 2013) preserved at the top of the volcanic sequence.
Thus, the absolute maximum lifespan of the Matachewan LIP flood ba-
salt province can be estimated to be ~40 myr, though is likely to be
much less than this (Fig. 1). Without further geochronological con-
straints, the calculation of atmospheric fluxes is necessarily speculative.

The second assumption comes from the fact that we use sulphur
analyses from the relatively minor Spi Basin lavas to constrain the SO2

release of the LIP as a whole, despite the potential for variation across
the LIP. Further, we assume that all of the SO2 released by the volcanism
is reduced in the oceans during sedimentary pyrite formation, and that
the O2 produced during sulphate reduction is free to accumulate in the
atmosphere. This latter assumption is questionable as, aside from the
SO2 released by the Matachewan LIP magmatism, sizeable amounts of
other reductants (e.g., CO, H2 H2S, and S2) that could have consumed a
portion of the O2 produced through sulphate reduction (5, 6, 7, 8)
would also have been released (Fig. 4; Gaillard et al., 2011).

2CO þ O2→2CO2 ð5Þ

2H2 þ O2→2H2O ð6Þ
2H2S þ 3O2→2H2O þ 2SO2 ð7Þ

S2 þ O2→2SO2 ð8Þ

However, evenwhenwe factor in theO2 consumption resulting from
the release of the reductants listed above (the number ofmoles ofwhich
can be calculated using the relative proportions supplied in Fig. 2), as
well the effects of reseeding of the atmosphere with the SO2 produced
via the oxidation of volcanogenic H2S and S2 (Eqs. (7) and (8)), the over-
all effect is still a significantly positive increase (6.00 × 1016 moles) in
the amount of O2 delivered to the Paleoproterozoic atmosphere. If we
convert this number of moles of O2 into kg, we can calculate a mass of
O2 produced by the Matachewan LIP eruptions of ~1.92 × 1015 kg.

Again, using Trenberth and Smith's (2005) estimate of themass of the
modern atmosphere (5.15 × 1018 kg) of which 23% (1.18 × 1018 kg) is O2

and assuming that the Proterozoic atmosphere was not significantly dif-
ferent in terms of mass, we can see that the bulk O2 addition caused by
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the eruption of theMatachewan LIP equates to an O2 concentration equal
to 1.62×10−3 that of present atmospheric levels – i.e., sufficient to inhib-
it theMIF of sulphur isotopes observed in sediments deposited during the
Archean aeon (Kump, 2008; Pavlov and Kasting, 2002). Lastly, the effects
of oxidative weathering of the continents (Campbell and Allen, 2008), as
well as potential changes in methanogen production (Konhauser et al.,
2009) following the erosion of the Matachewan LIP basalts, are not
accounted for in our model.

Despite the potential buffering effects of these last two processes
and the very conservative estimate of magmatic volumes, we must
also remember that the Archean–Paleoproterozoic transition heralds
the first emergence of the continents from the Archean oceans
(Flament et al., 2008). One of the myriad effects of this fundamental
change in the Earth system is that the composition of volcanic gases
changed from more reducing to more oxidising as eruptions became
more subaerial in nature (Gaillard et al., 2011; Kump and Barley, 2007).

4. Conclusion

Against this backdrop of global change, the Matachewan LIP repre-
sents one of the first, truly massive igneous events that occurs after
the emergence of the continents and this shift in volcanic gas chemistry.
Given the contemporaneous nature of the Matachewan LIP with the
GOE, and the calculations detailed above, there is a strong case for the
Matachewan LIP to be a principal driver of theGOE. TheO2 released dur-
ing reduction of volcanogenic SO2 in the oceans represents an input of
sufficient magnitude to inhibit the MIF of sulphur and ultimately drive
the oxygenation of Earth's atmosphere.

If valid, thismechanism for the initiation of theGOEwill require a re-
evaluation of these enormous magmatic systems, not just as drivers of
biotic stress (Sobolev et al., 2011), but also to acknowledge their appar-
ent ability to enable, and to drive, the evolution of life into the complex,
and multicellular forms we see today.
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