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Abstract. Computability in the limit represents the non-plus-ultra of
constructive describability. It is well known that the limit computable
functions on naturals are exactly those computable with the oracle for
the halting problem. However, prefix (Kolmogorov) complexities defined
with respect to these two models may differ. We introduce and compare
several natural variations of prefix complexity definitions based on gen-
eralized Turing machines embodying the idea of limit computability, as
well as complexities based on oracle machines, for both finite and infinite
sequences.
Keywords: Kolmogorov complexity, limit computability, generalized
Turing machine, non-halting computation.

1 Introduction

Limit computable functions are functions representable as a limit of a com-
putable function over an extra argument. They are a well-known extension of
the standard notion of computability, and appear in many contexts, e. g. [1, 13, 6].
It was argued that many human activities (such as program debugging) produce
the final result only in the limit, and that limit computability is the non-plus-
ultra of constructive describability—even more powerful models of computation
cannot be classified as constructive any more, e. g. [10, 12].

Several authors considered variants of Kolmogorov complexity based on limit
computations and computations with the oracle for the halting problem 0′,
e. g. [2, 3, 8]. Limit computable functions are exactly functions computable with
the oracle 0′ by the well-known Shoenfield limit lemma [19]. In algorithmic infor-
mation theory, however, we cannot simply apply the Shoenfield lemma to replace
limit computability by 0′-computability. The reason is that the lemma is proven
for functions on naturals, whereas definitions of prefix and monotone complexity
require functions on sequences satisfying some kind of prefix property—see [7,
11, 15, 16].

In the present paper, we prove equalities and inequalities for prefix complex-
ity with the oracle 0′ and several natural variations of prefix complexity based on
generalized Turing machines (GTMs), one of the natural models for limit com-
putability [18] (also compare [4]). GTMs never halt and are allowed to rewrite
their previous output, with the only requirement being that each output bit
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eventually stabilizes forever. We prove that depending on the subtleties of the
definition, the corresponding complexities may differ up to a logarithmic term.

Originally, Kolmogorov [14] defined the complexity of an object as the mini-
mal size of its description with respect to some effective specifying method (mode
of description), i. e. a mapping from the set of descriptions to the set of objects.
The specifying methods may be implemented on various computing devices (such
as ordinary TMs, possibly non-halting TMs, possibly supplied with an oracle,
etc.). All yield different complexity variants. Restricting oneself to values defined
up to a bounded additive term, one can speak about complexity with respect to
a certain class of machines (containing a universal one).

Even for a given machine, however, we obtain different complexity variants
defining the machine input and the input size in various ways. Let us consider a
generic machine with a single one-way infinite input tape containing only zeros
and ones, reading the input tape bit by bit, and generating some output object.
Researchers used (sometimes implicitly) at least three variants of “input mode”:

Prefix mode. Informally, the machine has to separate the description (“a sig-
nificant part of the input”) from the rest of the input to generate the object.
Formally, the description is the initial part of the input string actually read dur-
ing production of the object. The size of the description is its length; the set of
possible descriptions is prefix-free: no description is prefix of another.

Weak prefix mode. Informally, the machine does not have to separate the
informative part of the description from the uninformative rest. Formally, the
description is a finite sequence such that the machine generates the object if the
input tape contains any prolongation of this sequence; the size of the description
is its length. The set of descriptions is not prefix-free, but if one description is
prefix of another, they will describe the same object. Every prefix mode descrip-
tion is also a weak prefix one, but the converse does not hold. In the weak prefix
case, the set of “minimal descriptions” (those that are not prolongations of other
descriptions) is prefix-free, but in general this set cannot be enumerated in an
effective way, unlike in the prefix case.

