
Supermartingales in Prediction with Expert
Advice

Alexey Chernov, Yuri Kalnishkan, Fedor Zhdanov, and Vladimir Vovk

Computer Learning Research Centre, Department of Computer Science
Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

{chernov,yura,fedor,vovk}@cs.rhul.ac.uk

Abstract. This paper compares two methods of prediction with expert
advice, the Aggregating Algorithm and the Defensive Forecasting, in two
different settings. The first setting is traditional, with a countable num-
ber of experts and a finite number of outcomes. Surprisingly, these two
methods of fundamentally different origin lead to identical procedures. In
the second setting the experts can give advice conditional on the learner’s
future decision. Both methods can be used in the new setting and give
the same performance guarantees as in the traditional setting. However,
whereas defensive forecasting can be applied directly, the AA requires
substantial modifications.

1 Introduction

The framework of prediction with expert advice was introduced in the late 1980s.
In contrast to statistical learning theory, the methods of prediction with expert
advice work without making any statistical assumption about the source of data.
The role of the assumptions is played by a “pool of experts” that the predictor
competes with. For references and details, see the monograph [3].

Many methods for prediction with expert advice are known. This paper deals
with two of them: the Aggregating Algorithm [15] and defensive forecasting [17].
The Aggregating Algorithm (the AA for short) is a member of the family of
exponential-weights algorithms, and so implements a Bayesian-type aggregation;
various optimality properties of the AA have been established [16]. Defensive
forecasting is a recently developed technique that combines the ideas of game-
theoretic probability [12] with Levin and Gács’s ideas of neutral measure [7, 9]
and Foster and Vohra’s ideas of universal calibration [5].

The idea of defensive forecasting is that a prediction strategy is developed
assuming that we are given probability forecasts satisfying a convenient law of
probability. In game-theoretic probability, a law of probability is represented as
a strategy for an imaginary opponent, Sceptic, whose capital tends to infinity
(or becomes large) if the law is violated. Sceptic’s capital is a supermartingale,
and a well-known result (Lemma 3 of this paper) says that there is a forecasting
strategy that prevents Sceptic’s capital from growing, thereby forcing the law
of probability. This paper gives a self-contained description of a simple version
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of the method of defensive forecasting; we have no need to talk about laws of
probability (for us, they are synonymous with game-theoretic supermartingales).

The older versions of defensive forecasting (see, e.g., [17]) minimize Learner’s
actual loss with the help of the following trick: a probability forecasting system
is constructed such that the actual losses (Learner’s and experts’) are close to
the (one-step-ahead conditional) expected losses; at each step Learner minimizes
the expected loss. (Therefore, the law of probability used is the conjunction of
several laws of large numbers.) Defensive forecasting, as well as the AA, can
be used for competitive online prediction against “pools of experts” consisting
of all functions from a large functional class (see [18, 19]). However, the loss
bounds proved so far are generally incomparable: for large classes (such as many
Sobolev spaces), defensive forecasting is better, whereas for smaller classes (such
as classes of analytical functions), the AA works better. Note that the optimality
results for the AA are obtained for the case of free agents as experts, not functions
from a given class, thus we need to evaluate the algorithms anew.

In this paper, the AA and defensive forecasting are compared in the simple
case of a finite number of outcomes. Learner competes with a pool of experts Θ.
Learner and the experts suffer some loss at each step. We are interested in the
performance guarantees of the form

∀θ ∈ Θ LN ≤ cLN (θ) + a(θ) ,

where LN is the cumulative loss of Learner and LN (θ) is the cumulative loss of
expert θ over the first N steps, c is some constant and a depends on θ only. In
this case, we prove the following fact: an exponent of the regret (LN − cLN (θ))
is a supermartingale if and only if the AA guarantees for this c the bound above.
A defensive forecasting algorithm exploiting this fact turns out to give the same
predictions as the AA.

Then we consider a new setting for prediction with expert advice, where the
experts are allowed to “second-guess”, that is, to give “conditional” predictions
that are functions of the future Learner’s decision (cf. the notion of internal
regret [6]). If the dependence is regular enough (the expert’s loss is continuous
in Learner’s loss), the Defensive Forecasting algorithm works in the new setting
virtually without changes and guarantees the same performance bound as in the
traditional setting. The AA in its original form cannot work in the new setting,
and we suggest a modified version of the AA for this case.

2 Aggregating Algorithm

We begin with formulating the setting of the prediction with expert advice and
the AA. Then we give a proof of the standard performance bound for the AA,
which provides an insight to the “supermartingale” nature of the bound.

