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17  Abstract 
 

18  The du Chef dyke swarm in southern Quebec, Canada is composed of numerous northeast 
 

19  trending, greenschist-amphibolite facies, gabbronoritic dykes that crop out either side of the 
 

20  Grenville Front. The age of the du Chef swarm (2408±3 Ga) has led previous authors to 
 

21  suggest a genetic link between the du Chef dykes and coeval swarms (including the 
 

22  Ringvassoy, Scourie, Widgemooltha and Sebanga) preserved on other Archean cratons. 
 

23  These now disparate dyke swarms are proposed to have formed in response to mantle plume- 
 

24  induced continental breakup during the early Proterozoic. This work represents the first 
 

25  geochemical study of the du Chef dykes and shows that the swarm evolved through fractional 
 

26  crystallisation of a single tholeiitic parent magma that remained largely uncontaminated 
 

27  during its residence and ascent through the crust. We also show that the primary magma for 
 

28  the du Chef swarm was derived through partial melting of an enriched region of the mantle, 
 

29  similar in composition to the modern-day HIMU reservoir and that the magma produced was 
 

30  significantly hotter than the ambient mantle at the time. We contend that the du Chef dykes 
 

31  are the product of early Proterozoic mantle plume magmatism and may help pinpoint an 
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32  ancient hotspot centre that initiated continental break up along the margin of the Superior 
 

33  Craton at ~2.4 Ga. Other dyke swarms proposed to be genetically linked with the du Chef 
 

34  dykes record a distinctly different petrogenetic history to that of the du Chef dykes, as 
 

35  evidenced by their more volcanic arc-like geochemical signature. These contrasting 
 

36  geochemical signatures in supposedly cogenetic continental tholeiitic rocks may be evidence 
 

37  of early Proterozoic mantle heterogeneity sampled by the rising du Chef mantle plume. 
 

38 
 

39  1.   Introduction 
 

40  The du Chef dykes were first described by Cieleiski and Margole (1989) as a series of north- 
 

41  north east trending discordant intrusions which have a maximum thickness of 30 metres and a 
 

42  measurable strike length of up to several kilometres. The majority of the dykes crop out 
 

43  within the Grenville Province and have been amphibolitised and otherwise deformed by 
 

44  Grenvillian tectonism such that the igneous mineralogy is rarely preserved, being more 
 

45  commonly altered to garnet, amphibole, plagioclase, epidote and sphene (Cieleiski and 
 

46  Margole 1989). Krogh (1994) reports the only published age of the du Chef dykes and 
 

47  interprets the dykes to have been emplaced at 2408±3 Ma. This age is based on U-Pb analysis 
 

48  of two samples of magmatic zircons from a pegmatitic portion of a ~ 40 m wide 
 

49  amphibolitised du Chef dyke that was also sampled (DC007) by this study. 
 

50 
 

51  Several workers have noted that the age of the du Chef dykes, and other swarms that intrude 
 

52  the Superior Craton, overlap with those of dyke swarms preserved on the North Atlantic, 
 

53  Karelia, Zimbabwe and Yilgarn cratons (Ernst and Buchan 2002; Kulikov et al. 2010; Pirajno 
 

54  and Hoatson 2012). This coeval magmatism has been argued to represent the remnants of an 
 

55  early Proterozoic Large Igneous Province (LIP) that formed during mantle plume-driven 
 

56  breakup of an Archean supercontinent (Ernst and Buchan 2004; Söderlund et al. 2010). 
 

57 
 

58  This work presents the first whole-rock major and trace element data for du Chef dykes from 
 

59  either side of the Grenville Front. These data are used to charactersise the petrogenetic 
 

60  evolution of the swarm, investigate potential mantle sources of the primary magmas, evaluate 
 

61  the smarms proposed mantle plume origins and, investigate potential genetic links with other 
 

62  coeval swarms preserved on other Archean cratons. 
 

63 
 

64  2.   Regional Geology 



65  The Superior Craton is the largest of the Archean cratons and forms the core of the Canadian 
 

66  Shield. It is composed of alternating, east-west trending granite-greenstone and 
 

67  metasedimentary terranes which are commonly in fault-bounded contact with each other. The 
 

68  granite-greenstones and intervening metasediments are widely considered to represent 
 

69  ancient volcanic arcs and accretionary prisms that were sutured and cratonised during the late 
 

70  Archean (e.g., Card 1990; Stachel et al. 2006). Superior Craton terranes which share a 
 

71  common tectonic history are grouped into a number of provinces, the largest being the 
 

72  Superior Province. On its eastern margin, the Superior Province is in fault-bounded contact 
 

73  with the Grenville Province (Fig. 1A), the latter being interpreted to be the eroded remnants 
 

74  of a Himalayan-style continental orogen caused by the collision of Baltica and Laurentia 
 

75  during the middle Proterozoic (Dufrechou and Harris 2013). 
 

76 
 

77  Near Chibougamau (Fig. 1B), the Superior Province to the west of the Grenville Front is 
 

78  composed of; (1) greenschist-facies bimodal volcanic rocks, banded iron formations and 
 

79  cherts of the Archean Roy Group (Leclerc et al. 2011); (2) conglomerates, sandstones, 
 

80  argillites and alkalic-shoshonitic volcanic rocks of the Archean Opemisca Group; (3) the 
 

81  ~2.73 Ga anorthositic Lac Dorè complex and other tonalitic intrusions; and (4) 
 

82  unconformable Proterozoic metasediments and bimodal volcanics of the Huronian 
 

83  Supergroup (Card 1990). Close to the margin of the Superior Province, the east-west trending 
 

84  lithotectonic boundaries of the Archean groups are deflected to the northeast before being 
 

85  truncated at the Grenville Front. Immediately east of the Grenville Front, the dominant 
 

86  lithotectonic trends are orientated northeast-southwest (parallel to the Grenville Front) and 
 

87  metamorphic grade reaches amphibolite-granulite facies (Cieleiski and Margole 1989; 
 

88  Martignole and Martelat 2005). 
 

89 
 

90  3.   Sample collection and petrography 
 

91  Given the low topographic relief and dense vegetation of southwest Quebec, sample 
 

92  collection (Fig. 1) was limited to road cuts along highway 167, adjoining logging roads and a 
 

93  few isolated whale-back type exposures (Supplementary Figure 1A). In outcrop, the du 
 

94  Chef dykes are dark green-black in colour and range in thickness from 1-2 m, up to 40 m. 
 

95  The dykes are steeply dipping and generally trend northeast-southwest. Aside from these 
 

96  commonalities shared by all du Chef dykes, stark differences in appearance are observed 
 

97  between dykes from areas northwest of the Grenville Front to those preserved within the 
 

98  Front. The most readily observed difference is the nature of the dyke margins, in that the 
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dykes from outside of the Grenville Front typically preserving very sharp and regular 
 

contacts with the country rock (Supplementary Figure 1A) while in contrast, the margins of 

du Chef dykes from within the Grenville Front are more irregular with the dykes appearing to 

finger into the country rock (Supplementary Figure 1B). Amphibolitised du Chef dykes 

from within the Grenville Front also commonly preserve a foliated fabric and have 

mineralogies characterised by occasionally abundant garnet (Supplementary Figure 1C), 

while those from outside of the Grenville Front preserve igneous textures, particularly in the 

coarser interiors of thicker dykes (Supplementary Figure 1D). 

 
 
The amphibolitised du Chef dykes are generally equigranular and fine grained (Fig. 2A). 