For machines with halting computations, the weak prefix mode can be inter-
preted with the help of an “interactive” model of the input. Instead of reading the
input off an input tape, the machine obtains its finite or infinite input sequence
bit by bit from the user (or some physical or computational process) deciding
when the next bit is provided. The result of any computation may not depend
on the timing of the input bits, but on the input sequence only. Clearly, if the
machine generates some object on input x, the machine will generate the same
object on all prolongations of x (since the user may provide x at the beginning,
and the rest once the machine has halted). On the other hand, one may assume
the following property: if the machine generates some object on all prolongations
of x, then it will generate the same object also on x. (Proof idea: consider the
set of y such that the machine halts on xy, but does not halt on any prefix of
xy; this set contains a prefix of any infinite prolongation of x and is finite, since
otherwise the machine does not halt on some infinite prolongation of x; hence
one can enumerate the set of all x with the required property.) Clearly, the input
sequences of this new machine are exactly the weak prefix descriptions.



Probabilistic mode. Informally, the input tape is interpreted as a source of
random bits, and the probability of generating some object serves to measure
its complexity (complex objects are unlikely). Formally, a description is any set
of infinite sequences such that the machine generates the object when the input
tape contains an element of this set. The size of the description is the negative
logarithm of its uniform measure. If x is a weak prefix description of size n, then
the set of all prolongations of x is a probabilistic description of size n. On the
other hand, for any collection of non-overlapping probabilistic descriptions there
is a prefix-free set of sequences (such as prefix descriptions), but in general one
cannot find it effectively.

For any machine model, one may consider these three input modes and get
three complexity types. The prefix mode complexity is the largest, the probabilis-
tic mode complexity the smallest. In fact, two important results of algorithmic
complexity theory can be interpreted as comparing these input modes for spe-
cific machine models. These results concern prefix and monotone complexity,
and provide examples of machine models where the three kinds of complexity
coincide and where they are different. In both cases the standard TM is used,
and the difference is in the definition of the computational result (the computed
object) only.

For prefix complexity, the machine is said to generate an object if the machine
prints the object and halts (thus, objects are identifiable with finite sequences).
Levin’s remarkable Coding Theorem [15] (see also [7]) implies that in this case
all three input modes lead to the same complexity (up to an additive constant).
Informally speaking, the theorem says that the probability of guessing a program
for the given data is essentially equivalent to the one of guessing its shortest
program. From a technical point of view, the Levin theorem allows us to simplify
many proofs, every time using the most suitable of the three definitions (see [22]
for an extensive discussion of prefix and weak prefix modes for prefix complexity).

The monotone complexity provides an opposite example. Now the objects are
finite or infinite sequences, the TM prints its output bit by bit, and may or may
not halt. We say the machine generates a finite sequence if this sequence appears
on the output tape at some point (subsequently the machine may prolong the
output); the machine generates an infinite sequence if it generates all its finite
prefixes during the computation. Now the probabilistic mode gives the value
known as the logarithm of the a priori semimeasure on binary sequences. The
weak prefix mode is used for the main definition of monotone complexity by Gács
in [11] (which is referred to as type 2 monotone complexity in [16, pp. 312–313]).
The prefix mode is used for definition of monotone complexity in the main text
of [16] (where it also referred to as type 3 monotone complexity, pp. 312–313).
All three values coincide up to a logarithmic additive term. Gács [11] proved that
the difference between the monotone complexity (under his definition) and the
logarithm of the a priori semimeasure (between the probabilistic and weak prefix
modes in our terms) is unbounded on finite sequences. It is unknown whether
the two monotone complexities (the weak prefix and prefix modes) coincide; all
known theorems hold for both.

Here the three modes are studied for both finite and infinite output sequences
computed on GTMs. Informally speaking, it turns out that the prefix-mode com-



plexity differs from the weak prefix-mode complexity by a logarithmic term, for
both finite and infinite sequences. For finite sequences, the weak prefix-mode
complexity coincides with the probabilistic-mode complexity up to a constant.
For infinite sequences, they coincide up to a logarithm. It remains an open ques-
tion whether this bound is tight. A diagram in Sect. 6 displays the results in-
cluding relations to complexities with the oracle 0′ for the halting problem. The
rest of the paper is organized as follows: Sect. 2 contains definitions of GTM
and complexities; Sect. 3 provides technical lemmas connecting GTMs and ora-
cle machines; the main results are proven in Sect. 4 for finite sequences and in
Sect. 5 for infinite sequences.