A game of prediction consists of three components: a non-empty finite set
Ω of possible outcomes, a non-empty set Γ of possible decisions, and a func-
tion λ : Ω × Γ → [0,∞] called the loss function. For technical convenience, we
identify each decision γ ∈ Γ with the function ω 7→ λ(ω, γ) (and also with



a point in an |Ω|-dimensional Euclidian space with pointwise operations). Let
Λ = { g ∈ [0,∞]Ω | ∃γ ∈ Γ ∀ω ∈ Ω g(ω) = λ(ω, γ) } be the set of predictions.
From now on, a game is a pair (Ω,Λ), where Λ ⊆ [0,∞]Ω .

The game of prediction with expert advice is played by Learner, Reality, and
Experts; the set (“pool”) of Experts is denoted by Θ. We will assume that Θ
is (finite or) countable. In this paper, there is no loss of generality in assuming
that Reality and all Experts are cooperative, since we are only interested in what
can be achieved by Learner alone; therefore, we essentially consider a two-player
game. The protocol of the game is the following.

Prediction with expert advice

L0 := 0.
Lθ

0 := 0, θ ∈ Θ.
FOR n = 1, 2, . . . :

Experts θ ∈ Θ announce γθ
n ∈ Λ.

Learner announces γn ∈ Λ.
Reality announces ωn ∈ Ω.
Ln := Ln−1 + γn(ωn).
Lθ

n := Lθ
n−1 + γθ

n(ωn).
END FOR.

The goal of Learner is to keep Ln less or at least not much greater than Lθ
n,

at each step n and for all θ ∈ Θ.
To analyse the game, we need some additional notation. A point g ∈ [0,∞]Ω

is called a superprediction if there is γ ∈ Λ such that γ(ω) ≤ g(ω) for all ω ∈ Ω.
The last property will be denoted by γ ≤ g. Let ΣΛ be the set of all superpre-
dictions.

The Aggregating Algorithm is a strategy for Learner. It has four parameters:
reals c ≥ 1 and η > 0, a distribution P0 on Θ (that is, P0(θ) ∈ [0, 1] for all θ ∈ Θ
and

∑
Θ P0(θ) = 1), and a substitution function σ : ΣΛ → Λ such that σ(g) ≤ g

for any g ∈ ΣΛ.
At step N , the AA takes a point gN ∈ [0,∞]Ω defined by the formula

gN (ω) = − c

η
ln
∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηγθ
N (ω)) ,

where

PN−1(θ) = P0(θ)
N−1∏
n=1

exp(−ηγθ
n(ωn))

is an unnormalized distribution on Θ. Then, γN = σ(gN ) is announced as the
next prediction of Learner.

The step of AA is correct if and only if gN is a superprediction. The necessary
and sufficient condition for this is

∃γN ∈ Λ ∀ω γN (ωN ) ≤ − c

η
ln
∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηγθ
N (ω)) . (1)



We say that the AA is realizable for certain c and η if the condition (1) is
true regardless of γθ

N ∈ Λ and PN−1 (that is, regardless of P0, the history, and
the opponents’ moves). In other words, for any finite set G ⊆ Λ and for any
distribution ρ on G, it holds that

∃γ ∈ Λ ∀ω exp
(
−η

c
γ(ω)

)
≥
∑
g∈G

ρ(g) exp(−ηg(ω)) . (2)

A detailed survey of the AA, its properties, attainable bounds and respective
conditions on c and η for different games can be found in [16]. Remark only that
if the AA is realizable for c = 1 and some η, the game is called η-mixable (and
mixable if it is η-mixable for some η), and this case is of special interest.

Theorem 1 (Vovk, 1990). If the AA is realizable for c and η, then the AA
with parameters c, η, P0, and σ guarantees that at each step n for all experts θ

Ln ≤ cLθ
n +

c

η
ln

1
P0(θ)

.

The theorem was proved in [15]. Here we reproduce the proof emphasizing
the points we need in the sequel.

Proof. We need to deduce the performance bound from the condition (1). To
this end, we will rewrite (1) and get a semi-invariant of AA—a value that does
not grow.

First, note that if we replace ∃γN ∈ Λ by ∃γN ∈ ΣΛ in (1), we get an
equivalent statement Indeed, Λ ⊆ ΣΛ, thus one direction is trivial. The other
direction holds by definition of a superprediction.

Second, note PN−1 occur in (1) only as a ratio of PN−1(θ) to their sum, so we
can multiply all PN−1(θ) by a constant (an expression without θ). Let us define
QN−1 by the formula P0(θ)QN−1(θ) = PN−1(θ)

∏N−1
n=1 exp

(
η
c γn(ωn)

)
, that is,

QN−1(θ) = exp

(
η

N−1∑
n=1

(
γn(ωn)

c
− γθ

n(ωn)
))

,

and replace PN−1(θ) by P0(θ)QN−1(θ) in (1). The inequality transforms to∑
θ∈Θ

P0(θ)QN−1(θ) ≥
∑
θ∈Θ

P0(θ)QN−1(θ) exp(−ηγθ
N (ω)) exp(

η

c
γN (ω)) .