Amphibole dominates the mineralogy of the studied samples and shows a range of crystal 

habits from euhedral, equant prisms to anhedral, irregular forms which commonly contain 

very fine inclusions of quartz. The next most abundant mineral is plagioclase which forms 

irregularly shaped crystals with well-developed twins that appear to fill the spaces between 

the amphibole crystals.  Accessory phases within such amphibolitised samples include biotite 

which tends to form elongated lath shaped crystals intergrown with the amphibole, and both 

pyrite and magnetite which form euhedral crystals or glomerocrysts distributed throughout 

the rock (Fig. 2B). 
 

 
 
Commonly, a planar foliation is observed in the amphibolitised du Chef dykes caused by 

alignment of amphibole and plagioclase crystals into alternating bands (Fig. 2C). In some 

samples, porphyroblasts of garnet are preserved as medium grained, euhedral crystals 

distributed throughout the rock (Fig. 2D). Occasionally, the interiors of the garnets are filled 

with fine grained inclusions of plagioclase, amphibole, biotite, and chlorite and often, the 

garnets display atoll textures (Fig. 2E). 

 
 
In less metamorphosed samples, from northwest of the Grenville Front, primary igneous 

minerals and textures are partially preserved. Typically, the interiors of these dykes are 

medium grained and inequigranular (Fig. 2F). The most abundant primary phase is olivine, 

which forms euhedral relict grains that have been altered to magnesite, serpentine and iron 

oxides, predominantly along grain boundaries and crystal fractures. Plagioclase tends to form 

very elongate laths which appear to grow into the olivine crystals. Alteration of the 

plagioclase is characterised by very fine grained placements of quartz and sericite 

concentrated along crystal margins (Fig. 2G). Very little primary pyroxene remains in the 
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studied samples, but its original existence of confirmed by pseudomorphic replacements by 
 

calcite and amphibole. 
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In summary, the du Chef dykes record metamorphic mineral assemblages which range from 

lower greenschist to upper amphibolite facies. The transition from greenschist to amphibolite 

facies parallels the trend of the Grenville Front in this region (Fig. 1). The extent to which 

this metamorphism has affected the geochemistry of the dykes is explored in the subsequent 

sections. 

 
 

4.  Geochemistry 
 

4.1 Analytical procedures 
 

Sample preparation and analysis was carried out at Cardiff University. Weathered surfaces 

and in-filled fractures were removed with a rock saw prior to analysis. The sawed samples 

were crushed into ~5 mm chips using a steel jaw crusher and powdered in an agate planetary 

ball mill. Approximately 2 g of the milled powder was ignited in a furnace at 900 °C for two 

hours in order to determine loss on ignition values. 

 
 
Whole-rock major element, trace element and rare earth element (REE) data were obtained 

following Li metaborate fusion (Minifie et al. 2013). Major element and Sc abundances were 

determined using a JY Horiba Ultima 2 Inductively Coupled Plasma Optical Emission 

Spectrometer (ICP-OES). Trace elements were analysed by a Thermo X Series 2 Inductively 

Coupled Plasma Mass Spectrometer (ICP-MS). International reference material JB-1A was 

run with each sample batch to constrain the accuracy and precision of the analyses. Relative 

standard deviations show precision of 1–5% for most major and trace elements for JB-1A. 2σ 

values encompass certified values for the vast majority of elements. Full analytical results 

including repeat runs of standard basalt JB-1A can be found in the Supplementary 

Information. Representative, whole-rock major element and trace element data for the du 

Chef dyke samples are presented in Table 1. 
 

 
 
4.2 Element mobility 
 

As the du Chef dyke swarm crops out within the Grenville Pronvince where metamorphic 

facies reaches up to amphibolite-granulite facies (Martignole and Martelat 2005) and samples 

show abundant alteration (Fig. 2), the effects of secondary element remobilisation must be 

considered. At metamorphic conditions above lower amphibolite facies the normally 
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immobile high field strength elements (HFSE) including the REE are expected to become 
 

more mobile (Pearce 1996) and therefore any scatter observed in plots involving these 
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elements for the du Chef samples may reflect their metamorphic history. As the HFSE are 

incompatible in the main rock forming minerals, they should plot on linear arrays when 

plotted against each other for a suite of unaltered rocks formed from a common fractionating 

magma, whereas secondary remobilisation of elements is likely to result in a scattered trend 

(Cann 1970). 

 

 

Good linear correlations are observed between Zr and the REE and other HFSE (R
2 

≥ 0.7), 

indicating that secondary remobilisation of these elements was very limited. Conversely, the 

incompatible large ion lithophile elements (LILE) show much more scattered correlations 

with Zr which indicates that these elements have undergone sub-solidus remobilisation. A 

subset of these graphs is shown in (Supplementary Figure 2). The following petrogenetic 

discussion will largely be limited to using the HFSE which likely record near-primary 

concentrations. 

 
 
4.3 Classification 
 

The total alkali silica diagram is a common way to geochemically classify igneous rocks, 

however since Na and K have been remobilised in these dykes the total alkali silica diagram 

cannot be used for the du Chef dykes. Instead, we use the Zr/Ti vs. Nb/Y diagram (Fig. 3) 

since the elements used in this classification have been shown to have remained immobile. 

On this diagram, the du Chef dykes plot as a fairly tight cluster within the subalkaline basalt 

and basaltic andesite fields. 

 
 
4.4 Major elements 
 

The du Chef dykes are broadly basaltic in major element composition (Table 1) with, MgO 

ranging from 5.4 to 9.0 wt.% and are relatively TiO2 poor (1.0 to 2.7 wt.%). Na2O, K2O, 

TiO2, and MnO do not show any obvious correlation with MgO while SiO2, Al2O3, and CaO 

have positive, and P2O5 negative, correlations with MgO (Supplementary Figure 3). Fe2O3 

shows an enrichment trend characteristic of of tholeiitic magmas. The poor correlations 

observed between the alkalis, and MgO are further evidence of element mobility in the du 

Chef dykes while the better correlations observed between MgO, Fe2O3, SiO2, Al2O3 and 

CaO may suggest that the dykes evolved through the fractional crystallisation and removal of 
 

olivine, clinopyroxene and plagioclase from a tholeiitic parent magma. 
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202 4.5 Trace elements 
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The du Chef dykes have relatively low concentrations of Cr and Ni (Fig. 4) which show 

positive correlations with MgO. Other compatible trace elements including Sc and V have 

more scattered but negative correlations with MgO. Those trace elements which are 

incompatible during basaltic fractionation show slightly scattered negative correlations with 

MgO. On similar graphs where relatively immobile Zr (Supplementary Figure 2) is used 

instead of MgO as an index of fractionation, the incompatible elements plot on much tighter, 

positively correlated arrays suggesting that the du Chef dykes may have formed by the 

fractionation of a single parent magma. 

 
 
Total rare earth element (REE) abundances in the du Chef dykes range between 15 – 49 × 

chondritic values and when plotted on chondrite-normalised REE diagrams (Fig. 5), the 

dykes show sub-parallel trends enriched in light REE [(La/Sm)N = 1.9 ± 0.3] relative to the 

HREE which themselves are characterised by (Gd/Yb)N ratios of  1.31 ± 0.26. Variable but 

slightly positive Eu anomalies may indicate the presence of cumulate plagioclase in the 

magma. The enrichment of the light REE relative to the heavy REE increases with 

fractionation (Supplementary Figure 4) while the Eu anomaly becomes more negative. 