2 Definition of GTMs and Complexities

Denote by B∗ the space of finite sequences over the binary alphabet B = {0, 1}
and by B∞ the space of infinite sequences. Denote by `(x) the length of x ∈ B∗,
and put `(x) = ∞ for x ∈ B∞. For x ∈ B∗ ∪ B∞ and n ∈ N, let xn be the n-th
bit of x (0 or 1) if n ≤ `(x) and a special symbol “blank” otherwise.

A generalized Turing machine (GTM) is a machine with one read-only input
tape, several work tapes, and one output tape; all tapes are infinite in one di-
rection. A GTM never halts; it reads the input tape bit by bit from left to right;
it can print on the output tape in any order, i.e. can print or erase symbols in
any cell many times. For a machine T and an input sequence p ∈ B∞, denote by
Tt(p) the finite binary sequence3 on the output tape at the moment t. We say
that a GTM T on an input p ∈ B∞ converges to x ∈ B∗ ∪ B∞ (write T (p) x)
if ∀n ∃tn ∀t > tn [Tt(p)]n = xn (informally speaking, each bit of the output sta-
bilizes eventually). The sequence x is called the output of T on p, and p is called
a program for x.

We say that a GTM T on an input p ∈ B∗ strongly converges to x ∈ B∗ ∪ B∞
(write T (p)⇒ x) if T (p0∞) x and T reads exactly p during the computation.
We say that a GTM T on an input p ∈ B∗ weakly converges to x ∈ B∗ ∪ B∞
(write T (p)� x) if T (pq) x for any q ∈ B∞. These two kinds of convergence
reflect the prefix and weak prefix modes. Clearly, if T (p)⇒ x, then T (p)� x.

Recall that for the weak prefix mode we had two equivalent models in the
case of halting computations. For non-halting computations, there are several
(non-equivalent) ways of defining some analogue of the “interactive” machine
(where the user sometimes provides a new bit). The following variant is chosen
for conveniently relating GTMs to oracle machines below. We say that a GTM T
on an input p ∈ B∗ uniformly weakly converges to x ∈ B∗ ∪ B∞ (write T (p)� x)
if ∀n ∃tn ∀t > tn∀q ∈ B∞ [Tt(pq)]n = xn. The last formula differs from the
definition of weak convergence only by the order of quantifiers (T (p) � x iff
∀q ∈ B∞ ∀n ∃tn ∀t > tn [Tt(pq)]n = xn). Informally speaking, in the uniform
case, the moment of stabilization of a certain output bit is determined by some

3 For technical convenience, we assume that the content of the output tape is always
a finite sequence of zeros and ones followed by blanks (without blanks inside). This
assumption is not restrictive: for any T one can consider T ′ that emulates T but
postpones printing a bit to the output tape if the requirement is violated; clearly,
the results of converging computations are not affected.



finite part of the input. It is easy to see that uniform weak convergence can be
implemented by some kind of “interactive” machine. In the non-uniform case,
however, for any initial part of the input sequence there may be a prolongation
where this bit will change. As is shown below, strong, weak, and uniform weak
convergence yield different classes of computable functions.

By the standard argument, there is a universal GTM U . For x ∈ B∗ ∪ B∞,
we define complexities corresponding to the prefix and weak prefix modes:

KG
⇒(x) = min{`(p) | U(p)⇒ x} ,

KG
�(x) = min{`(p) | U(p)� x} ,

KG
�(x) = min{`(p) | U(p)� x} .

