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There are two common forms of NRH-quinone oxidoreductase 2 (NQO2) in the human population
resulting from SNP rs1143684. One has phenylalanine at position 47 (NQO2-F47) and the other leu-
cine (NQO2-L47). Using recombinant proteins, we show that these variants have similar steady state
kinetic parameters, although NQO2-L47 has a slightly lower specificity constant. NQO2-L47 is less
stable towards proteolytic digestion and thermal denaturation than NQO2-F47. Both forms are
inhibited by resveratrol, but NQO2-F47 shows negative cooperativity with this inhibitor. Thus these
data demonstrate, for the first time, clear biochemical differences between the variants which help
explain previous biomedical and epidemiological findings.
� 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical
Societies. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/3.0/).
1. Introduction

There are two members of the quinone oxidoreductase family in
humans. Of these, NAD(P)H quinone oxidoreductase 1 (NQO1, DT-
diaphorase, EC 1.6.5.2) is the better characterised of the two [1,2].
This enzyme is believed to be involved in vitamin K metabolism
and in reducing the cellular quinone concentration, thus prevent-
ing build-up of reactive oxygen species [3–5]. It also binds to,
and stabilises, the apoptosis regulator p53 [6–11]. Its up-regulation
in some cancer cells and its role in the conversion of some pro-
drugs (e.g. mitomycin c) to their pharmacologically active forms
has resulted in considerable interest in targeting this enzyme for
the development of novel cancer chemotherapies [5,12–16]. Much
less is known about NRH quinone oxidoreductase 2 (NQO2, EC
1.10.99.2). Like NQO1, it has a tightly bound FAD cofactor which
is reduced as part of the enzyme’s catalytic cycle [17]. However,
the reductant differs between the two enzymes. While NQO1 can
utilise both NADH and NADPH with almost equal efficiency [18],
NQO2 has only low levels of activity with these compounds
[19,20]. In vitro experiments have demonstrated that the
non-physiological compound dihydronicotinamide riboside
(NRH) acts as a good substrate [19]. In addition, N-methyldihydro-
nicotinamide and dihydrobenzylnicotamide, have been reported to
be able to act as reductants in vitro and 1-carbamoylmethyl-1,4-
dihydronicotinamide (caricotamide, EP 0152R) is a cell-permeable
NRH analogue which enables the reductive activation of the pro-
drug CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) by NQO2
[21–26].

Both NQO1 and NQO2 have substituted enzyme (ping-pong)
mechanisms in which, following initial reduction of the FAD mol-
ecule by NAD(P)H or NRH, the first product leaves the active site
and is replaced by the second substrate which then undergoes a
two electron reduction, regenerating FAD [17,27]. The active sites
can accommodate and reduce a wide variety of molecules includ-
ing quinones, nitro-compounds and iron (III) ions [28–32]. NQO1
is inhibited by the anticoagulant dicoumarol and many structurally
related compounds [33]. In contrast, NQO2 is only weakly inhibited
by dicoumarol, but is more strongly competitively inhibited by res-
veratrol [34]. Ingestion of this compound, which is present in red
wine, peanuts, mulberry fruits and dark chocolate, has recently
been linked to increased longevity in some species including
Saccharomyces cerevisiae and Drosophila melanogaster although
the effect in humans remains controversial [35–41].

Interestingly, there are two common forms of the NQO2 gene in
the human population. These differ at codon 47 (SNP rs1143684),
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which can either be CTT (encoding leucine) or TTT (phenylalanine).
Thus, there are two corresponding forms of the enzyme, one with
phenylalanine at position 47 (NQO2-F47) and the other with leu-
cine (NQO2-L47). Residue 47 is not part of the enzyme’s active site
but is close to the dimer interface [42]. Of these NQO2-F47 is the
more common in the human population. Estimates of the allele fre-
quency for CTT (Leu) vary from 2% in African populations to 33% in
East Asians; the estimated frequency in Europeans is 20% (http://
e72.ensembl.org/Homo_sapiens/Variation/Population?align=548;
db=core;r=6:3009890-3010890;v=rs1143684;vdb=variation;vf=
907401) [43]. NQO2-L47 has been associated with more rapid de-
cline in memory recall and with better prognosis in breast cancer
[44–46]. However, not all studies have demonstrated statistically
significant associations between this polymorphism and cancer
prognosis [47]. NQO2-L47 has been reported to have lower activity
than NQO2-F47 in cell extracts [48] but, to date, little other bio-
chemical data has been collected on the two variants. Here, we
compared the biochemical properties of the two forms of NQO2
and provide a molecular explanation for the reduced cellular activ-
ity of NQO2-L47.
2. Materials and methods