Finally, we get that (1) is equivalent to the following condition:

∃γN ∈ ΣΛ ∀ω
∑
θ∈Θ

P0(θ)QN (θ) ≤
∑
θ∈Θ

P0(θ)QN−1(θ) (3)

(for ωN in QN we substitute ω).
In other words, the AA (if realizable for c and η) guarantees that after each

step n the value
∑

θ∈Θ P0(θ)Qn(θ) does not increase whatever ωn is chosen by



Reality. Since
∑

θ∈Θ P0(θ)Q0(θ) =
∑

θ∈Θ P0(θ) = 1, we get
∑

θ∈Θ P0(θ)QN (θ) ≤
1 and QN (θ) ≤ 1/P0(θ) for each step N . To complete the proof it remains to
note that

QN (θ) = exp
(

η

(
LN

c
− Lθ

N

))
. ut

For c = 1, the value 1
η ln

∑
θ P0(θ)QN (θ) is known as the exponential po-

tential (see [3, Sections 3.3,3.5]) and plays an important role in the analysis of
weighted average algorithms.

In the next section we show that the reason why condition (3) holds is es-
sentially that the Q is a supermartingale.

3 Supermartingales

Let P(Ω) be the set of all distributions on Ω. Note that since Ω is finite we
can identify P(Ω) with a (|Ω| − 1)-dimensional simplex in Euclidean space,
with the standard distance and topology. Let E be any set (maybe, empty).
A function S : (E × P(Ω)×Ω)∗ → R is called a (game-theoretic) supermartin-
gale if for any N , for any e1, . . . , eN ∈ E, for any π1, . . . , πN ∈ P(Ω), for any
ω1, . . . , ωN−1 ∈ Ω, it holds that∑

ω∈Ω

πN (ω)S(e1, π1, ω1, . . . , eN−1, πN−1, ωN−1, eN , πN , ω)

≤ S(e1, π1, ω1, . . . , eN−1, πN−1, ωN−1) . (4)

Remark 1. In the context of algorithmic probability theory (e. g. [10, p. 296]),
the word ‘supermartingale’ is used in the following sense. Let µ : Ω∗ → [0, 1] be
a measure on Ω∗. A function s : Ω∗ → R+ is a supermartingale with respect to
µ if for any N and any ω1, . . . , ωN−1 ∈ Ω it holds that∑

ω∈Ω

µ(ω | ω1, . . . , ωN−1)s(ω1, . . . , ωN−1, ω) ≤ s(ω1, . . . , ωN−1) ,

where µ(ω | ω1, . . . , ωN−1) = µ(ω1,...,ωN−1,ω)
µ(ω1,...,ωN−1)

. The relation with the game-
theoretic supermartingale notion is the following. Let us take any measure µ.
Let en be any functions of ω1 . . . , ωn−1. Let πn(ω) be µ(ω | ω1, . . . , ωn−1). Hav-
ing substituted these functions in a game-theoretic supermartingale S, one gets
a probabilistic supermartingale with respect to µ.

A supermartingale S is called forecast-continuous if for each N , it is contin-
uous as a function of πN .

3.1 Two Examples of Supermartingales

Let us consider two examples of supermartingales that naturally arise from two
widely used games of prediction.



The logarithmic loss function is defined by

λ(ω, γ) :=

{
− ln γ if ω = 1,

− ln(1− γ) if ω = 0,

where ω ∈ {0, 1} and γ ∈ [0, 1] (notice that the loss function is allowed to take
value ∞). The losses in the game are LN :=

∑N
n=1 λ(ωn, γn) for Learner who

predicts γn and Lθ
N :=

∑N
n=1 λ(ωn, γθ

n) for expert θ who predicts γθ
n. Consider

an exponent of the difference of losses of Learner and the expert:

exp

(
η

N∑
n=1

(
λ (ωn, γn)− λ

(
ωn, γθ

n

)))
.

Let us assign prediction γ ∈ [0, 1] to each probability distribution (1 − γ, γ)
on {0, 1}. With this identification, the expression above can be considered as a
function on ([0, 1]× P({0, 1})× {0, 1})∗.

Lemma 1. For η ∈ [0, 1], the function above is a forecast-continuous super-
martingale.

Proof. The continuity is obvious. For the supermartingale property, it suffices
to check that

peη(− ln p+ln g) + (1− p)eη(− ln(1−p)+ln(1−g)) ≤ 1,

i.e., that p1−ηgη + (1 − p)1−η(1 − g)η ≤ 1 for all p, g ∈ [0, 1] (p stands for γn

and g stands for γθ
n). The last inequality immediately follows from the inequality

between the geometric and arithmetic means when η ∈ [0, 1]. (The left-hand side
of that inequality is a special case of what is known as the Hellinger integral in
probability theory.) ut

In the game with quadratic loss function, ω ∈ {0, 1} and γ ∈ [0, 1] as before,
and the losses of Learner and expert θ are LN :=

∑N
n=1(γn − ωn)2 and Lθ

N :=∑N
n=1(γ

θ
n − ωn)2, respectively.