The idea of probabilistic mode is reflected by the a priori GTM-probability

PG(x) = λ{p | U(p) x} ,

where λ is the uniform measure on B∞; we do not introduce a special sign
for the corresponding complexity − log2 P

G(x). These complexity measures are
well-defined in the sense that if U is replaced by any other GTM, then KG

⇒(x),

KG
�(x), KG

�(x), and − log2 P
G(x) can decrease at most by a constant, the same

for all x. Clearly, for x ∈ B∗ ∪ B∞,

− log2 P
G(x) ≤ KG

�(x) ≤ KG
�(p) ≤ KG

⇒(x) . (1)

As usual in complexity theory, many relations hold up to a bounded additive
term, which is denoted by

+
=,

+≤ in the sequel.
The complexity KG

⇒(x) coincides with KG(x) originally defined in [18]. Po-

land [17] suggested a definition of complexity for enumerable output machines
similar to KG

�(x) in our case, and proved that for enumerable output machines,
his complexity is equal to the logarithm of the a priori measure up to a constant
(for GTMs such an equality was not known even with logarithmic accuracy [18]).

3 Oracle Machines and GTMs

Recall that an oracle Turing machine is a Turing machine with one additional
operation: for any number n, the machine can check whether n belongs to a fixed
set called an oracle (or, equivalently, the machine can get any bit of a certain
infinite sequence). The oracle is not a part of the machine: the machine can work
with different oracles but the result depends on the oracle used.

Denote by 0′ the oracle for the halting problem (see [20]). By the Shoenfield
limit lemma [19], 0′-computable functions are exactly the limit computable func-
tions. The GTM also embodies the idea of computability in the limit: it tries
various answers and eventually (in the limit) gives the correct answer. But if the
input is provided without delimiters, a difference arises. In the prefix mode case,
an oracle machine can use the oracle to detect the input end (and to stop reading
in time), while a GTM does not differ from an ordinary TM in this respect. In



the probabilistic mode case, a GTM has an advantage since it does not halt and
may use the entire (infinite) input sequence.

It turns out that uniform weak convergence for GTMs is equivalent to weak
convergence for machines with the oracle for the halting problem4.

Lemma 1. 1. For any GTM T there exists an oracle machine T̃ with two input
tapes5 such that: For any p ∈ B∗, if T (p)� x, then ∀q ∈ B∞ ∀n T̃ 0′(pq, n) halts
and prints x1:n.
2. For any oracle machine T with two input tapes there exists a GTM T̃ with
the following properties. For any p ∈ B∞, if T 0′(p, n) halts and prints x1:n for

all n, then T̃ (p) x. If T 0′(pq, n) halts and prints x1:n for some p ∈ B∗, for all

q ∈ B∞ and for all n, then T̃ (p)� x.

Note that one cannot replace uniform weak convergence by weak convergence
in the first statement of Lemma 1, because the behavior of the GTM may always
depend on the unread part of the input, which is unacceptable for halting ma-
chines. Actually, there are functions computable on GTMs in the sense of weak
convergence, but not on machines with the oracle 0′. For example, let f(n) be
0 if the n-th oracle machine with the oracle 0′ halts on all inputs, and let f(n)
be undefined otherwise (compare [10]).

The next lemma relates probabilistic GTM-descriptions to 0′-machines. For
any halting machine (such as traditional prefix and monotone machines), it is
easy to show that the probability of generating a certain object is enumerable
from below, since the pre-image of any object is a countable union of cylinder
sets (sets of all infinite sequences with a fixed prefix q), see [16]. In contrast,
Example 7 in [17] shows that the set {p ∈ B∞ | ∀n∃tn ∀t > tn [Tt(p)]n = xn}
may contain no cylinder set for some GTM T . Nevertheless, GTM-probabilities
turned out to be 0′-enumerable from below.

Lemma 2. For any GTM T , the value

R(x,m) = λ
(
{p ∈ B∞ | ∀n ≤ m∃tn ∀t > tn [Tt(p)]n = xn}

)
is 0′-enumerable from below for any x ∈ B∗ ∪ B∞ and m ∈ N.