2.1. Expression and purification of human NQO2

The coding sequence for human NQO2 was amplified by PCR
from a plasmid kindly supplied by Dr. David Jamieson (University
of Newcastle-upon-Tyne, UK) using primers which enabled the
insertion of the amplicon into pET46-Ek-LIC (Merck, Nottingham,
UK) according to the manufacturer’s instructions. This sequence
encodes a phenylalanine at codon 47 and site directed mutagenesis
using the QuickChange protocol [49] was used to change codon 47
to one that encodes leucine. In both cases the entire coding
sequence was verified by DNA sequencing (GATC, London, UK).
The vector inserts sequence coding for the residues MAH-
HHHHHVDDDDK at the 50-end of the gene and so enables purifica-
tion of the recombinant proteins by nickel affinity chromatography
(His-Select, Sigma, Poole, UK) using the same method as employed
for other proteins in our laboratory, e.g. [50]. Protein concentra-
tions were estimated by the method of Bradford using BSA as a
standard [51].

2.2. NQO2 activity assays

NQO2 activity was measured at 37 �C in 50 mM HEPES, pH 7.3
using NRH as the electron donor and DCPIP as the electron accep-
tor. NRH was synthesised from NADH [52]. NADH (0.50 g,
0.69 mmol) was dissolved in 20.0 ml of 0.4 M sodium carbonate/
bicarbonate buffer, pH 10.0, and incubated at 37 �C for 16 h with
0.1 unit of phosphodiesterase 1 type IV and 500 units of alkaline
phosphatase type VII-S. After complete digestion of NADH, the
mixture was freeze dried. The dried powder was extracted with
methanol (five times 6 ml), and this methanol extract was dried
by rotary evaporation and dissolved in 5.0 ml of water. The NRH
was then purified in 1 ml batches by preparative HPLC on a micro-
sorb C18 column (21.2 by 250 mm), eluted with 10% methanol in
water over 15 min at a flow rate of 15.0 ml min�1. The NRH peak
was detected absorption at 350 nm. This peak from each injection
was collected, freeze-dried and stored at 4 �C.

All NQO2 activity assays were carried out in triplicate (same en-
zyme preparation, same enzyme dilution) in the same 96-well
plate with readings taken every 5 s and initial, linear rates of
change in absorbance at 600 nm measured. Over the NRH concen-
tration range studied, the linear portion of the progress curve
lasted at least 50 s. To ensure that initial rates were measured,
reactions were done in batches of four wells at a time. Each reac-
tion rate was corrected by subtraction of the background rate of
DCPIP reduction by NRH estimated experimentally in a parallel
reaction containing the same components except enzyme. This
background rate never exceeded 10% of the total rate and the
estimated pseudo-first order rate constant for the non-enzymatic
reduction under these conditions was (6.7 ± 0.4) � 10�5 s�1. The
enzyme-catalyzed rate was divided by the dimeric enzyme
concentration (2.5 nM for both variants). The apparent Michaelis
constant (Km,app) and apparent turnover number (kcat,app) values
were determined by plotting enzyme-catalyzed rate (v) divided
by enzyme concentration ([E]) against the corresponding NRH con-
centration. The data were fitted to Eq. (1) using non-linear curve
fitting in GraphPad Prism 6 (GraphPad Software Inc., CA, USA).

m=½E� ¼ kcat;app½NRH�=Km;app þ ½NRH� ð1Þ

Linearized Hill plots were constructed to determine the Hill
coefficient (h) according to Eq. (2).

�log10ððm=½E�Þ=ðkcat;app � ðm=½E�ÞÞÞ
¼ �h:log10½NRH� � log10k0:5;app ð2Þ
2.3. Inhibition by resveratrol

The effect of resveratrol (0–640 nM; initially dissolved in 100%
DMSO and diluted such that the final volume of DMSO in the assay
was 0.5% v/v) on the enzyme-catalysed rate was measured at two
concentrations of NRH (50 and 100 lM) with a constant DCPIP
concentration (70 lM). Dixon plots were constructed to obtain
the apparent inhibition constant, Ki,app. The degree of cooperativity
towards resveratrol was determined by fitting the data obtained
using 50 lM NRH and 70 lM DCPIP to Eq. (3), which follows from
obtaining the algebraic ratio of the steady state rate equations in
the absence of (v0), and the presence of (v), the competitive inhib-
itor resveratrol and collecting the constant terms – i.e. Km, [NRH],
[DCPIP], Kic (the competitive inhibition constant) – into a single
term, Z.