Lemma 2. For η ∈ [0, 2], the following function on ([0, 1]×P({0, 1})×{0, 1})∗

exp

(
η

N∑
n=1

(
(γn − ωn)2 −

(
γθ

n − ωn

)2))
is a forecast-continuous supermartingale.

Proof. It is sufficient to check that

peη((p−1)2−(g−1)2) + (1− p)eη((p−0)2−(g−0)2) ≤ 1

for all p, g ∈ [0, 1]. If we substitute g = p + x, the last inequality will reduce to

pe2η(1−p)x + (1− p)e−2ηpx ≤ eηx2
, ∀x ∈ [−p, 1− p].



The last inequality is a simple corollary of Hoeffding’s inequality [8, 4.16], which
is true for any h ∈ R (cf. [3, Lemma A.1]). Indeed, applying Hoeffding’s inequality
to the random variable X that is equal to 1 with probability p and to 0 with prob-
ability (1−p), we obtain p exp(h(1− p)) + (1− p) exp(−hp) ≤ exp(h2/8), which
the substitution h := 2ηx reduces to p exp(2η(1 − p)x) + (1 − p) exp(−2ηpx) ≤
exp(η2x2/2) ≤ exp(ηx2), the last inequality assuming η ≤ 2. ut

3.2 A Supermartingale Criterion if the AA is Realizable

In Lemmas 1 and 2, we take a certain function of losses, and consider it as a
supermartingale by having identified a prediction γ with a distribution (1−γ, γ).
A similar approach works also in the general case.

Let α : P(Ω) → ΣΛ ⊆ [0,∞]Ω map any distribution π to a prediction απ.
Given α, a real c ≥ 1, and a real η > 0, let us define the following function on
(ΣΛ × P(Ω)×Ω)∗:

Q(e1, π1, ω1, . . . , eN , πN , ωN ) = exp

(
η

N∑
n=1

(
απn(ωn)

c
− en(ωn)

))
. (5)

Note that this very function is used in Lemmas 1 and 2, and also it is the
function QN (θ) from the proof of Theorem 1, with en standing for γθ

n and απn

standing for γn.
Our next goal (Theorems 2 and 3) is to show that the AA is realizable if and

only if there exists α such that the function Q is a supermartingale.

Lemma 3. Let S be a forecast-continuous supermartingale. For any N , for any
e1, . . . , eN ∈ E, for any π1, . . . , πN−1 ∈ P(Ω), for any ω1, . . . , ωN−1 ∈ Ω, it
holds that

∃π ∈ P(Ω)∀ω ∈ Ω S(e1, π1, ω1, . . . , eN , π, ω)
≤ S(e1, π1, ω1, . . . , eN−1, πN−1, ωN−1) .

A variant of this lemma was originally proved by Levin [9]. For a full proof
see [7, Theorem 6] and [20, Theorem 1].

Note that the property provided by Lemma 3 is essentially the condition (3).

Theorem 2. Let α be a mapping from P(Ω) to ΣΛ and c ≥ 1 and η > 0 reals
such that Q is a forecast-continuous supermartingale. Then the AA is realizable
for c and η.

Proof. Let G ⊆ Λ be an arbitrary finite set. To prove (2) for any distribution
ρ on G, we construct a supermartingale Qρ on (P(Ω)×Ω)∗ (the set E in the
definition of supermartingale may be empty), which is a ρ-average of Q with g
substituted for e1 (e2, e3, . . . may be arbitrary), and apply Lemma 3 for N = 1.
Namely,

Qρ(π, ω) =
∑
g∈G

ρ(g)Q(g, π, ω) .



By the lemma, there exists π ∈ P(Ω) such that Qρ(π, ω) ≤ 1 for all ω, that is,∑
g∈G

ρ(g) exp
(

η

(
απ(ω)

c
− g(ω)

))
≤ 1 .

Since απ ∈ ΣΛ, there is γ ∈ Λ such that γ ≤ απ, which completes the proof. ut

For the converse statement, we need three assumptions about Λ.
Assumption 1. Λ is a compact set.
Assumption 2. There is γ ∈ Λ such that γ(ω) < ∞ for all ω.
These assumptions are standard (see [16]). The third assumption is new and

very technical. First we introduce some definitions that will be useful also in the
proof of the theorem below.