4 Finite Sequences

The prefix complexity of x ∈ B∗ is K (x) = min{`(p) | V (p) = x}, where V is a
universal prefix machine. The maximal (universal) enumerable semimeasure on
naturals (we fix some encoding of naturals by finite binary sequences) is m(x) =

4 It was mentioned in [18] that oracle complexity K 0′ equals GTM-complexity KG(
+
=

KG
⇒), but without proof and without specifying accuracy. Surprisingly, our present

refinement of the connection between oracle machines and GTMs is enough to refute

(for x ∈ B∗) Conjecture 5.3 from [18], namely, that PG(x) = O(2−KG
⇒(x)).

5 The first tape provides the GTM input, the second the required length of the oracle
machine output (in any self-delimiting form). This second tape is added to formulate
statements about halting machines uniformly for finite and infinite outputs.



λ{pq | V (p) = x, p ∈ B∗, q ∈ B∞} (see [16] for details). For any other enumerable
semimeasure on naturals µ there is a constant c such that m(x) ≥ cµ(x) for all
x. By the Levin theorem [15], K (x)

+
= − log2m(x). Relativizing w.r.t. the oracle

0′, we get the oracle complexity K 0′(x) = min{`(p) | V 0′(p) = x}, the maximal

0′-enumerable semimeasure m0′(x), and K 0′(x)
+
= − log2m

0′(x).
The following two theorems provide a complete description of relations be-

tween GTM- and 0′-complexities for finite sequences.

Theorem 1. For x ∈ B∗, it holds

− log2m
0′(x)

+
= − log2 P

G(x)
+
= KG

�(x)
+
= KG

�(x)
+
= K 0′(x) .

Theorem 2. For x ∈ B∗, it holds K 0′(x)
+≤ KG

⇒(x)
+≤ K 0′(x) + K (K 0′(x)).

Both bounds are almost tight; namely, for some constant C and for infinitely
many x it holds that K 0′(x) ≥ KG

⇒(x)− 2 log2 log2 K 0′(x)− C; and for infinitely

many x it holds that KG
⇒(x) ≥ K 0′(x) + K (K 0′(x))− 2 log2 K (K 0′(x))− C.

Note. (One can get stronger tightness statements where log2 K (K 0′(x)) and

log2 log2 K 0′ are replaced by expressions with any number of logarithms.)

5 Infinite Sequences

The complexity of infinite sequences can be defined with the help of halting
machines having two inputs and generating the initial segment of the infinite
output sequence (as in Lemma 1). It follows easily, however, that this approach
will lead to the usual monotone complexity but restricted to infinite sequences.

Monotone machines are non-halting machines that print their output (finite
or infinite) bit by bit (see [16] for details). Let W be a universal monotone ma-
chine. For p ∈ B∞, by W (p) denote the (complete) output of W on the input
sequence p; for p ∈ B∗ by W (p) denote the output of W printed after reading just
p and nothing else. In the book [16], the monotone complexity of x ∈ B∗ ∪ B∞ is
defined as Km(x) = min{`(p) | p ∈ B∗,W (p) = xy, y ∈ B∗ ∪ B∞} (correspond-
ing to the prefix mode of description in our terms). Gács [11] used another def-
inition, KmI(x) = min{`(p) | p ∈ B∗,∀q ∈ B∞W (pq) = xy, y ∈ B∗ ∪ B∞} (cor-
responding to the weak prefix mode of description). The universal (a priori)
probability of x ∈ B∗ ∪ B∞ is M(x) = λ{p ∈ B∞ |W (p) = xy, y ∈ B∗ ∪ B∞}. It
is known that − log2M(x)

+≤ KmI(x)
+≤ Km(x)

+≤ − log2M(x) + log2 Km(x).
Gács [11] showed that the difference between − log2M(x) and KmI(x) is un-
bounded for x ∈ B∗ (unlike the prefix complexity case). The proof does not
imply any relation between − log2M(x) and KmI(x) for x ∈ B∞, and the ques-
tion about coincidence of − log2M(x), KmI(x), and Km(x) for x ∈ B∞ remains

open. After relativization w.r.t. the oracle 0′, we get Km0′ and M0′ . Note that

for x ∈ B∞, Km0′(x) and − log2M
0′(x) are finite iff x is 0′-computable.