1� ðm=m0Þ ¼ ½resveratrol�h=ðZh þ ½resveratrol�hÞ ð3Þ

For both variants, the fit to this equation and a similar one
lacking the Hill coefficient (h) were compared using an F-test
(implemented in GraphPad Prism) and results from the equa-
tion judged to be a better fit reported. Linearized Hill plots were
also constructed using Eq. (4) using the same data for display
purposes.

�log10ðm=ðm0 � mÞÞ ¼ �h:log10½resveratrol� � log10Z ð4Þ
2.4. Limited proteolysis, crosslinking and determination of flavin
content

Limited proteolysis with trypsin, chymotrypsin and subtilisin
was carried out as previously described and analysed using tris-tri-
cine SDS–PAGE [53,54]. Crosslinking with bissulfosuccinimidylsu-
berate (BS3) and N-(3-Dimethylaminopropyl)-N0-ethylcarbodi-
imide hydrochloride (EDC) was performed as previously described
and analysed by tris-glycine SDS–PAGE [53].

The flavin content of the recombinant NQO2 variants was deter-
mined by first obtaining an absorption spectrum of the proteins
from 250 to 550 nm (Cary 100 Scan). From the absorption at
375 nm and 450 nm, the contribution of the flavin to absorption
at 280 nm was calculated. The remaining absorbance at this
wavelength was assumed to be due to protein and used to calcu-
late the protein concentration using e280nm = 44,920 l mol�1 cm�1

(estimated using ProtParam in Expasy [55]). An aliquot (500 ll)
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of protein was then heated at 95 �C for 4 min to release the FAD fol-
lowed by centrifugation at 14000�g for 1 min to remove the pre-
cipitated protein [56]. The supernatant was removed and the
volume was restored to 500 ll to correct for losses resulting from
heating. The absorbance at 375 and 450 nm was determined and
used to estimate the concentration of flavin. The occupancy per
monomer was calculated as (flavin concentration/NQO2 active site
concentration) � 100%.

2.5. Thermal scanning fluorimetry (TSF)

Each variant (0.5 lM in 50 mM HEPES-OH, pH 7.5) was sub-
jected to an increase in temperature from 25 to 95 �C (increments
of 1 K and remaining at each temperature for 5 s) in a Rotor-Gene Q
cycler (Qiagen) (high resolution melt protocol, no gain optimisa-
tion; excitation at 460 nm and emission at 510 nm) exploiting
Fig. 1. Steady-state enzyme kinetics of NQO2 variants. (a) The dependence of rate on
presence of 70 lM DCPIP. (b) Linear Hill plots were constructed from the data shown in (
from inhibition data for both NQO2 variants (2.5 nM dimer) in the presence of 50 lM NR
the mean of three separate determinations and the error bar shows the standard error
the fluorescence of the cofactor, FAD, which increases when it is re-
leased from the enzyme into solution [57]. The melting tempera-
ture (Tm) was determined from the first derivative of the melting
curve, using the inbuilt analysis software. Stock solutions of
resveratrol (in 100% DMSO) and dicumarol (in 0.13 M NaOH) were
prepared such that, when diluted into the assay solution, the final
concentration of solvent was 0.5% (v/v). Nicotinamide was dis-
solved in 50 mM HEPES-OH, pH 7.5. The change in melting temper-
ature (DTm) at each concentration of ligand was determined and
data fitted to Eq. (5).
DTm ¼ DTm;max½ligand�=ðKD;app þ ½ligand�Þ ð5Þ
where DTm,max is the maximum, limiting change in Tm and KD,app is
the apparent dissociation constant.
NRH concentration was measured for both NQO2 variants (2.5 nM dimer) in the
a) and used to estimate the Hill coefficient (h). (c) Linear Hill plots were constructed
H, 70 lM DCPIP and varying amounts of resveratrol. In (a–c) each point represents

of these means.



Table 1
Steady state enzyme kinetic parameters of NQO2 variants (2.5 nM) measured at 37 �C
with NRH as the electron donor and DCPIP as the acceptor.