 
 

5.  Modelling and discussion 
 

5.1 Fractional crystallisation 
 

The linear geochemical trends exhibited by the du Chef dykes suggest that the dykes evolved 

from a single fractionating magma. In this section, we will evaluate fractional crystallisation 

as a potential mechanism for generating the geochemical trends observed in the du Chef 

dykes. Fractional crystallisation of the most primitive du Chef dyke sample (DC011) has 

been modelled using the PELE computer software program (Boudreau 1999). This sample is 

unlikely to be a primary magma given its relatively evolved nature (~ 9 wt.% MgO), 

however, it represents the most primitive magma of the suite and hence, the closest estimate 

of the primary magma for the suite. 

 
 
PELE is a Windows®-compatible computer program which allows the user to evaluate 

crystallisation of silicate magma at varying physical conditions. Boudreau (1999) used 

published descriptions of the database and numerical models used by the MELTS (Ghiorso & 

Sack 1995) software (currently usable as a JAVA® enabled web applet from 
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http://melts.ofm-research.org/applet.html) to produce a modified version of the program for 
 

use with Windows® systems (PELE). For a detailed description of the workings of PELE, the 
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reader is referred to Ghiorso & Sack (1995), Asimow and Ghiorso (1998) and Boudreau 

(1999). The major element geochemical trends for the du Chef dykes have been modelled 

using six different scenarios of varying pressure and water content (Table 2). All models use 

a quartz-fayalite-magnetite (QFM) oxygen buffer and calculate the composition of the liquid 

at 10% crystallisation intervals. 

 
 
It is not entirely obvious which model best approximates the major element composition of 

the du Chef dykes, partly due to the scatter resulting from sub-solidus element mobility, but 

also because for certain elements (e.g., CaO and P2O5), the models predict similar trends 

(Fig. 6). However, high-pressure fractional crystallisation of the du Chef dyke parent magma 
 

is supported by the TiO2, SiO2, Al2O3 and Fe2O3 compositions, the trends of which (when 

plotted against MgO) are best approximated by models 5 (7 kbar) and 6 (10 kbar). Overall, 

model 5, which models fractional crystallisation of a magma with a composition equal to that 

of sample DC011 at 7 kbar, provides the most consistent fit with the du Chef dyke 

compositions. 

 
 
The 7 kbar model predicts that crystallisation of the DC011 parent magma begins at ~1261 
 

°C with olivine being the first mineral to crystallise. Clinopyroxene joins olivine at ~1249 °C 

after ~3% of the magma has crystallised. Clinopyroxene is followed by plagioclase soon after 

at 1242 °C after ~6% of the magma has crystallised. Once the magma has cooled to 1212 °C 

and ~44% of it has crystallised, orthopyroxene joins the crystallising assemblage before 

leaving again once the magma cools to 1170 °C and ~65% of it has crystallised. Olivine, 

clinopyroxene and plagioclase continue to crystallise until the magma reaches 1160 °C, at 

which point 70% of the original parent magma has crystallised and the remaining liquid 

contains less MgO than the most evolved du Chef dyke sampled (Supplementary Figure 5). 

 
 
5.2 Crustal contamination 
 

Trace element models have been constructed to determine whether the du Chef parental 

magma evolved via simple fractional crystallisation (FC) or through assimilation-fractional 

crystallisation (AFC). Fractional crystallisation of the du Chef parent magma was modelled 

using the modal mineral abundances predicted by the 7 kbar major element model and the 

partition coefficients of Bedard (2001) using equation 1 (see appendix). AFC uses the same 

http://melts.ofm-research.org/applet.html)


269 parameters as the FC model, the composition of felsic crust (Rudnick and Gao 2003) and an  
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assimilation/fractionation rate (r) of 0.1 (equations 2 and 3). 
 

 
 
On primitive mantle-normalised multi-element diagrams (Fig. 7), the du Chef dykes show 

similar subparallel trends to those observed on chondrite normalised REE diagrams (Fig. 5). 

All of the du Chef samples show enrichments in the most incompatible elements relative to 

the more compatible HFSE and have relative depletions in Th [(Th/La)N = 0.37 ± 0.18]. The 

dykes also show negative Nb anomalies (NbN/NbN* = 0.8 ± 0.2)
1 

and variable Ti anomalies 

(TiN/TiN* = 1.1 ± 0.5)
2 

the magnitude of which do not correlate with degree of fractionation 

(Supplementary Figure 4). The du Chef dykes are further characterised by predominantly 

negative Zr-Hf anomalies. These trace element characteristics result in the majority of the du 

Chef dykes plotting in mantle plume-related oceanic plateau basalt fields on the Nb/Y vs. 

Zr/Y and Zr/Nb vs. Nb/Th diagrams (Fig. 8). 
 

 
 
Models which use trace elements to model FC and AFC using the parameters and 
 

assemblages predicted at various degrees of crystallisation at 7 kbar are shown in Fig. 7. Both 
 

FC and AFC models predict the general trends of increasing incompatible element 

abundances observed in the du Chef dykes. However, the AFC model indicates that as 

fractionation of the parent magma continues, the magmas develop an increasingly negative 

Nb-Ta anomaly. The lack of correlation between NbN/NbN* and Zr or MgO (used as an index 

of fractionation) in the du Chef dykes (Supplementary Figure 4) shows that contamination 

of the fractionating du Chef parent magma by felsic crust is unlikely. Instead, fractionation of 

the du Chef dyke parent magma, with no significant input of material is our preffered 

mechanism for explaining the trace element variation observed in the dykes. However, 

despite the lack of systematic change in the dyke’s NbN/NbN* values, some of the scatter on 

Supplementary Figure 4 may be the product of in situ contamination of individual dykes by 

heterogeneous lithologies which make up the ~10,000 km
2 

area within the Grenville Province 

(Martignole and Martelat 2005) that the du Chef dykes crop out in (Fig. 1). 

 
 
In summary, the major element chemistry of the du Chef dykes is best explained by a model 

that involves a body of basaltic magma containing ~9 wt.% MgO that ponded at ~21 km (~7 

kbar) and fractionated olivine, clinopyroxene, plagioclase orthopyroxene. Trace element 
 

 
1 

NbN* = (ThN + LaN) / 2 
2 

TiN* = (SmN  + GdN) / 2 
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modelling indicates that during fractionation, this du Chef parent magma was not 

contaminated by felsic country rock. Instead, the parent liquid evolved via simple fractional 

crystallisation, over the course of which, the magma chamber was periodically tapped and 

liquids removed to form individual du Chef dykes which record the geochemical evolution of 

the parent magma. It is however likely that some of these evolved melts became 

contaminated by the various crustal components into which the du Chef dyke swarm 

intruded, thus producing some of the HFSE variation observed in Fig. 7. 

 
 
5.3 Primary Magmas and Mantle Source 
 

The relatively evolved nature of the du Chef dykes (MgO ≤ 9 wt.%) suggests that even the 

most primitive dyke does not represent an unfractionated primary magma derived through 

partial melting of mantle peridotite. To characterise the primary magmas of such evolved 

suites, Herzberg and Asimow (2008) developed the PRIMELT2 software which can calculate 

primary magma compositions for evolved lavas. PRIMELT2 uses forward and inverse 

models to compute a melt fraction which is capable of, (a) being formed by partial melting of 

fertile mantle peridotite and (b) producing the major element composition of the evolved lava 

sample through fractionation or accumulation of olivine alone. 

 
 
Fractional crystallisation models which use sample DC011 as a parent magma composition 

predict that olivine is the first mineral to crystallise (Supplementary Figure 5). This, along 

with the ~9 wt.% MgO content of DC011, suggests that this sample could feasibly have 

evolved solely through olivine fractionation of a primary mantle melt (Herzberg and Asimow 

2008). Indeed, the application of PRIMELT2 to sample DC011 produces a successful result, 

whereby the major element composition of sample DC011 can be replicated by 30% partial 

melting of fertile mantle peridotite to produce a picritic primary magma containing 19.8 wt.% 

MgO, 11.4 wt.% Al2O3   and 46.2 wt.% SiO2 . Fractional crystallisation of this primary 

magma, such that 32% of it crystallises as olivine, produces a remaining liquid fraction with a 

major element composition similar to sample DC011. By using these degrees of partial 

melting and olivine fractionation, we can investigate the possible mantle sources for the du 

Chef dykes. 

 
 
Five mantle reservoirs are modelled (see appendix): Depleted MORB Mantle (DMM), 

Enriched Mantle (EM1 and EM2) and Primitive Mantle (PM) and High 
238

U/
204

Pb Mantle 

(HIMU). The composition of DMM has been constrained by Workman and Hart (2005) from 
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the trace element depletion trends of abyssal peridotites. The compositions of the EM1 and 

EM2 reservoirs are estimated from inverse modelling of the compositions of EM1 and EM2 

basalts from the Tristan da Cuhna, Gough, Samoan and Society islands (Willbold and Stracke 

2006). The HIMU reservoir is similarly estimated from inverse modelling using the 

compositions of basalts from Tubuai, Mangaia and Rurutu (Chauvel et al. 1992). The 

composition of PM is derived from studies of chondritic meteorites and refractory element 

ratios of mantle peridotites (McDonough and Sun 1995). It should be noted that projecting 

the existence of these reservoirs, predominantly recognised from modern intraplate basaltic 

rocks, back into the Palaeoproterozoic is questionable. However, these reservoir 

compositions can be used to characterise the enriched or depleted nature of the du Chef 

mantle source region. 

 
 
The 30% partial melting needed to form the du Chef primary magma (as predicted by the 

PRIMELT2 model for sample DC011) may be modelled using batch melting (Equation 4) 

for garnet lherzolites (Johnson et al. 1990) from the five different mantle reservoirs described 

above. Garnet lherzolite was chosen for the models as all of the du Chef dykes have relatively 

depleted HREE patterns (Fig. 5) which indicates that mantle melting occurred within the 

garnet stability field but was of an insufficient degree to melt all of the garnet in the source. A 

garnet-bearing source may also be implied by the negative Zr-Hf anomalies observed in the 

du Chef dyke, which for other intracontinental basaltic rocks, have been interpreted to have 

been imparted on primary magmas by the segregation of magmas from a mantle plume with 

residual majorite garnet, at depths of 400 to 600 km (Xie et al. 1993). 

 
 
The PRIMELT2 model predicts that, following partial melting, 32% of the primary magma 

crystallised as olivine, with the remaining liquid fraction approximating to the composition of 

sample DC011. The affects of this fractionation on the trace element chemistry of the primary 

magmas derived from the three different mantle reservoirs can be calculated using equation 1 

and the olivine/melt partition coefficients of Bedard (2001) with 32% fractionation (F = 

0.32). 
 

 
 
Fig. 9. shows the Primitive Mantle-normalised multi-element patterns for sample DC011 for 

which PRIMELT2.XLS was able to define partial melting and fractionation parameters. Also 

plotted are the compositions of magmas formed by fractional crystallisation of primary 

magmas derived from melting of garnet lherzolites from the DMM, EM1, EM2, HIMU and 
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PM mantle reservoirs using the parameters of melting and fractionation stated above. Fig. 9. 

shows that a fractionated magma, derived from a primitive mantle garnet lherzolite is an 

unlikely parent magma for the du Chef dykes as such a liquid is characterised by (Th/La)N = 

1.01- in contrast to sample DC which has a much lower ratio [(Th/La)N = 0.43]. The 
 

modelled fractionated magma derived from the DMM reservoir has a more similar (Th/La)N 

ratio to the du Chef dykes but also records distinctly lower trace element abundances (2.2 × 

primitive mantle) than sample DC011 (5.4 × primitive mantle). The fractionated magma 

derived from the enriched mantle (EM1 and EM2) reservoirs have very similar element 

abundances and primitive mantle-normalised patterns as sample DC011 for the least 

incompatible trace elements as well as comparable (Th/La)N ratios, but fails to replicate the 

LREE enrichment observed in the du Chef dykes [(La/Sm)N = 1.90 ± 0.33] and instead 

showsslight LREE depletion [(La/Sm)N = 0.81]. The fractionated magma derived from partial 

melting of the HIMU reservoir records similar MREE-HREE ratios to sample DC011, but 

predicts much higher abundances as well as contrasting (Th/La)N ratios. Further modelling 

which involves fractionation of primary magmas formed via melting an EM1 garnet 

lherzolite previously modified by the addition of a crustal component, [as might occur during 

melting of lower crustal material by hot upwelling mantle (e.g., Xu et al. 2002)], is also 

unsuccessful in replicating the trace element composition of sample DC011, since the 

composition of the modelled magma in this instance is characterised by (Th/La)N ratios > 1 

and negative Nb-Ta anomalies. 

 
 
This indicates that fractional crystallisation of partial melts of the mantle reservoirs described 

here is not a viable mechanism for producing the parent magma of the du Chef dykes. An 

alternative source is suggested by the work of Polat et al. (1998) who observed similar trace 

element characteristics in ultramafic rocks of the late-Archaean Schreiber-Hemlo and White 

River-Dayohessarah greenstone belts of the Superior Craton. In this earlier work, Polat et al. 

(1998) suggested that primary magmas characterised by trace element signatures like those 

observed in the du Chef dykes were the product of deep-seated, mantle plume magmas 

derived from subducted and recycled oceanic lithosphere albeit with a different trace element 

signature than the HIMU reservoir modelled above. 

 
 
5.4. Thermal Plume 
 

Using overlapping U-Pb ages of mafic suites, Söderlund et al. (2010) have suggested that the 

du Chef dyke swarm is correlative with some of the Sebanga dykes preserved on the 
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Zimbabwe craton. Söderlund et al. (2010) used this coeval geochronological data to suggest 

that during the late-Archaean and early-Proterozoic, the Superior, Karelia and Zimbabwe 

cratons were ‘nearest neighbours’ in a larger supercontinent (Ernst and Bleeker 2010; 

Söderlund et al. 2010) which began to rift apart approximately 2.4 Ga during an episode of 

mantle plume-driven continental breakup. 

 
 
Mantle plumes active in the modern era such as those beneath Iceland and Hawaii are 

characterised by anomalously hot upper mantle hundreds of degrees hotter than the ambient 

mantle (Wolfe et al. 1997; Bijwaard and Spakman 1999; Li et al. 2000). For ancient 

magmatic systems the existence of anomalously high-temperature magmatism (indicative of a 

mantle plume) can be investigated by examining the geochemistry of primary magmas and 

calculating their mantle potential temperature (TP) – the temperature the mantle would reach 

if it was brought to the surface adiabatically without melting (McKenzie and Bickle 1988). 
 

The TP of the mantle source of a primary magma may be recorded in its petrology and major 

element geochemical composition and can be inferred by calibration and parameterisation of 

laboratory data to the magma in question. PRIMELT2.XLS software developed by Herzberg 

and Asimow (2008) can be used to calculate Tp. Once PRIMELT2.XLS obtains a primary 

magma composition, the MgO concentration is used to calculate TP where the total 

uncertainty due to potential errors in determining the MgO content of primary magmas is ± 

60°C (2σ) (Herzberg and Asimow 2008; Herzberg et al. 2010). 
 

 
 
PRIMELT2.XLS was able to calculate the potential temperature of 1567°C for sample 

DC011. By comparing this potential temperature with temperature estimates of the ambient 

upper mantle in the Palaeoproterozoic, we can determine whether the magmatism which 

formed the du Chef dykes was derived from an anomalously hot upper mantle (i.e., plume) as 

is predicted by the mantle plume theory (Campbell 2007), and confirmed by observations of 

the mantle beneath Hawaii and Iceland (Bijwaard and Spakman 1999; Li et al. 2000) and 

elsewhere (Montelli et al. 2004; Waite et al. 2006;). 

 
 
There is a general consensus that the mantle was significantly hotter during the 

Palaeoproterozoic than it is today (Fig. 10). Exactly how much hotter is a contentious point 

as different models predict different cooling histories for the Earth. Richter (1988) presents 

models in which the starting temperature of the upper mantle at 4.5 Ga was either 2000°C or 

2500°C which cooled at a continuously decreasing rate to reach a present day value of 
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1350°C. Regardless of the two starting temperatures used by Richter (1988), his model 

predicts that at ~2.4 Ga the temperature of the ambient upper mantle was ~1480°C. Korenaga 

(2008) has proposed a model which is characterised by an initial increase in mantle TP from 

~1650°C at 4.5 Ga to ~1700°C at 3.6 Ga. This initial temperature increase is followed by an 
 

increasingly rapid drop in TP to a present day values of 1350°C. Davies (2009) suggests that 

the low urey ratio (heat produced by radioactive decay/heat loss) used by Korenaga (2008) is 

extreme and instead favours a model of constantly decreasing temperature from an initial 

upper mantle temperature of 1800°C at 4.5 Ga to reach a modern day temperature of 1300°C. 

 
 
The TP of sample DC011 (1567°C) which yields a primary magma estimate with 

PRIMELT2.XLS is plotted in Fig. 10 along with the three secular cooling models described 

above. Sample DC011 records a Tp 87°C and 179°C higher than is predicted for the ~2.4 Ga 

mantle by the models of Richter (1988) and Davies (2009) respectively, but 138°C lower than 

is predicted by the model of Korenaga (2008). Determining the veracity of the disparate 

models presented in Fig. 10 is beyond the scope of this study. However, the model of 

Korenaga (2008) has been seriously challenged by Davies (2009) and Karato (2010). Davies 

(2009) disagrees with the assumption of Korenaga (2008) that plate thickness is determined 

by dehydration during melting at mid-ocean ridges and instead suggests that plate thickness is 

determined by conductive cooling. Davies (2009) also argues that the model of Korenaga 

(2008) is overly sensitive to the radius of curvature of bending plates at subduction zones. 

Karato (2010) demonstrates that plate curvature at subduction zones depends on the flexural 

rigidity which in turn, depends on plate thickness. This finding by Karato (2010) essentially 

invalidates the model of Korenaga (2008) who assumes that the radius of curvature of 

bending plates remains constant.  On this basis therefore we prefer the models of Richter 

(1988) and Davies (2009) in estimating the temperature of the upper mantle during the 

emplacement of the du Chef dykes at ~2.4 Ga. 

 
 
Other studies have estimated the temperature of the upper mantle at various points during the 

Archaean (Ohta et al. 1996; Galer and Mezger 1998; Komiya et al. 2004). Galer and Mezger 

(1998) examined the regional metamorphic grade of ten undisturbed Archaean granite- 

greenstone segments and showed that metamorphic facies exposed at the surface today are 

indicative of burial pressures of ~1.5 kbar. From these burial pressures, Galer and Mezger 

(1998) infer that, since 3 Ga, the undisturbed portions of cratons have been uplifted ~5 km, 

implying a mean continental thickness of ~46 km when the cratons were stabilised at ca. 2.5 
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Ga (Bleeker 2003). Galer and Mezger (1998) argue that during the Archaean, in order to 
 

maintain isostatic equilibrium with the cratons, the oceanic crust would have had to have 
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been ~14 km thick (assuming a relatively fixed cratonic mass through time). Under these 

conditions, Galer and Mezger (1998) infer an upper mantle temperature of ~90 °C hotter than 

the present day at 3 Ga. Using a linear cooling rate of 30 °C Gy
-1 

(which is comparable to 

estimates of the present day cooling rate of the Earth), the temperature of the upper mantle at 

2.4 Ga can be estimated as 1422 °C. 
 

 
 
Ohta et al. (1996) used the geochemistry of Archaean MORB rocks preserved in a 3.1-3.3 Ga 

accretionary complex in Pilbara, Western Australia to constrain the ambient temperature of 

the upper mantle at 3.1-3.3 Ga to be 1400 °C. Using this temperature of 1400 °C as an 

estimate for TP at 3.2 Ga and a simplistic, linear cooling modelling between 1400 °C at 3.2 

Ga and 1350 °C today, the temperature of the mantle at 2.4 Ga can be estimated at 1387 °C. 
 

In a similar study, Komiya et al. (2004) use the geochemistry of Archaean MORB rocks 

preserved in the 3.8 Ga Isua Supracrustal Belt, southwest Greenland to constrain upper 

mantle temperatures at that time to be ~1480 °C. Again, using a simplistic, linear cooling 

model between 1480 °C at 3.8 Ga and 1350 °C today, the temperature of the upper mantle at 

2.46 Ga can be estimated at 1432 °C. These three estimates of upper mantle temperature at 
 

~2.4 Ga using the work of Ohta et al. (1996), Galer and Mezger (1998) and Komiya et al. 

(2004) are all significantly lower than the TP recorded by sample DC011 (180 °C, 135 °C and 

145 °C respectively). This reinforces the evidence presented by Fig. 10 that the du Chef dyke 
 

swarm formed from anomalously hot mantle plume. 
 

 
 
In summary, secular cooling models of the Earth’s mantle suggest that the du Chef dykes 

originated from anomalously hot early-Proterozoic mantle according to the models of Davies 

(2009) and Richter (1988) as well as other estimates derived from studies of Archaean mantle 

rocks (Ohta et al. 1996; Galer and Mezger 1998; Komiya et al. 2004). This evidence, along 

with consistent trace element geochemistry suggests that the du Chef dykes are be the product 

of mantle plume-driven magmatism as proposed by Ernst and Buchan (2004) and Söderlund 

et al. (2010). However, alternate models of the cooling of the mantle [e.g., Korenaga (2008) 

and Abbot et al. (1994)] indicate that the du Chef dykes are not the product of an 

anomalously hot mantle plume. Continued research into the thermal evolution of the mantle 

and derivation of robust models which estimate the temperature of the upper mantle at ~2.4 

Ga will help better determine the nature of the source and petrogenesis of the du Chef dykes. 
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Based on coeval U-Pb ages, other workers have proposed that the du Chef dykes may be 

genetically linked to the 2408 ± 2 Ma (Söderlund et al. 2010) Sebanga dykes preserved on the 

Zimbabwe craton, as well as potentially to the 2403 ± 3 Ma (Kullerud et al. 2006) 

Ringvassoy dykes (Kola-Karelia craton), 2410 ± 2 Ma (Doehler and Heaman 1998) 

Widgiemooltha swarm and the 2418 ± 3 Ma (Nemchin and Pidgeon 1998)  Scourie dyke 

swarm. These other igneous provinces, comprised of numerous, predominantly doleritic 

intrusions are similar to the du Chef dyke swarm in terms of areal extent and their continental 

tholeiitic basalt geochemical affinities (Kullerud et al. 2006; Hughes et al. submitted). 