Theorem 3. For x ∈ B∞, it holds − log2 P
G(x)

+
= − log2M

0′(x).

Theorem 4. For x ∈ B∞, it holds KG
�(x)

+
= Km0′

I (x).



Theorem 5. For x ∈ B∞, it holds Km0′(x)
+≤ KG

⇒(x)
+≤ Km0′(x)+K (Km0′(x)).

The upper bound is almost tight: for some constant C and for infinitely many x

it holds KG
⇒(x) ≥ Km0′(x) + K (Km0′(x))− 2 log2 K (Km0′(x))− C.

6 Conclusion

Generalized Turing machines (GTMs) are a natural model for computability
in the limit, and hence are closely related to machines with the oracle 0′. It
turns out, however, that there is no single obvious way of formally specifying a
prefix complexity based on GTMs. Instead there are several closely related but
slightly different ways that all seem natural. This paper introduced and studied
them, exhibiting several relations between them, and also between them and
0′-complexities, as summarized by the following diagram:

PROB WP UWP PREF

finite sequences

GTM − log2 P
G KG

� KG
� KG

⇒

0′-machine − log2m
0′ K 0′

infinite sequences

GTM − log2 P
G KG

� KG
� KG

⇒

0′-machine − log2M
0′ Km0′

I Km0′

The columns correspond to probabilistic, weak prefix, uniform weak prefix,
and prefix descriptions, respectively. The borders between cells describe relation
between the corresponding values: no border means that the values are equal up
to a constant, the solid line separates values that differ by a logarithmic term,
the dashed line shows that the relation is unknown. The values in the cells grow
from left to right in every row.

The diagram shows a significant difference between GTMs and machines with
the oracle 0′ for the prefix mode of description, and their similarity for the other
modes. (It is worth noting that the prefix mode is not contained in the general
scheme of defining complexities [21], but the prefix complexity based on the
prefix mode is very convenient in certain proofs).

The main open question is whether weak GTM-complexities (KG
�, KG

�,
and − log2 P

G) coincide on infinite sequences. A closely related (and probably,

difficult) question is if Km0′(x) and Km0′

I (x) coincide with − log2M
0′(x) for

x ∈ B∞, and if this holds for non-relativized Km(x), KmI(x), and − log2M(x).
If they do coincide, this would form a surprising contrast to the famous result
of Gács [11] on the monotone complexity of finite sequences.

Acknowledgments. The authors are grateful to Marcus Hutter, Jan Poland,
and Shane Legg for useful discussions and proofreading.
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16. M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its
Applications (2nd edition). Springer, 1997.

17. J. Poland. A Coding Theorem for Enumerating Output Machines. Information
Processing Letters, 91(4):157–161, 2004.

18. J. Schmidhuber. Hierarchies of Generalized Kolmogorov Complexities and Nonenu-
merable Universal Measures Computable in the Limit. International Journal of
Foundations of Computer Science, 13(4):587–612, 2002.

19. Joseph R. Shoenfield. On Degrees of Unsolvability. Annals of Math., 69:644–653,
1959.

20. S. G. Simpson. Degrees of Unsolvability: A Survey of Results. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 631–652. North-Holland, Amsterdam, 1977.

21. V. A. Uspensky and A. Shen. Relations between Varieties of Kolmogorov Com-
plexities. Math. Systems Theory, 29:271–292, 1996.

22. V. A. Uspensky, N. K. Vereshchagin, and A. Shen. Lecture Notes on Kolmogorov
Complexity. unpublished, http://lpcs.math.msu.su/∼ver/kolm-book.