Parameter NQO2-F47 NQO2-L47

Km,app(NRH)/lMa 36.1 ± 3.6 37.8 ± 3.4
kcat,app/s�1a 141 ± 4 125 ± 3
kcat/Km(NRH)/lM�1 sa,b 3.91 ± 0.61 3.31 ± 0.38
h (NRH as substrate)a 1.04 ± 0.07 1.09 ± 0.10
Ki,app (Resveratrol)/nMc 31.0 ± 4.3 16.7 ± 3.8
h (Resveratrol inhibition)d 0.85 ± 0.06 Not cooperative

a Measured with a constant DCPIP concentration of 70 lM and variable NRH
concentrations.

b Note that, for a substituted enzyme mechanism, the specificity constant (kcat/
Km) does not depend on the concentration of substrates.

c Measured with a constant DCPIP concentration of 70 lM, two different NRH
concentrations and variable resveratrol concentrations; Ki,app values were esti-
mated from a Dixon plot.

d Measured with a constant DCPIP concentration of 70 lM, constant NRH con-
centration of 50 lM and variable resveratrol concentrations. For NQO2-F47, the
data fitted better to Eq. (3) compared to an equation lacking terms to account for
cooperativity (F = 6.063, P < 0.01; see Section 2.3). For NQO2-L47, the data fitted
better to a non-cooperative equation (F = 1.711; P > 0.2).
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3. Results and discussion

3.1. Expression and characterisation of recombinant NQO2-F47
and NQO2-L47

Both variants of NQO2 could be expressed in, and purified from,
Escherichia coli (Supplementary Fig. S1). The flavin cofactor of the
recombinant NQO2 variants was released by thermal denaturation
of the proteins. The absorption spectrum maxima were consistent
with those expected for a mixture of FAD and FMN (well defined
peaks at 266 and 375 nm and a broad peak 446–450 nm) [58]. This
is in contrast to some previous reports where only FMN or only
FAD has been detected as the flavin cofactor present in recombi-
nant NQO2 [19,56]. It is not expected to affect the enzyme activity
greatly since the standard redox potentials of both compounds are
the same (E�0 = �0.219 V at pH = 7 and 30 �C in aqueous buffer)
[59]. The estimated flavin occupancy for NQO2-F47 was 35% and
for NQO2-L47 86%.

As expected, both variants were able to dimerise as shown by
crosslinking with BS3 (Supplementary Fig. S2a). The addition of
substrates and inhibitors had little effect on the crosslinking sug-
gesting that they have limited effect on the overall conformation
of the dimer (Supplementary Fig. S2b).

3.2. NQO2-F47 and NQO2-L47 have similar enzymatic activities
in vitro

Steady state kinetic analysis showed that the two variants have
similar activities. The Km,app values are similar; NQO-F47 has a
specificity constant (kcat/Km) slightly higher than NQO-L47
(Fig. 1a; Table 1). This is consistent with reports that this variant
M 
kDa 
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25
18
14

Increasing [Chymotrypsin] 
NQO2-47F

Fig. 2. Limited proteolysis of the two common human NQO2 variants (35 lM) with chym
on NQO2-L47 than NQO2-F47. The sizes of molecular mass markers (lane M) are shown
has higher activity in cell extracts [48]. However, this small differ-
ence is unlikely to explain the majority of the observed variation.
No cooperativity was observed with NRH as a substrate in either
variant (Fig. 1b; Table 1). Both variants are inhibited by resveratrol,
with similar apparent inhibition constants (Supplementary
Fig. S3a; Table 1). Non-Michaelis-Menten kinetics have been ob-
served with rat NQO1; this enzyme exhibits negative cooperativity
towards the inhibitor dicumarol [60]. Interestingly, NQO2-F47
exhibits negative cooperativity towards resveratrol, but NQO2-
L47 does not (Fig. 1c; Supplementary Fig. S3b; Table 1).

3.3. NQO2-F47 and NQO2-L47 have different stabilities towards
proteolysis and thermal denaturation

NQO2-L47 was more susceptible to limited proteolysis by chy-
motrypsin than NQO2-F47 (Fig. 2). Similar results were also seen
with trypsin and subtilisin (Supplementary Fig. S4). In TSF experi-
ments, NQO2-L47 showed triphasic melting behaviour with transi-
tions at 47.7 ± 0.3 �C, 57.8 ± 0.1 �C (major peak in the dF/dT plot)
and 63.9 ± 0.3 �C. In contrast, NQO2-F47 displayed essentially
monophasic behaviour with a single Tm of 63.1 ± 0.1 �C (Fig. 3a).
This showed that NQO2-L47 exists in at least three different, meta-
stable conformations in solution and that NQO2-F47 has slightly
greater overall stability. (Note, the different peaks cannot arise
from protein molecules with and without FAD bound since the as-
say measures the release of FAD from the protein; therefore, any
NQO2 molecules lacking FAD are ‘‘invisible’’ to this assay.)

The significance of the multiple conformers observed in NQO2-
L47 is unclear. Nevertheless, it is likely that the three conformers
have slightly different properties, for example binding affinity for
other proteins. This may be important when considering NQO2’s
role as a signalling molecule since this requires interaction with
proteins such as p53 [7]. There are precedents for this sort of
behaviour. For example, mutations in the calcium sensor, calmod-
ulin, result in altered interactions with the ion which alters the dis-
tribution of the protein’s conformational states and thus alters its
affinities for protein binding partners [61].

Both variants are stabilised towards thermal denaturation by
the addition of resveratrol, nicotinamide and dicoumarol in a con-
centration dependent manner (Fig. 3b). NQO2-F47 binds less
tightly to these three ligands; the KD,app values for resveratrol, nic-
otinamide and dicoumarol were 1.8 ± 0.1 lM, 14.4 ± 1.1 mM and
33.7 ± 2.6 lM, respectively. For NQO2-L47, these decrease to
0.7 ± 0.1 lM, 3.9 ± 0.2 mM and 15.7 ± 1.5 lM. The value obtained
for resveratrol is higher than that obtained in previous studies
(31 nM for NQO2-F47 by fluorescence quenching [34]). The con-
centration dependence of Tm in TSF assays is an indirect measure
of the ligand’s affinity and so some variation might be expected.
Nevertheless, studies on other proteins have established that the
affinity rankings produced by TSF are consistent with those deter-
mined by isothermal titration calorimetry, for example [62,63]. As
far as we can determine, no values for the affinity of NQO2-L47 for
these ligands has been reported previously.
Increasing [Chymotrypsin] 
NQO2-47L

otrypsin (0, 10, 35, 60, 90, 360, 630, 900 nM; 30 min at 37 �C) showed a greater effect
to the left of the gel in kDa.



Fig. 3. Thermal scanning fluorimetry of human NQO2 variants. (a) First derivative
TSF scans for the thermal denaturation of both variants (0.5 lM). (b) Resveratrol,
dicoumarol and nicotinamide have concentration-dependent effects on the melting
temperature of both variants (0.5 lM).
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From these data, it is clear the lower activity of NQO2-L47 in
cell extracts arises from several causes. A lower kcat/Km makes a
minor contribution. However, lower stability which, presumably,
leads to reduced cellular concentrations of active enzyme is likely
to be a more significant cause. Potentially, the higher affinity of
NQO2-L47 for inhibitors could also contribute to its lower cellular
activity since resveratrol is a component of the human diet. It is
reasonable to assume that the different clinical outcomes associ-
ated with these NQO2 variants result from their different cellular
activities. If so, then these ultimately result from the biochemical
differences (especially protein stability) described here.
Increasing the concentration of ligand also altered the ratio of
the fluorescence intensities at the three Tm values observed for
NQO2-L47. The ratio of the intensities in the absence of added li-
gand (in order of increasing Tm) was 0.1:1.0:1.2. In the presence
of the highest concentration of resveratrol tested (5.12 lM) this
changed to 0.1:1.0:0.4. That this ratio changes in response to ligand
provides additional evidence for our hypothesis that there are at
least three, interconverting, forms of NQO2-L47. At the same
concentration of resveratrol, the thermal denaturation profile of
NQO2-F47 remained essentially as one single transition (Supple-
mentary Fig. S5).

Negative cooperativity widens the concentration range over
which an enzyme responds to a substrate or inhibitor and requires
communication between the active sites [64]. Residues 47’s loca-
tion close to the dimer interface may be important in the transmis-
sion of information between the subunits in NQO2-F47. This
communication between active sites requires protein flexibility
[65]. Overall, NQO2-L47 is more flexible (based on proteolytic sus-
ceptibility and thermal denaturation), yet it is NQO2-F47 which
exhibits negative cooperativity towards inhibitors. This suggests
that the global flexibility observed in NQO2-L47 is not able to
mediate cooperativity and that there must be some local flexibility
in NQO2-F47. The lower flavin cofactor occupancy in NQO2-F47
may also contribute to the observed negative cooperativity. The
physiological significance of this negative cooperativity is not cur-
rently known; similarly, the in vivo consequences of the lack of
cooperativity in NQO2-L47 are not yet clear.

3.4. Conclusions

In inherited metabolic diseases, lower enzyme activity resulting
from polymorphic forms of the protein is generally associated with
the pathological state. Given the association between lower NQO2
activity and reduced cancer risk, the opposite may be true here. In
which case, it is likely that resveratrol-mediated inhibition of
NQO2 may be partly responsible for the health benefits claimed
for this compound. However, the effects are likely to be complex
since they will be affected by the multiple conformers of NQO2-
L47 and the cooperativity of NQO2-F47.
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