For a given η, the exp-convex hull of ΣΛ is the set ΞΛ ⊇ ΣΛ that consists of
all points g ∈ [0,∞]Ω of the form

g(ω) = log(e−η)

∑
γ∈G

ρ(γ)
(
e−η
)γ(ω) = −1

η
ln
∑
γ∈G

ρ(γ) exp(−ηγ(ω))

for all ω ∈ Ω, where G is a finite subset of ΣΛ and ρ is a distribution on G.
Let Ξ ′ be the set of minimal elements of ΞΛ: f ∈ Ξ ′ if and only if for any

g ∈ Ξ ∀ω (g(ω) ≤ f(ω)) implies f = g. Notice that Ξ ′ is contained in the
boundary of ΞΛ. It is known that the game is η-mixable if and only if ΞΛ ⊆ ΣΛ

(which explains the name) if and only if Ξ ′ ⊆ Λ.
For π ∈ P(Ω) and g ∈ [0,∞]Ω , denote

Eπg =
∑
ω∈Ω

π(ω)g(ω) .

Assumption 3. Let π ∈ P(Ω) be such that π(ω1) = 0 and π(ω2) = 0 for
some ω1 6= ω2. Let m = minγ∈Ξ′ Eπγ. If Eπγ1 = m and Eπγ2 = m for some
γ1, γ2 ∈ Ξ ′, then either γ1 minorizes γ2 or vice versa.

Assumption 3 is rather awkward. But it holds for a wide class of games. In
particular, it holds for all binary games and for all proper scoring rules. (But
it does not hold, e. g., for non-binary “absolute-loss” game, where λ(ω, γ) =∑n

i=1 |ωi − γi|.)
On the other hand, some technical requirement of this kind is unavoidable. It

does not appear just from our proof: For almost all π ∈ P(Ω) there is a unique
απ such that Q defined by (5) is a supermartingale. And it is easy to construct an
example where this correspondence cannot be extended to a continuous mapping
from P(Ω) to Ξ ′. (One possible way is to consider the image of ΞΛ under point-
wise exponential mapping g 7→ e−ηg. Every π ∈ P(Ω) can be naturally identified
with a family of parallel hyperplanes. The inequality (4) actually means that απ

is a point of tangency, where one of the hyperplanes touches the image of ΞΛ.
To get an example with a point of discontinuity, one may consider a vertical
cylinder in the three-dimensional space and a horisontal hyperplane.) It is not
clear how to cope with such cases under the supermartingale approach.



Theorem 3. Let the game (Ω,Λ) satisfy Assumptions 1–3. If the AA is realiz-
able for certain c and η, then there is a mapping α : P(Ω) → ΣΛ such that for
these α, c, and η, Q defined by (5) is a forecast-continuous supermartingale.

Proof. We construct the mapping α in two steps. First, we map P(Ω) to Ξ ′, and
then we map Ξ ′ to the boundary of ΣΛ. Geometrically, these steps amount to
taking a tangent plane to Ξ ′ and the central projection from Ξ ′ to the boundary
of ΣΛ.

The mapping µ from P(Ω) to Ξ ′ is defined by the formula

µπ = arg min
g∈Ξ′

Eπg .

First, let us prove that µπ is well-defined. By Assumption 2, there is a finite
point in Λ and thus in Ξ ′, hence the min is finite. The minimum is attained since
ΞΛ is compact and Eπg1 ≤ Eπg2 if g1 ≤ g2. Let us prove that the minimum is
attained at one point only1. Assume the converse: for some π, there are at least
two different points f and g where the minimum is attained, and Eπf = Eπg =
m. By definition of Ξ, the point − ln((e−ηf(ω) + e−ηg(ω))/2)/η also belongs to
Ξ. If it does not belong to Ξ ′, there is a point h ∈ Ξ ′ that minorizes it. For any
reals x, y, we have (ex + ey)/2 ≥ e(x+y)/2, and the inequality is strict if x 6= y.
Therefore, h(ω) ≤ (f(ω) + g(ω))/2, and if there exists ω such that π(ω) 6= 0
and f(ω) 6= g(ω), then Eπh < Eπ(f + g)/2 = m. This contradiction proves that
if f(ω) 6= g(ω), then π(ω) = 0. If f and g differ at one ω only, then one of
them minorizes the other, thus only one can belong to Ξ ′. The remaining case
is directly forbidden by Assumption 3.

Let us prove that µ is continuous. Consider any sequence of πi converging
to π. First of all, prove that Eπi

µπi
converges to Eπµπ. Indeed, for any π, π′ ∈

P(Ω), we have Eπ′µπ′ ≤ Eπ′µπ ≤ Eπµπ +maxω µπ(ω)
∑

ω |π′(ω)−π(ω)|. Hence
|Eπiµπi − Eπµπ| ≤

∑
ω |π′(ω) − π(ω)| ×max{µπ(ω), µπi(ω) | ω ∈ Ω }, and the

last expression tends to zero as πi tends to π. We omitted several subtle points:
how to bound µπi

and how to cope with the case of µπ(ω) = ∞ (e. g., consider
an auxiliary sequence of finite points converging to µπ).

Now assume a sequence πi converges to π and µπi converges to some γ.
By Assumption 1, γ belongs to ΞΛ. Further, Eπiγ converges to Eπγ since their
difference is bounded by maxω γ(ω)

∑
ω |πi(ω)−π(ω)|, and Eπi

(µπi
−γ) converges

to zero since it is bounded by max |µπi
− γ|. Thus, Eπi

µπi
converges to Eπγ and

to Eπµπ, and γ = µπ due to the uniqueness of µπ.
Now let us construct a continuous mapping from Ξ ′ to ΣΛ. Let g ∈ ΞΛ.

By definition, it is a positive combination of some γ ∈ ΣΛ. For g(ω) = 0 for
some ω, then γ(ω) = 0 too for any γ from the combination. For ω such that
g(ω) 6= 0, there is a constant c > 0 such that cg(ω) ≥ γ(ω) for all γ from the
combination. Taking the maximal such c over all ω, we get that for any g ∈ ΞΛ

these is a constant c > 0 such that cg ∈ ΣΛ. Now take the minimal c > 0
such that cg ∈ ΣΛ, this c will be called C(g) (the minimum is attained due to
1 In Bayesian framework this uniqueness means that the loss function is a strictly

proper scoring rule, cf. [4].



Assumption 1). Clearly, the mapping g 7→ C(g)g is a continuous mapping from
ΞΛ (and thus from Ξ ′) to the boundary of ΣΛ. If the AA is realizable for some
c (and η—recall that Ξ ′ depends on η), then C(g) ≤ c for all g ∈ Ξ ′.

Let απ = C(µπ)µπ. Clearly, απ is continuous and so is Q.
It remains to check that Q is a supermartingale, that is, satisfy (4). Dividing

both sides by the right-hand side, we get that it suffices to check the following:∑
ω∈Ω

π(ω) exp
(

η

(
απ(ω)

c
− γ(ω)

))
≤ 1,

for any γ ∈ ΣΛ and any π ∈ P(Ω). This inequality will follow from∑
ω∈Ω

π(ω)eη(µπ(ω)−γ(ω)) ≤ 1 (6)

since απ ≤ cµπ (here we use that the AA is realizable for c and η). Take ε > 0
Consider − 1

η ln ((1− ε)e−ηµπ + εe−ηγ). By definition, this mixture belongs to Ξ.
When ε → 0, we have

− 1
η

ln
(
(1− ε)e−ηµπ + εe−ηγ

)
= µπ −

1
η

ln
(
1 + ε

(
eη(µπ−γ) − 1

))
= µπ −

ε

η

(
eη(µπ−γ) − 1

)
+ o(ε2).

Take the expectation Eπ of the last expression. If (6) does not hold, this expec-
tation is less than Eπµπ for sufficiently small ε, which contradicts the definition
of µπ. ut

Remark 2. For any g ∈ Ξ ′, we have C(g) ≥ 1 since ΞΛ ⊇ ΣΛ and g is minimal in
ΞΛ. Thus for η-mixable games (c = 1) we have απ = µπ for all π, and the image
of the mapping α is included in Λ. For arbitrary games, the image is included
in the boundary of ΣΛ. Note also that α is continuous.

3.3 Defensive Forecasting

Now we describe the Defensive Forecasting algorithm (DF) for the game of
prediction with expert advice. It has five parameters: reals c ≥ 1, η > 0, a
function α : P(Ω) → ΣΛ, a distribution P0 on Θ, and a substitution function
σ : ΣΛ → Λ such that σ(g) ≤ g for all g ∈ ΣΛ.

The parameters c, η, and α are such that the function Q is a forecast-
continuous supermartingale. Let

QP0({γθ
1}θ∈Θ, π1, ω1, . . .) =

∑
θ∈Θ

P0(θ)Q(γθ
1 , π1, ω1, . . .) .

Clearly, QP0 is also a forecast-continuous supermartingale, therefore Lemma 3
applies.

At step N , the DF takes any πN that satisfy the conclusion of Lemma 3, and
then announces γN = σ(απN

) as the next prediction of Learner.



Theorem 4. If Q is a forecast-continuous supermartingale for c, η, and α, then
the DF with parameters c, η, α, P0, and σ guarantees that at each step n for all
experts θ

Ln ≤ cLθ
n +

c

η
ln

1
P0(θ)

.

Proof. Lemma 3 guarantees that at each step QP0 is not greater than its initial
value, 1. Thus,

exp

(
η

N∑
n=1

(
απn

(ωn)
c

− γθ
n(ωn)

))
≤ 1

P0(θ)
,

and therefore
N∑

n=1

απn(ωn) ≤ cLθ
n +

c

η
ln

1
P0(θ)

.

It remains to note that γn = σ(απn
) ≤ απn

, and hence Ln ≤
∑N

n=1 απn
(ωn). ut

As we have seen, the AA and the DF are very close in the loss bound and
also in their procedure. We can say even more: with the same parameters and
inputs, they give the same predictions. More precisely, two sets coincide: the
set of γN satisfying (1) and the set of γN such that they minorize απN

for πN

satisfying the conclusion of Lemma 3. Thus, within the standard setting of the
prediction with expert advice, the DF is just another way of looking at the AA.
In the next section, we consider a setting where these two algorithms differ.

4 Second-Guessing Experts

Let us consider an extension of the protocol of prediction with expert advice.
The game is specified by the same elements (Ω,Λ) as above.

Prediction with second-guessing expert advice

L0 := 0.
Lθ

0 := 0, θ ∈ Θ.
FOR n = 1, 2, . . . :

Experts θ ∈ Θ announce γθ
n : Λ → Λ.

Learner announces γn ∈ Λ.
Reality announces ωn ∈ Ω.
Ln := Ln−1 + γn(ωn).
Lθ

n := Lθ
n−1 + γθ

n(γn)(ωn).
END FOR.

The new protocol contains only one substantial change. Informally speaking,
now the experts announce not their actual predictions, but conditional state-
ments that specify their predictions depending on Learner’s next step. Therefore,
the loss of each expert is determined by the prediction of Learner as well as by



the outcome chosen by Reality. We will call the experts in this protocol second-
guessing experts. Second-guessing experts are a generalization of experts in the
standard protocol: a standard expert can be interpreted in the new protocol as
a constant function.

The phenomenon of “second-guessing experts” occurs in real-world finance.
For example, commercial banks serve as “second-guessing experts” for a central
bank when they use variable interest rates (that is, the interest rate for the next
period is announced as an explicit function of the central bank base rate).

In game theory, there is a notion of internal regret [6], which is related to the
idea of second-guessing experts. The internal regret appears in the framework
where for each prediction, which is called action in this context, there is an
expert that consistently recommends this action, and Learner follows one of the
experts at each step. The internal regret for a pair of experts (i, j) shows by how
much Learner could decrease its loss by having followed expert j each time it
followed expert i. This can be modelled by a second-guessing expert that agrees
with Learner if Learner does not follow i, and recommends following j when the
Learner follows i.

The internal regret is studied in randomized prediction protocols. In our case
of deterministic Learner’s predictions, one cannot hope to get any interesting
loss bound without additional assumptions. Indeed, Experts can always suggest
exactly the “opposite” to the Learner’s prediction (for example, in the log loss
game, predict 0 if Learner predicts γn ≤ 0.5 and 1 otherwise), and Reality can
“agree” with them; then the Experts’ losses remain zero, but the Learner’s loss
grows linearly in the number of steps. In this paper we consider second-guessing
experts that depend on the prediction of Learner continuously.

4.1 The DF for Second-Guessing Experts

First consider the case when γθ
n are continuous mappings from Λ to Λ. Surpris-

ingly, the DF requires virtually no modifications.

Theorem 5. Suppose Q defined by (5) is a forecast-continuous supermartingale
for some c, η, and a continuous α : P(Ω) → Λ. Then a DF algorithm can
be applied in the protocol of prediction with second-guessing expert advice for
continuous experts; it guarantees the same loss bound as in the prediction with
expert advice protocol.

Proof. Let Q be a forecast-continuous supermartingale as a function on (ΣΛ ×
P(Ω)×Ω)∗. Let γθ

n be continuous functions Λ → Λ. Since α is continuous, γθ
n(απ)

is a continuous function P(Ω) → Λ. Then Q with γθ
n(απ) substituted for en is a

forecast-continuous supermartingale as a function on (C(Λ → Λ)×P(Ω)×Ω)∗,
where C(Λ → Λ) is the set of continuous functions on Λ. We take the identity
for a substitution function since α takes values already in Λ, and for the DF
with the supermartingale above the proof of Theorem 4 applies. ut

Recall that for mixable games the mapping α constructed in the proof of
Theorem 3 satisfies the conditions of the last theorem.



For games that are not mixable, it may happen that such α does not exist.
Even more, for games where Λ is not connected (e. g., the simple game of predic-
tion), the continuity of experts does not rule out the example with “opposite”
predictions.

To cope with such cases, we modify the protocol of the game. Namely, we
allow Experts and Learner to announce predictions from the boundary Σ′

Λ of
ΣΛ. That is, Experts are γθ

n : Σ′
Λ → Σ′

Λ, and Learner is γn ∈ Σ′
Λ. Theorem 5

requires minimal changes: now α is a function from P(Ω) to Σ′
Λ, and the proof

is modified accordingly. Theorem 3 supplies us with the α required.

4.2 The AA for Second-Guessing Experts

The AA cannot be applied to the second-guessing protocol directly. Recall the
AA is based on the inequality (1), which is already resolved for γN . In the
second-guessing protocol, the inequality contains γN on both sides:

γN (ωN ) ≤ − c

η
ln
∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηγθ
N (γN )(ωN )) . (7)

The DF implicitly solves this inequality within (the proof of) Lemma 3, which is
a kind of fixed point theorem. We present a modification of the AA which uses
a fixed point theorem explicitly. We use the following theorem (see e. g. [1]).

Theorem 6 (Brouwer). If X is homeomorphic to a closed simplex, and F :
X → X is a continuous function, then F has a fixed point.

Our goal is to find a subset X of possible Learner’s predictions such that X
is homeomorphic to a closed simplex, and a continuous function G : X → X
such that for any γ ∈ X, the point G(γ) is not greater than the right-hand side
of (7) with γ substituted for γN . Then the modified AA works as follows: at each
step, the AA constructs G and X (they may depend on the step and history),
finds a fixed point γ = G(γ) via the Brouwer theorem, and announces γ as the
next prediction of Learner. Since any fixed point of G is a solution of (7), the
standard analysis of the AA applies providing the same loss bound.

We construct the domain X and the function G in a different manner for
mixable games with the original second-guessing protocol and for non-mixable
games and the modified protocol.

Obviously, Ξ ′ is homeomorphic to a closed simplex (note that the “expo-
nential image” e−ηΞΛ of ΞΛ is a bounded convex subset of R|Ω|). For mixable
games, Ξ ′ ⊆ Λ, and we let X = Ξ ′ in this case. For non-mixable games, we
consider the mapping g 7→ C(g)g used in the proof of Theorem 3, which is a
homeomorphism of Ξ ′ to a part of Σ′

Λ. This part we take as X.
Now let us construct the function G. The beginning is common for both

versions. A point γ ∈ X is mapped to the point g such that

g(ω) = −1
η

ln
∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηγθ
N (γ)(ω))

for all ω. The point g belongs to ΞΛ by definition.



Lemma 4. There is a continuous mapping F : ΞΛ → Ξ ′ such that for any
g ∈ ΞΛ, it holds that F (g) ≤ g.

We postpone the proof and continue the construction of G. This F maps g
to F (g) ∈ Ξ ′. For mixable games, we are done. For non-mixable games, we need
one more step: apply to F (g) the homeomorphism from Ξ ′ to Σ′

Λ. The function
G has the correct range by construction and is continuous as a composition of
continuous mappings. The point G(γ) is not greater than the right-hand side
of (7) since C(F (g))F (g) ≤ cF (g) ≤ cg. Thus, we obtained the following

Theorem 7. If the AA is realizable for the game (Ω,Λ) in the prediction with
expert advice for some c and η, then the AA with fixed point is realizable for
the same game for the prediction with second-guessing expert advice protocol
(modified—for non-mixable games) for the same c and η, and guarantees the
same loss bounds.

Proof of Lemma 4. We construct a continuous mapping F : ΞΛ → Ξ ′ as a
composition of mappings Fω for all ω ∈ Ω. Each Fω when applied to g ∈ ΞΛ

preserves the values of g(o) for o 6= ω and decreases as far as possible the value
g(ω) so that the result is still in ΞΛ. Formally, Fω(g) = g′ such that g′(o) = g(o)
for o 6= ω and g′(ω) = min{ f(ω) | f ∈ ΞΛ, ∀o 6= ω f(o) = g(o) }.

Let us show that Fω is continuous. It suffices to show that Fω(g)(ω) depends
continuously on g, since the other coordinates do not change. We will show that
Fω(g)(ω) is concave in g, continuity follows easily (see, e. g. [11]). Indeed, take
any t ∈ [0, 1], and f, g ∈ ΞΛ. Since ΞΛ is convex (and even exp-convex), then
tf + (1 − t)g ∈ ΞΛ and tFω(f) + (1 − t)Fω(g) ∈ ΞΛ. The latter point has all
the coordinates o 6= ω the same as the former. Thus, by definition of Fω, we get
Fω(tf +(1−t)g)(ω) ≤ (tFω(f)+(1−t)Fω(g))(ω) = tFω(f)(ω)+(1−t)Fω(g)(ω),
which was to be shown.

All Fω do not increase the coordinates. Since the set ΞΛ contains any point
g with all its majorants, Fω(f) = f implies that Fω(g) = g for any g obtained
from f by applying any Fω′ . Therefore, the image of a composition of Fω over
all ω ∈ Ω is included in Ξ ′. ut
Remark 3. Actually, Lemma 4 constructs a continuous substitution function. In
many natural games, the standard substitution functions appear to be continu-
ous. In particular, for the log loss function,

(g0, g1) 7→ ((−g0 + g1) ln(e−g0+g1 + 1), (−g0 + g1) ln(eg0−g1 + 1)) .

For the quadratic loss function,

(g0, g1) 7→

((
1 + g0 − g1

2

)2

,

(
1− g0 + g1

2

)2
)

.
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