Appendix

Proof of Lemma 1.
1. Recall that T (p)� x means that ∀n∃tn ∀t > tn∀q ∈ B∞ [Tt(pq)]n = xn. Note
that the predicate ∀t > tn∀q ∈ B∞ [Tt(pq)]n = xn is 0′-decidable, as well as the
predicate AT (t0, p, n, x) = ∀m ≤ n∀t > t0∀q ∈ B∞ [Tt(pq)]m = xm.

For each t0 = 1, 2, . . ., the machine T̃ tries to find x of length ≤ n such that
AT (t0, p, n, x) is true, where p is the beginning of the input of length t0 (actually,

T̃ reads a new input bit at each step). If x is found, T̃ prints this (unique) x and

halts. Otherwise, T̃ proceeds to the next t0.
2. The machine T̃ is constructed almost trivially, by repeating essentially the
proof of the Shoenfield limit lemma. First observe that each bit of the oracle
0′ is limit computable, and hence computable by a GTM. To compute the n-th
output bit, T̃ emulates the running of T 0′(p, n), and in parallel computes all
0′ bits submitting their current values to the emulated computation of T . The
emulation restarts every time when the value of a previously used oracle bit
changes. If T 0′(p, n) halts, then the computation uses only a finite number of
the oracle bits, thus eventually the emulation will be correct.

Now suppose that for some p ∈ B∗ and for all n the computation T 0′(pq, n)
halts with the same result for all q ∈ B∞. The construction above ensures that
T̃ (p) � x. To prove T̃ (p) � x, note that there exists an m such that on any

input beginning with p, T 0′ reads no more than m input bits. Thus, the quantifier
over q (in the definition of convergence) is actually a finite quantifier in this case
and can be “shifted” through the quantifier over tn. ut
Proof of Lemma 2. First we eliminate one quantifier taking t0 = maxn≤m tn:

R(x,m) = λ
(
{p ∈ B∞ | ∃t0∀t ≥ t0 [Tt(p)]1:m = x1:m}

)
.

Then, transforming quantifiers ∃ and ∀ to union and intersection of sets, and
using continuity of the measure, we get

R(x,m) = sup
t0

inf
t1≥t0

λ
( t1⋂
t=t0

{p ∈ B∞ | [Tt(p)]1:m = x1:m}
)
.

Until time t1, the machine T can read only the first t1 bits of input, therefore
λ
(⋂t1

t=t0
{p ∈ B∞ | [Tt(p)]1:m = x1:m}

)
is computable. The infimum of the last

value is 0′-computable, and thus R(x,m) is 0′-enumerable from below. ut
Proof of Theorem 1. By Lemma 1, K 0′(x)

+
= KG

�(x).

Since K 0′(x)
+
= − log2m

0′(x), the inequality (1) yields the statement if we

prove − logm0′(x)
+≤ − log2 P

G(x). By Lemma 2 we have PG(x) = R(x, `(x)+1)
(generally speaking, R(x,m) includes the measure of all computations that gen-
erate x1:m and its prolongations and also of some nonconverging computations;
but if x1:m ends with a “blank”, all further symbols on the output tape also
have to be “blanks”, and thus the computation that stabilizes to x1:m in the
first m output bits must converge, and moreover, converge to x1:m−1). Thus,
PG(x) is a 0′-enumerable semimeasure on naturals and therefore it is less (up

to a multiplicative constant) than m0′(x). ut



Proof of Theorem 2. First, K 0′(x)
+≤ KG

⇒(x) since KG
�(x)

+≤ KG
⇒(x). On the

other hand, knowing the length of the uniform weak description, GTM can stop
reading the input tape and assume the remaining input bits are zeros (this does
not change the answer). Thus, KG

⇒(x) ≤ KG
�(x) + K (KG

�(x)) +O(1).

