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Abstract: This paper evaluates the influence of key design parameters on the thermal behaviour of a naturally 

ventilated building with Double Skin Façade (DSF) under tropical climate conditions. