
Seamlessness as a desirable aspect of quality for

MDE: the contribution of object-relational database

stuctures

Patricia Roberts

School of Engineering and Computer Science,

University of Westminster

309 Regent Street,

London W1B 2UW

UK

robertpa@westminster.ac.uk

Abstract—Where model-driven approaches are used in

Information Systems development, as well as transforming

models into application code, an important and often overlooked

aspect is the transformation into storage schemas for persistent

data. Relational database schemas are still being used but these

might not be the best quality solutions for persistent data.

Object-relational database management systems (ORDBMS) can

store persistent data using structures that have more in common

with object-oriented application code structures. Seamless

transformations may have the quality that is desirable for model-

driven approaches. In this paper we demonstrate the advantages

of seamless transformations. We show object-relational

structures that contribute to seamlessness and the implications

for model-driven approaches such as Model-Driven Engineering.

Keywords-component; object-relational databases, model-

driven engineering, transformations, quality

I. INTRODUCTION

In model-driven approaches emphasis is placed on

transforming models into application code. However, another

important transformation is that into a storage schema for the

persistent data in a system. Relational database technology is

still being used for storing the persistent data of an application,

even when the original conceptual model is object-oriented.

But if the target of a transformation is a relational DBMS, a

radical transformation is required from an object-oriented

model. Although this type of transformation is common, it

cannot be achieved without some loss of semantics because of

the paradigm difference between OO and relational, resulting

in impedance mismatch problems, such as described by

Ambler [1]. However, object-relational databases (ORDBMS)

can store persistent data using structures that have more in

common with an object-oriented conceptual model and OO

application code structures. If ORDBMS technology is used,

transformations from the conceptual model can be more

‘seamless’. If seamless transformations can provide the quality

that is desirable for model-driven approaches, then

transformation into ORDBMS structures should be

considered.

In this paper we present an argument for the consideration of

seamlessness as a desirable quality in transformations. We

show how some object-relational database features can

contribute to seamlessness and we discuss some of the

implications that this has for transformations of the persistent

data in an application, such as could be used in model-driven

development. To illustration the concept of seamlessness in

transformations, we present one feature of an object-oriented

conceptual model, a generalization hierarchy, and examine

options for transformations that are available. We then show

that some of these transformations exhibit the quality of

seamlessness, while others do not.

II. BACKGROUND

The introduction of object-relational databases (ORDB)

brought new structures to add to traditional relational tables.

Stonebraker [2] described object-relational as “The Next Great

Wave” anticipating that the new technology would

revolutionize database design. Other writers, such as Brown

[3] present ways to use the new ORDB features and books on

databases design, such as Connolly and Begg [4], present

ORDB as an option for implementation of database designs.

However, while ORDB has been available for many years, the

impact of these structures on the quality of database designs

has not yet been established. A number of researchers and

practitioners have evaluated ways of transforming associations

[5], aggregations [6, 7] and hierarchies [8, 9] into object-

relational structures. In addition, a number of articles have

tried to assess the quality of object-relational design [10, 11].

However, the focus of this research is on the simplicity of the

designs and has not considered whether the quality of

seamlessness is present in the transformations.

The term Model-Driven Engineering (MDE) is used to

describe the development of software through the automatic

transformation from conceptual models through to concrete

implementations. At the heart of MDE is the use of models to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/188254727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

describe complex systems at different levels of abstraction and

from different perspectives and the use of automatic

transformations of the models. If a model, such as a class

model, is to be used for an automatic transformation, then

searching questions will be asked about the quality of the

models, a point made by France and Rumpe [12]:

“If models are the primary artifacts of development then one

has to be concerned with how their quality is evaluated. Good

modeling methods should provide modelers with criteria and

guidelines for developing quality models. ... The reality is that

modelers ultimately rely on feedback from experts to

determine “goodness” of their models.”

Mens et al [13] identified the characteristics of different kinds

of transformations in model-driven development. Using their

taxonomy we would say that this paper is addressing:

• Vertical transformations from an abstract to a more

concrete level

• One source models and (potentially) multiple target

models

• The language of the source model is the UML class

diagram

• The language of the target models is SQL

Much of the research focus on vertical transformations has

concerned the transformation from abstract model to program

code (the transformation labeled 1 in Fig.1). Further extensive

work has established transformations from program code to

database structures to preserve persistent object (the

transformation labeled 2 in Fig.1). Both these transformations

are important in establishing robust model-driven

development. Here we are focusing on another kind of

transformation (the transformation labeled 3 in Fig.1), where

the database structures in question are object-relational

structures. However, the notion of seamlessness could just as

easily be applied to other transformations like 1 and 2.

In summary, much research has concentrated on the quality of

models and on transformations from models into application

code. Although object-relational database features have been

evaluated, the transformations into object-relational database

should focus on seamlessness if they are to be used as part of

any model-driven process.

III. SEAMLESSNESS AS A QUALITY FACTOR

One reason for a designer to use an ORDBMS would be to

bring the database design closer to the OO analysis product

that it is derived from, for example a UML class diagram [14].

If a suitable design could be produced using simple relational

tables, then that might be considered preferable, certainly in

terms of maintainability, as the relational model is usually

simpler. The UML class diagram is often used to model the

conceptual objects in a system and can be taken forward to

become a database design. However, UML class diagrams

may contain aggregation, hierarchies, directional navigation

using pointers, multi-valued attributes etc., which cannot be

directly implemented using relational tables, but could be

implemented using object-relational features. One of the key

motivations for the introduction of object-relational structures

into SQL was to address the impedance mismatch between

OO applications and relational databases [2]. Seamlessness is

at the heart of the motivation for object-relational databases,

with the reduction of the impedance mismatch as a key aim,

which is why it should be considered as an aspect of quality. If

the transformation from UML to ORDBMS schema is

completely seamless then the two representations will be

identical. The more differences there are between the two, the

less seamless the realization becomes. To assess the

seamlessness of transformations we need to know how the

object-relational feature is created, but we also need to know

how it would be used, for example when creating, reading,

updating and deleting information (commonly called CRUD

operations). By examining the way features can be created and

used we can compare different transformations to assess their

seamlessness.

IV. OBJECT-RELATIONAL STRUCTURES

In this section we examine some object-relational features that

are part of the SQL:2008 standard [15] (the current standard at

time of writing that supersedes all previous versions). Most of

these features; user-defined types, collection types, row type,

type and table hierarchies and REF types were part of the

SQL:1999 [16] revision of the standard, with the MULTISET

added in SQL:2003 [17] together with some other minor

changes. Since SQL:2003 there have been no significant

changes to the object-relational features in the standard.

A. User-defined types (UDT): distinct types

Within SQL:92 and earlier versions of the standard, certain

built-in data types were defined and could be used to specify

the set of values for a column of a table. Distinct Types are an

extension of this idea, to specify a set of values as having a

distinct meaning.

B. User-defined types (UDT): structured types

A Structured Type is a particular kind of UDT that has an

internal structure. Once a Structured Type has been declared it

can be used within a column definition, just as other UDTs.

The constituent parts of structured types can be referenced Fig. 1 Transformation directions

separately in relational operations. The manipulation of User-

defined Types is similar to the way the way that objects are

manipulated within an O-O programming language. The data

within a User-defined Type are encapsulated in a similar way

to an object, in that the contents cannot be directly

manipulated, but are hidden from the outside.

C. Collection types

Collection Types are structures in which there are a number of

elements of the same type. There are two collection types

defined in SQL: Arrays were included in the SQL:1999

standard [16] and Multisets were introduced in SQL:2003

[17]. The difference between Arrays and Multisets is that

Arrays have a notion of ordering within the collection whereas

Multisets do not. Some new operations on Multiset were

included in SQL:2003: UNNEST, COLLECT, FUSION,

INTERSECTION, CARDINALITY and SET. Kulkarni [18]

has shown that these operations are useful for manipulating

the data within a Multiset.

D. Row types

The concept of rows was always implicit in the definition of a

table in SQL Data Definition Language (DDL) but, with the

introduction of Row definition in SQL:2003, came the

possibility of defining a Row Type separately from a table

definition. The Row itself is not an OO construct, but it can be

used in a collection without the underlying concept of

representing objects.

E. Type hierarchies

The OO concepts of generalization and specialization

hierarchies are reflected in the ability in SQL:2008 to define

types as hierarchical structures. Sub-types can be defined that

inherit attributes and methods from their super-type.

F. Typed tables

A Typed Table is a new kind of table that is based on a UDT.

A significant difference from a traditional table is the REF

clause that is required to be defined on all Typed Tables,

except where they inherit the clause (see Appendix A, option 1

for an example). The REF clause creates another column for

the table that is termed a self-referencing column. This gives

the row a unique identity that can be referenced by other

components in the environment. This is a way in which the

rows of Typed Tables have characteristics of objects in an OO

system. However, this identity is different from the object

identity that the object will have when instantiated in an OO

programming environment. From an OO viewpoint a Typed

Table can be seen as a mechanism for storing objects. Each

row of the table would store one unique object of the UDT

defined for the table. The fact that the objects are stored in

rows is not relevant to the OO developer.

G. Table hierarchies

A Type Hierarchy creates a structure but does not create any

storage mechanism within the database. If the objects from the

Type Hierarchy are to be stored in the database, they can be

used as part of a Table Hierarchy or as the type of a table

column. When Melton [8] describes the OR extensions that

were introduced with the new SQL:1999 standard, he

compares the different approaches to database design that can

be employed using these features. Melton focuses on the

different ways that hierarchies can be implemented in object-

relational databases, using traditional relational tables,

defining type hierarchies and using them in table columns, or

creating full typed table hierarchies. The benefit of the third

approach, using Typed Tables, is that it can take advantage of

OO design, providing a seamless crossover to programming in

languages such as Java and would be more familiar to OO

designers. It would produce what is essentially an OO design,

but with the storage and querying capabilities of a relational

database. In order to achieve this, the familiar SQL queries of

SQL92 have been extended to allow querying over the

hierarchies.

H. REF types

REF is a built-in data type that was introduced in SQL:1999

[16], which is crucial to the object-relational features. REF is a

data type in an object-relational database that is similar to an

object reference in an OO programming language. Each REF

is a unique reference to some ‘object’ in the database, which

can be thought of as a pointer to the ‘object’, although the

‘object’ is held as a row in a table. In many ways REFs are

similar to the foreign keys of traditional relational database.

However, differences emerge with the way that REFs can be

used to navigate through the data. Using the term ‘DEREF’ a

query that accesses one table can use a REF to find data in

another table. This way of ‘navigating’ through a database is a

departure from the relational model.

V. IMPLICATIONS FOR MDE

In any model-driven development, where the model is to be

used for an automatic transformation, we need to be concerned

about the quality of the models and the quality of the

transformations. Seamlessness is a candidate for a quality

measure of transformations. Here we present one feature of an

object-oriented conceptual model, a generalization hierarchy,

and examine the different options for transformations. The

generalization hierarchy is a concept of abstraction which is

central to OO design and it is used extensively in OO

programming languages. A generalized class can be created to

capture the commonality between classes of objects. In a class

hierarchy the general class (or super-class) contains the

common attributes and operations and the more specialist

classes (or sub-class) inherit attributes and operations from

their super class.

However, designers and programmers may have different

motivations for using a hierarchy in a design or program. The

inheritance of attributes and operations through a hierarchy is

seen as a major way to improve reuse of programming code

within a system. By defining a super-class, common features

of the different classes can be defined once and reused within

the sub-classes. The case for using a class hierarchy as part of

a design, because it meets the conceptual needs of the model,

is distinct from the use of a hierarchy to allow for reuse of

code. The reasons for using a class hierarchy may be

pragmatic or conceptual but they are now an accepted part of

OO design. While class hierarchies are part of the language of

conceptual models (for example, as part of the UML class

model) and have become an accepted part of OO

programming languages, the use of hierarchies in databases is

not universal. As the relational model has become the

dominant model, the need to find ways to represent hierarchies

in databases has become important.

When addressing the problem of transforming inheritance

hierarchies from a conceptual model into a database

representation there are two common approaches. Hierarchies

can be flattened into relational tables or they can be

implemented as Type and Table hierarchies in an object-

relational database. Although these are not the only

approaches that can be used they are the most common.

The flattening of hierarchies into a single relational table (or

into several tables linked by foreign key constraints) is a

technique that has long been used because of the need to store

data from hierarchies when a relational database is the

technology available. A single relational table can be created

that contains the accumulated attributes of the superclass and

all subclasses. Additionally, further attribute or attributes are

added to distinguish between the different classes in the

hierarchy. A Rational Software whitepaper [19] describes a set

of rules for mapping from classes to relational tables. In

mapping an inheritance hierarchy they state that "The

corresponding data model specifies 2 tables and an identifying

relationship". Later it presents an example of an inheritance

hierarchy that is mapped to a single table with nullable

attributes that represent the data of the subclass. The statement

at the end indicates that, although no decision making is

indicated in the process, some choices about the form of the

mappings have to be made: "In most cases, the data analyst

makes decisions about merging tables based on optimising the

database for data access.".

Lodhi and Ghazali [20] describe mapping inheritance

hierarchies using foreign keys, a technique also advocated by

Ambler [21]. Lodhi and Ghazali describe a vertical mapping

strategy:

“In vertical mapping, each class of the inheritance hierarchy,

whether abstract or concrete, is mapped to a separate table.

To maintain the inheritance relationship between parent and

child classes, primary key (OID) of the parent class is inserted

in the child classes as a foreign key.”

It is worth noting that here the writers wrongly equate a

primary key with an object-identifier (OID). Although these

concepts are both ways to identify objects, and they are often

confused, in this context the key is a traditional primary

key/foreign key pair used to link together the tables.

Eder and Kanzian [22] examine the “decision space for

designers” regarding ways to implement inheritance

hierarchies and compare seven different ways that they can be

transformed into relational and object-relational structures.

Their analysis of the performance of the seven alternatives for

implementing hierarchies shows marked differences between

them, when implemented in an object-relational DBMS

(Oracle 9i).

To illustrate the notion of seamlessness in transformations, we

shall take two from the many options for transforming

hierarchies and compare their properties. For this experiment

we need a conceptual model containing a hierarchy, to be our

source model. Fig.2 shows a very simple class model,

containing a hierarchy, that we can use. This contains a super-

class called “Member” (of a library) with two sub-classes,

“Employee” and “Student”. Operations have been omitted

from the diagram.

The simple hierarchy in Fig.2 can be transformed in many

different ways, as discussed above. We shall choose two

contrasting approaches: option 1 is a transformation into an

object-relational design using a hierarchy of types and typed

tables; option 2 is a relational transformation with one table

containing all the attributes of the classes in the hierarchy. The

SQL:2008 code to create these two structures is shown in

Appendix A.

Now we need some principles for comparison of the

seamlessness of the two transformations. As seamlessness is

not yet well established as a quality aspect of transformations,

we must begin with some basic assertions. We assert that a

seamless transformation would have certain characteristics:

1. Similarity: the representations of the source and target

structures are similar. For transformations from a class

model to a database structure, a seamless transformation

would contain similar patterns and encapsulate the same

concepts.

2. Correspondence: there is a one-to-one mapping between

the source and target models. For example, one class on a

class model would result in one structure in the database

model.

3. Reversibility: it would be possible to use the target model,

such as a database structure, to derive or ‘reverse

engineer’ the source model.

These three characteristics of seamless transformations;

similarity, correspondence (one-to-one) and reversibility are

not formally defined here. The informal definitions used here

are such that they can be used in comparisons of

transformations by a domain expert. More formal definitions

Fig.2 Realizations for a generalization hierarchy

of the three characteristics could be developed and would be

required for comparisons to be automated. This point is taken

up at the end of this paper.

If we examine the SQL code in Appendix A we see that the

first option creates structures directly analogous to the

structure of the hierarchy in the class model. The creation of

sub-types uses the word ‘UNDER’ to designate it as a being

part of a hierarchy as in the phrase to create Employee:

“CREATE TYPE Employee UNDER Member” The second

option creates a single relational table. While the structure is

used to represent the hierarchy, the code to create it has none

of the characteristics of a hierarchy.

When we examine the second question, we find that option 1

creates a table for each class in the hierarchy and no additional

tables, so it is indeed a one-to-one mapping. Option 2creates

one relational table, regardless of the number of classes in the

hierarchy and therefore is not a one-to-one mapping.

Finally, we have the question of whether we can reverse-

engineer the model from the database structure. Examination

of the create statements for option 1 would clearly indicate

that a class hierarchy was the source structure. This would not

be evident on examination of the create table statements for

option 2.

This comparison of the two options for transformation of

hierarchies clearly indicates that one exhibits the quality of

seamlessness and the other does not. However, we have only

presented here a small example of the assessment of

seamlessness in transformations. Further work has been done

to examine many object-relational transformations [23], not

only for hierarchies, but for other structures such as

associations and aggregations. This work shows that the

principles for comparison of transformations used here can be

applied more widely and are valuable in distinguishing

between the qualities of transformations.

VI. CONCLUSIONS AND FUTURE WORK

When object-relational databases are used, the multitude of

options for transformations that are available could present

problems for model-driven approaches. It may be difficult to

evaluate the quality of transformations using aspects such as

simplicity. However, if seamlessness is a quality that is sought

in transformations, we may find that certain options become

more attractive. It is possible to analyze the seamlessness by

using the characteristics presented here. By examining the

seamlessness of transformations we can narrow down the

options and enable MDE and other model-driven approaches

to be used when considering options for transforming the

persistent objects in a system into database representations.

The informal definitions of seamlessness used in these

comparisons are sufficient for expert evaluations of these

transformation options. To develop the work further, the

characteristics of seamlessness: similarity, correspondence and

reversibility, could be formally defined. This would facilitate

more automation of comparisons and could lead to the

development of seamlessness metrics. Further work is also

needed to assess the value of seamlessness in reducing the

impedance mismatch between object-oriented and database

systems.

VII. ACKNOWLEDGEMENTS

This research is derived from a PhD thesis on structural

transformations in object-relational design [23]. The author

thanks the following persons for their valuable contributions

to the work: David Bowers, Mike Newton and Kevin Waugh

of The Open University. We also extend thanks to the

anonymous reviews of this paper for their time and comments

and to Angelos Stephanidis for feedback on drafts of the

paper.

VIII. REFERENCES

[1] Ambler S 2009 The Object-Relational Impedance

Mismatch. Available from:

http://www.agiledata.org/essays/impedanceMismatch.html

Accessed: Jan 2008

[2] Stonebraker MR, Brown P. 1999 Object-relational

DBMSs: Tracking the next great wave. San Francisco, CA:

Morgan Kaufmann.

[3] Brown P. 2002 Developing Object-Relational

Database Applications. Available from:

http://www.ibm.com/developerworks/data/library/techarticle/0

206brown/0206brown1.html

[4] Connolly T, Begg C. 2005 Database Systems: A

Practical Approach to Design, Implementation and

Management (4th Edition). Harlow, Essex: Addison Wesley.

[5] Soutou C. 2001 Modeling relationships in object-

relational databases. Data Knowl Eng. 36(1): p. 79

[6] Marcos E, Vela B, Cavero JM, Caceres P. 2001

Aggregation and Composition in Object-Relational Database

Design. ADBIS (5th east european Advances in Databases and

Information Systems). Vilnius, Lituania: Springer.

[7] Rahayu JW, Taniar D. 2002 Preserving aggregation

in an object-relational DBMS. In: Yakhno T, editor. 2nd

International Conference on Advances in Information

Systems. Izmir, Turkey: Springer-Verlag Berlin.

[8] Melton J. 2003 Advanced SQL:1999 Understanding

Object-Relational and Other Advanced Features. San

Francisco, CA: Morgan Kaufman.

[9] Roy J 2003 Using the Node Data Type to Solve

Problems with Hierarchies in DB2 Universal Database.

Available from: http://www-

106.ibm.com/developerworks/db2/library/techarticle/0302roy/

0302roy.html

[10] Baroni A, Calero C, Piattini M, Abreu F. 2005 A

Formal Definition for Object-relational Database Metrics. 7th

International Conference on Enterprise Information Systems.

Porto, Portugal.

[11] Calero C, Sahraoui HA, Piattini M, Lounis H. 2001

Estimating object-relational database understandability using

structural metrics. In: Mayr HCLJQGVP, editor. 12th

International Conference on Database and Expert Systems

Applications (DEXA). Munich, Germany: Springer-Verlag

Berlin, p. 909.

[12] France R, Rumpe B. 2007 Model-driven

Development of Complex Software: A Research Roadmap.

2007 Future of Software Engineering. Minneapolis,

Minnesota, USA: IEEE Computer Society, p. 37.

[13] Mens T, Czarnecki, K. and Van Gorp, P. 2004 A

Taxonomy of Model Transformations. 04101. Available from:

http://drops.dagstuhl.de/opus/volltexte/2005/11/pdf/04101.SW

M2.Paper.pdf

[14] Booch G, Jacobson I, Rumbaugh J. 2000 Unified

Modeling Language Specification version 1.3. Available

from: www.OMG.org

[15] ISO/IEC. 2008 Standard 9075:2008 SQL standard

definition. Available from: www.iso.org.

[16] ISO/IEC. 1999 Standard 9075:1999 SQL standard

definition. Available from: http://www.iso.org.

[17] ISO/IEC ISO. 2003 Standard 9075:2003 SQL

standard definition. Available from: http://www.iso.org.

[18] Kulkarni K 2003 Overview of SQL:2003. Available

from: www.wiscorp.com/SQL2003Features.pdf Accessed:

Sep 2007

[19] RationalSoftware 2000 Mapping Object to Data

Models with the UML. Available from:

http://www.uml.org.cn/oobject/tp185.pdf Accessed: Oct 2005

[20] Lodhi F, Ghazali MA. 2007 Design of a simple and

effective object-to-relational mapping technique. Proceedings

of the 2007 ACM symposium on Applied computing. Seoul,

Korea: ACM.

[21] Ambler SW. 2003 Mapping Objects to Relational

Databases. Available from:

http://www.agiledata.org/essays/mappingObjects.html.

Accessed: Jan 2005

[22] Eder J, Kanzian S. 2004 Logical design of

generalizations in object-relational databases. 8th East

European Conference of Advances in Databases and

Information Systems. Budapest, HUNGARY: Magyar

Tudomanyos Akademia, p. 16.

[23] Roberts P 2008 Criteria for assessing object-

relational quality. Available from: http://computing-

reports.open.ac.uk/index.php/2008/200817

[24] Roberts P. 2010 Structural transformations in object-

relational design: a framework for improving quality. PhD

thesis, Milton Keynes: The Open University.

IX. APPENDICES

A. SQL code to create generalizations

Option 1: A hierarchy of typed tables

CREATE TYPE Member AS (

Memb_ID INTEGER,

Memb_name Personal_name,

Memb_suspended BOOLEAN DEFAULT FALSE)

NOT INSTANTIABLE NOT FINAL

REF IS SYSTEM GENERATED;

CREATE TYPE Employee UNDER Member AS (

Emp_payroll_number INTEGER,

Emp_date_employed DATE,

Emp_room CHAR(4))

INSTANTIABLE NOT FINAL;

CREATE TYPE Student UNDER Member AS (

Student_number INTEGER,

Student_status VARCHAR(20))

INSTANTIABLE NOT FINAL;

CREATE TABLE tbl_Member OF Member(

REF IS Memb_ref SYSTEM GENERATED,

Memb_ID WITH OPTIONS CONSTRAINT pk_Member

PRIMARY KEY (Memb_ID));

CREATE TABLE tbl_Employee OF Employee

UNDER tbl_Member();

CREATE TABLE tbl_Student OF Student

UNDER tbl_Member();

Option 2: One relational table containing all attributes

CREATE TABLE tbl_Member(

Memb_ID INTEGER NOT NULL,

Memb_name Personal_name,

Memb_suspended BOOLEAN DEFAULT FALSE,

Memb_is_employee BOOLEAN,

Memb_is_student BOOLEAN,

Memb_emp_payroll_number INTEGER,

Memb_emp_date_employed DATE,

Memb_emp_room CHAR(4),

Memb_student_number INTEGER,

Memb_student_status VARCHAR(20),

CONSTRAINT pk_Member PRIMARY KEY (Memb_ID));