The tightness of the bound K 0′(x)
+≤ KG

⇒(x) follows from the fact that

KG
⇒(x)

+≤ K (x) and K 0′(x) is almost equal to K (x) for 0′-random x (i. e. x

of given length that have maximal 0′-complexity). The tightness of KG
⇒(x)

+≤
K 0′(x) + K (K 0′(x)) is proven as in Theorem 5 below. ut
Proof of Theorem 3. By the second part of Lemma 1, a GTM can emulate a
0′-machine, therefore M0′(x) = λ{p ∈ B∞ |W 0′(p) = x} ≤ C · PG(x).

To prove the other direction, let us define an auxiliary semimeasure on x ∈
B∗ ∪ B∞: MG(x) = λ{p ∈ B∞ | ∀n ≤ `(x)∃tn ∀t > tn [Ut(p)]n = xn}. Clearly,

for x ∈ B∞ we have PG(x) = MG(x) ≤ limn→∞MG(x1:n) and M0′(x) =

limn→∞M0′(x1:n). By Lemma 2, MG(x) = R(x, `(x)) is 0′-enumerable on x ∈
B∗. Trivially, MG is a semimeasure on binary sequences (MG(x) ≥ MG(x0) +

MG(x1)), therefore, MG(x) ≤ C ·M0′(x) for x ∈ B∗. ut
Proof of Theorem 5. Both bounds hold for the same reason as in The-
orem 2. To prove the tightness of the upper bound, consider the set A =
{p ∈ B∗ | U reads p and no more}. Evidently, A is 0′-decidable and prefix-free.
Put An = {p ∈ A | `(p) ≤ n}. Since A is prefix-free, we have |An| ≤ 2n/(n log2 n)
for infinitely many n. Since A is 0′-decidable, there is a 0′-computable sequence

of naturals nk such that |Ank
| ≤ 2nk/(nk log2 nk) and nk ≥ 2k

2

.
Now, using the diagonal construction, we can get x ∈ B∞ such that KG

⇒(x) >

nk and Km0′(x) ≤ nk − log2 nk + C, where the constant C does not depend on
k. Set Bk = {p ∈ B∗ | `(p) ≤ nk, ∃y ∈ B∗ ∪ B∞ U(p) ⇒ y} and choose x such
that U(p) 6⇒ x for all p ∈ Bk. To define the n-th bit of x, we enumerate p ∈ Ank

such that the first n bits of U(p) stabilize (possibly to “blank”), until |Bk| such
p’s are enumerated (obviously, for n large enough, we enumerate all p from Bk

and only them). Then we take the lexicographically j-th of these p where j ≡ n
(mod |Bk|), take the n-th output bit of U(p), and set xn to a different value.

Trivially, KG
⇒(x) > nk. Let us estimate Km0′(x). The construction above

gives an algorithm for computing x with the help of the oracle 0′ (to determine

when bits stabilize) if nk and |Bk| are given, thus Km0′(x) ≤ K 0′(〈nk, |Bk|〉) +
O(1). The following is a prefix 0′-description of the pair 〈nk, |Bk|〉: optimal prefix
code of k followed by exactly lk digits representing |Bk| where lk = nk−log2 nk−
log2 log2 nk. Since |Bk| ≤ |Ank

| ≤ 2nk/(nk log2 nk), we have enough codes for
|Bk|. On the other hand, we can find nk given k using the oracle 0′, and then

compute lk, therefore the encoding is prefix. Hence K 0′(〈k, |Bk|〉)
+≤ K (k)+ lk

+≤
2 log2 k+nk− log2 nk− log2 log2 nk

+≤ nk− log2 nk. Since nk− log2 nk is a mono-

tonically increasing function of nk, we have Km0′(x)
+≤ KG

⇒(x)− log2 KG
⇒(x). Fi-

nally, KG
⇒(x)

+≥ Km0′(x) + log2 KG
⇒(x)

+≥ Km0′(x) + log2 Km0′(x)
+≥ Km0′(x) +

K (Km0′(x))− 2 log2 K (Km0′(x)). ut