Together with the du Chef dyke swarm, these suites may represent a hitherto unknown early 

Proterozoic Large Igneous Province (Ernst and Buchan 2002). 

 
 
Comparisons of the trace element geochemistry of the du Chef dykes and their potential 

correlative suites (Fig. 11) for which such data exists in the literature allow for some 

interesting observations to be made. Firstly, there is a striking similarity between all of the 

suites in terms of their general enrichments in the most incompatible REE relative to the least 

incompatible elements. Of the three suites potentially correlative with the du Chef swarm, it 

is the Scourie dykes which have the most similar trace element geochemistry to the du Chef 

dykes. These two dyke swarms share comparable average trace element abundances as well 

as similarly large Zr-Hf and Y anomalies, which may indicate the two swarms were derived 

from a common mantle reservoir that underwent a similar degree of partial melting. 

However, in contrast to the du Chef dykes, both the Ringvassoy and Scourie dykes all have 

high (Th/La)N ratios and are characterised by significant, negative Nb-Ta anomalies. 

 
 
The trace element signatures of these three suites are common in igneous rocks formed in 

modern volcanic arc settings (e.g., Pearce and Peate 1995). Thus, when observed in 

palaeoproterozoic igneous rocks, these signatures have often been interpreted as evidence of 

formation in such an environment (e.g., Van Boening and Nabelek 2008).  However, the 

volcanic arc-like trace element compositions recorded by the du Chef dykes are common in 

the palaoeproterozoic igneous record and are observed in rocks of a similar age which 

preserve field evidence that entirely precludes a subduction-related setting including radiating 

dyke swarms and flood basalt provinces (Phinney and Halls 2001; Jolly 1987). For such 

suites which record trace element signatures like those observed in the dykes potentially 
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trace element geochemistry have been suggested. Potential explanations include; (1) partial 

melting of subduction-modified sub-continental lithospheric mantle (Sandeman and Ryan 

2008); (2) a widespread ancient mantle reservoir, fundamentally different to those observed 

in the modern mantle (Vogel et al. 1998); or, (3) the contamination of mantle melts by 

continental crust during fractionation in deep crustal magma chambers (e.g., Nelson et al. 

1990). 
 

 
 
Thus the differences in the trace element chemistry observed between the du Chef swarm and 

its potential correlative suites do not necessarily rule out a cogenetic origin. Instead, these 

differences may be the product of melting of a compositionally heterogeneous mantle plume 

head that had sampled various mantle reservoirs or lithospheric components during its transit 

through the crust and mantle, (cf., Kerr et al. 2002; Ketchum et al. 2013) or potentially 

through the mutual evolution of cogenetic mantle melts in disparate crustal magma chambers 

(Bleeker 2004). Further work aimed at better defining the ages of these coeval suites would 

better constrain any potential temporal link, while further palaeomagnetic work would 

characterise the possibility of a 'nearest neighbour' situation (Bleeker 2003) between the 

suites at ~2.4 Ga (Fig. 12). 
 

 
 

6.   Summary and conclusions 
 

 
 

1.   The primary magma of the du Chef was a low-Ti, low-Al picritic basalt, derived from 

partial melting of a garnet-bearing mantle peridotite similar in trace element 

composition (but more enriched) to the modern-day HIMU reservoir. 

2.   The magma produced by this partial melting was significantly higher in temperature 

than the ambient mantle and may indicate the presence of a mantle plume beneath the 

Superior craton during the early Proterozoic. 

3.   Prior to intrusion of the dykes, the du Chef primary magma ponded in a mid-deep 

level crustal chamber where it fractionated olivine, clinopyroxene, plagioclase and 

orthopyroxene but with little assimilation of host rocks. This mid-deep level crustal 

chamber was periodically tapped, with fractions of melt migrating from the chamber 

to be emplaced as individual du Chef dykes. 

4.   Individual dykes were contaminated insitu by the host rocks and inherited variable, 

but minor, negative anomalies in some of the HFSE. 
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5.   Units proposed to be correlative with the du Chef dykes have slightly different 

geochemical compositions that may be the result of differences in source reservoir or 

contamination by crust or lithospheric mantle 
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Sample 
UTM (E) 

DC001 
550620 

DC002 
550653 

DC003 
560353 

DC004 
565583 

DC005 
573015 

DC006 
573462 

DC007 
548834 

DC008 
552965 

DC010 
552965 

DC011 
585722 

DC013 
584705 

DC014 
584680 

DC015 
581748 

DC016 
578738 

DC017 
578768 

DC018 
582583 

DC019 
582578 

DC020 
582595 

UTM (N) 5497068 5497125 5479443 5471571 5467189 5466863 5463730 5458295 5458295 5459991 5460291 5460299 5468324 5481228 5481245 5482545 5482500 5483019 

Majors (wt.%)                   
SiO2 45.57 47.40 45.04 47.88 52.01 47.13 47.82 47.43 45.90 47.60 48.13 46.15 45.70 45.32 45.69 48.03 47.82 48.06 
TiO2 2.38 1.62 2.47 1.54 1.02 1.66 1.61 1.33 1.30 1.17 1.17 1.58 2.60 2.69 2.20 1.11 1.20 1.46 
Al2O3 14.40 14.35 13.50 14.70 14.41 15.65 13.28 15.69 15.52 15.33 13.79 14.56 13.97 12.34 14.12 15.25 15.47 15.69 
Fe2O3 15.94 14.88 18.56 14.38 12.20 14.16 16.21 12.03 12.32 11.92 14.66 16.56 17.70 19.68 17.61 14.00 14.74 13.01 

MnO 0.22 0.20 0.23 0.19 0.17 0.17 0.22 0.15 0.18 0.15 0.19 0.20 0.22 0.23 0.21 0.18 0.19 0.16 
MgO 5.73 6.04 5.37 6.39 5.95 7.23 6.29 7.87 8.04 9.02 6.40 6.76 5.76 7.13 5.87 8.88 7.42 6.82 

CaO 9.92 9.63 8.55 9.45 9.81 9.85 8.99 10.34 10.50 11.66 10.38 9.40 9.27 9.99 9.24 10.05 10.10 9.65 

Na2O 2.38 2.14 2.75 2.55 2.46 3.25 2.78 2.53 2.42 2.26 2.45 2.37 2.19 2.18 2.23 2.17 2.20 2.64 

K2O 1.21 1.10 1.20 0.85 0.91 0.58 0.95 0.70 1.26 0.35 0.64 0.67 0.92 0.56 0.63 0.36 0.34 0.55 
P2O5 0.31 0.30 0.27 0.19 0.07 0.22 0.38 0.15 0.15 0.14 0.17 0.21 0.42 0.21 0.28 0.10 0.12 0.18 

LOI 1.58 1.48 1.27 0.89 0.82 1.21 0.57 1.66 2.21 1.36 0.71 0.93 1.54 0.42 1.93 0.25 0.47 0.55 

Total 99.64 99.12 99.21 99.01 99.84 101.13 99.09 99.88 99.80 100.95 98.69 99.40 100.29 100.74 100.03 100.38 100.05 98.76 

Traces (ppm)                   
Sc 37.3 39.2 40.9 39.5 41.0 29.7 35.2 26.1 25.5 27.5 46.0 35.9 35.8 49.2 32.5 35.0 36.9 27.0 

Zr 156.1 135.9 131.5 67.7 54.6 89.0 161.7 82.1 88.4 67.3 69.0 64.7 148.9 87.9 115.4 50.7 49.7 92.6 

V 325.6 262.1 398.1 225.9 241.4 203.8 161.2 177.0 180.1 177.7 202.7 232.5 256.4 391.5 221.2 203.6 226.0 219.2 

Cr 97.9 106.9 42.6 118.3 153.1 89.5 117.4 186.6 179.3 228.1 134.3 76.0 168.9 205.5 70.5 202.6 108.7 95.2 
Co 52.4 49.9 56.5 50.4 41.3 57.1 52.2 50.0 46.0 47.0 53.0 61.5 52.6 61.3 54.7 59.8 54.3 49.6 

Ni 72.3 81.4 109.7 137.3 121.5 121.9 78.1 171.8 185.5 186.5 52.3 92.6 411.9 133.1 81.3 430.4 116.0 123.3 

Cu 92.0 80.9 106.6 88.8 94.5 77.3 78.4 74.0 57.6 55.9 75.7 85.2 88.1 109.5 88.4 82.4 99.4 78.1 

Ga 20.5 18.3 21.9 18.0 15.8 18.1 18.9 17.7 16.5 16.2 17.5 18.0 20.2 19.3 20.7 15.6 17.2 18.6 

Rb 30.1 25.9 20.0 7.1 19.7 9.5 15.9 5.5 18.5 9.9 8.3 5.7 14.5 7.9 9.7 5.6 4.8 10.0 

Sr 260.5 217.9 242.9 298.6 173.0 325.8 258.4 306.1 233.6 293.0 246.7 257.3 236.6 234.4 260.1 225.5 228.7 321.6 

Y 31.8 27.2 31.9 26.4 22.2 23.9 40.1 20.0 20.5 17.2 24.1 26.2 43.4 29.1 33.1 18.7 20.1 21.5 

Nb 9.47 5.33 9.48 4.55 3.40 7.15 11.54 5.89 5.70 4.73 3.59 3.49 12.93 6.43 8.90 3.34 3.29 6.45 

La 17.12 12.29 14.11 8.24 5.81 10.51 19.61 10.31 7.90 7.56 7.82 9.42 20.10 9.16 12.89 5.67 6.30 11.14 

Ce 38.44 27.68 30.87 17.48 10.59 23.69 43.00 19.72 18.22 15.80 17.48 18.75 38.29 21.22 29.56 12.22 12.88 22.23 

Pr 5.15 3.82 4.31 2.56 1.59 3.32 5.86 2.74 2.52 2.23 2.47 2.71 5.23 3.04 4.12 1.71 1.84 3.02 

Nd 22.39 17.01 19.10 11.59 7.41 14.64 25.68 11.99 11.55 10.15 11.55 12.59 23.28 14.17 18.32 7.93 8.70 13.57 

Sm 5.23 4.07 4.79 3.06 2.32 3.59 6.25 3.11 3.05 2.67 3.18 3.37 5.83 3.76 4.66 2.22 2.53 3.49 

Eu 1.76 1.60 1.76 1.23 0.86 1.32 2.07 1.11 1.06 0.94 1.22 1.31 1.91 1.49 1.72 0.89 2.90 1.24 

Gd 5.29 4.20 4.92 3.29 2.57 3.69 6.30 3.16 3.11 2.66 3.28 3.45 6.01 3.98 4.73 2.36 2.64 3.46 

Tb 0.86 0.70 0.83 0.59 0.48 0.60 1.05 0.53 0.55 0.46 0.58 0.62 1.05 0.70 0.82 0.43 0.48 0.59 

Dy 5.19 4.41 5.14 3.88 3.19 3.68 6.36 3.21 3.43 2.74 3.76 3.94 6.59 4.44 5.16 2.89 3.07 3.60 

Ho 0.99 0.85 0.98 0.77 0.63 0.69 1.22 0.60 0.63 0.52 0.74 0.77 1.29 0.86 0.99 0.57 0.61 0.67 

Er 2.72 2.39 2.73 2.16 1.78 1.93 3.34 1.64 1.74 1.45 2.12 2.21 3.67 2.46 2.86 1.65 1.78 1.84 

Tm 0.43 0.38 0.43 0.35 0.30 0.30 0.54 0.26 0.27 0.22 0.34 0.35 0.59 0.38 0.45 0.27 0.29 0.29 

Yb 2.91 2.59 2.94 2.37 2.02 1.98 3.57 1.67 1.74 1.43 2.22 2.33 3.87 2.55 2.96 1.76 1.96 1.91 

Lu 0.44 0.41 0.45 0.37 0.30 0.30 0.54 0.25 0.25 0.21 0.33 0.35 0.59 0.38 0.44 0.27 0.30 0.29 

Hf 3.72 3.14 3.18 1.85 1.54 2.27 3.77 2.17 2.11 1.74 1.93 1.78 3.94 2.35 3.08 1.47 1.41 2.27 

Ta 0.68 0.36 0.62 0.32 0.23 0.48 0.81 0.41 0.40 0.33 0.24 0.23 0.88 0.44 0.60 0.22 0.23 0.46 

Pb 4.11 4.57 10.32 4.12 4.07 5.44 4.82 5.58 7.76 2.20 2.22 3.06 4.31 2.60 2.20 0.64 31.91 1.52 

Th 1.16 0.72 0.60 0.33 0.38 0.59 0.83 0.58 0.51 0.41 0.30 0.23 1.19 0.43 0.73 0.27 0.22 0.61 

  U  0.29  0.20  0.22  0.18  0.18  0.15  0.24  0.16  0.16  0.12  0.08  0.07  0.31  0.10  0.18  0.07  0.12  0.17   

Table 1. Geochemical data for the du Chef dykes studied 



 

Model Pressure 
H2O Oxygen 

  content  buffer   

Model 1 1 kbar 0% QFM 
 

Model 2                            1 kbar                         1%                             QFM 

Model 3                            3 kbar                         0%                             QFM 

Model 4                            5 kbar                         0%                             QFM 

Model 5                            7 kbar                         0%                             QFM 

Model 6                           10 kbar                        0%                             QFM 

Table 2. Model parameters used in Pele for investigation fractional crystallisation of 
sample DC011 



 

 

 

Trace 

element 

(ppm) 

Mantle Reservoirs 

DMM EM1 
Primitive 
Mantle 

Components used in reservoir construction 

Lower Oceanic N- Altered 

crust crust MORB MORB 
Gabbro

 

Th 

Nb 

Ta 

La 

Ce 

Pr 

Nd 

Zr 

Hf 

Sm 

Eu 

Ti 

Gd 

Tb 

Dy 

Y 

Ho 

Er 

Tm 

Yb 

Lu 

0.008 0.029 0.085 

0.149 0.376 0.713 

0.010 0.027 0.041 

0.192 0.596 0.687 

0.550 1.753 1.775 

0.107 0.288 0.276 

0.581 1.466 1.354 

5.1 12.6 11.2 

0.157 0.359 0.309 

0.239 0.517 0.444 

0.096 0.199 0.168 

716 1433 1300 

0.358 0.716 0.596 

0.070 0.134 0.108 

0.505 0.922 0.737 

3.33 5.77 4.55 

0.115 0.204 0.164 

0.35 0.60 0.48 

0.054 0.092 0.074 

0.365 0.616 0.493 

0.058 0.095 0.074 

1.200 0.106 0.120 0.193 0.078 

5.000 2.136 2.330 3.563 1.695 

0.270 0.173 0.132 0.246 0.192 

8.000 3.813 2.500 4.181 4.790 

20.000 11.753 7.500 13.083 14.890 

2.400 1.858 1.320 2.309 2.199 

11.000 9.254 7.300 12.236 10.220 

68.0 81.1 74.0 127.4 77.6 

1.900 2.212 2.050 3.334 2.118 

2.800 3.041 2.630 4.439 3.090 

1.100 1.134 1.020 1.533 1.145 

4916 8212 7600 11498 8045 

3.100 4.029 3.680 6.283 3.858 

0.480 0.738 0.670 1.054 0.730 

3.100 4.854 4.550 6.996 4.669 

16.00 29.06 28.00 44.13 26.89 

0.680 1.040 1.010 1.570 0.957 

1.90 3.01 2.97 4.38 2.77 

0.240 0.459 0.456 0.656 0.421 

1.500 3.028 3.050 4.240 2.767 

0.250 0.451 0.455 0.675 0.402 

Table 3. Trace element compositions of mantle reservoirs used in this study. See text for description of data. 
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Fig. 1. Geological map of area showing sample locations. Geology 

modified after Thériault et al. (2012). 



 

 

 
 

 
 

 
 

 
 

Fig 2. Photomicrographs of the du Chef dykes: A – general view of non-foliated amphibolite samples; B – 

general view of foliated amphibolite samples; C – reflected light micrograph showing textures of magnetite 

and pyrite in amphibolite samples; D – garnet porphyroblasts; E – crosspolarised view of D; F – garnet 

porphyroblast showing atoll texture; G – general view of non-amphibolitised du Chef dyke; H – alteration of 

olivine and plagioclase in non-amphibolitised dykes. Abbreviations: amp – amphibole, bio – biotite, plg – 

plagioclase, mag – magnetite, pyr – pyrite, qtz – quartz, gar – garnet. 
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Fig. 3. Zr/Ti vs. Nb/Yb classification diagram (Pearce 1996) for the du Chef dykes. 
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Fig. 4. Bivariate diagrams of selected trace elements vs. MgO for the du Chef dykes. 
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Fig. 5. Chondrite-normalised rare earth element plot of the du Chef dykes (B). End-members and normalising 

factors from Sun and McDonough (1989). 
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Fig. 6. Bivariate diagrams of selected major elements vs. MgO trends for the du Chef dykes and those predicted 

by fractional crystallisation of a parent magma with a composition equal to that of sample DC011. Markers on 

the model lines are placed at intervals of 10% crystallisation. 
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Fig. 7. Primitive mantle-normalised trace element diagrams for the du Chef dykes. Also plotted are the trends 

predicted by FC (A) and AFC (B) using the starting composition of sample DC011 and the model constraints 

explained in the text. 
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Fig. 8. Zr/Nb vs. Nb/Th diagram (A) and Nb/Y vs. Zr/Y diagram (B) for the du Chef dykes. Field boundaries 

and end-member compositions from Condie (2005). Abbreviations: PM = Primitive Mantle, DM = shallow 

depleted mantle, ARC = arc related basalts, NMORB = normal mid-ocean ridge basalt, OPB = oceanic plateau 

basalt, OIB = oceanic island basalt, DEP = deep depleted mantle, EN = enriched component, REC = recycled 

component. 
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Fig. 9. Primitive mantle-normalised trace element diagrams for the du Chef sample DC011. Also plotted are the 

trends predicted for magmas which have evolved through 32% fractional crystallisation of olivine, following 

30% batch partial melting of garnet lherzolites (Johnston et al. 1990) from the EM1, DMM and PM mantle 
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Fig. 10. Temperature evolution of the upper mantle through time using different models; A – Davies (2009); B – 

Richter (1988); C – Korenaga (2008). 
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Fig 11. Primitive mantle-normalised bivariate diagrams showing composition of the du Chef dykes, Ringvassoy 

dykes (Kullerud et al. 2006) and Scourie dykes (Hughes et al. submitted). 
 
 
 
 
 
 

 

Fig. 12. Ca. 2.4 Ga continental reconstructions showing potential configurations of the eastern margin of Superia. 

Abbreviations for dyke swarms: Km – Kaminak, Ma – Matachewan, Ka – Karelian, dC – du Chef, Sb – Sebanga, 

Cs – Crystal Springs, Mi – Mistassini, Qarliit Nunaat, and Rv – Ringvassoy. Modified after Soderlund et al. 

(2010). 
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Supplementary Figure 1. Photographs of the du Chef dykes: A – road cut exposure on highway 167; B – 

whale-back exposure equivalent to site sampled by Krogh et al. (1984); C – linear contact between du Chef 

dyke (dC) and the country rock (CR) northwest of the Grenville Front; D – irregular contact between du 

Chef dyke and country rock from within the Grenville Front; E – garnet-bearing amphibolitised du Chef 

dyke; F – du Chef dyke with preserved igneous texture. 

http://ees.elsevier.com/precam/download.aspx?id=220271&amp;guid=cd8313b3-5c97-44a1-8960-38995f577782&amp;scheme=1


 

Y
 (

p
p

m
) 

T
h

 (
p

p
m

) 
V

 (
p

p
m

) 
N

a
2
O

 (
w

t.
%

)  

L
a

 (
p

p
m

) 
S

c 
(p

p
m

) 
S

r 
(p

p
m

) 
T

iO
2

 (
w

t.
%

)  

3.5 350 
 

 
 

 
3.0 

 

 
 
 
R² = 0.2159 

300 
 

 
 
250 

R² = 0.0136 

 
2.5  

200 
 

 
 

2.0  
40 90 140 190 

Zr (ppm) 

150  
40 90 140 190 

Zr (ppm) 
 

400 50 
 
 

350 
 
 

300 

 

 
R² = 0.0531 

 
 
40 R² = 0.0055 

 
 

250 
30 

 

200 
 
 

150 
 
 

1.2 

 
40 90 140 190 

Zr (ppm) 

20 

40 90 140 190 
Zr (ppm) 

 

22 
 

R² = 0.8543  

R² = 0.8894 

 
0.8 16 

 
 
 
 

0.4 10 
 
 
 
 

0 
40 90 140 190 

Zr (ppm) 

4 

40 90 140 190 
Zr (ppm) 

 

45 3.0 
 

 
 

 
35 

R² = 0.7687 

2.5 
 

 
 
2.0 

 
 
 
R² = 0.2348 

 
25 

1.5 
 

 
 

15 

40 90 140 190 
Zr (ppm) 

1.0  
40 90 140 190 

Zr (ppm) 

Supplementary Figure 2. Bivariate diagrams of selected elements plotted against Zr for the du Chef dykes. 
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Supplementary Figure 3. Bivariate diagrams of selected major elements vs. MgO for the du Chef dykes. 
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Supplementary Figure 4. Selected Bivariate diagrams for the du Chef dykes.[EuN* = (GdN + SmN) / 2; NbN* = 
(ThN + LaN) / 2; TiN* = (GdN + SmN) / 2] 
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Supplementary Figure 5. Diagram showing the cumulative proportions of crystals formed by fractional 

crystallisation of the du Chef parent at 10% intervals of crystallisation. 


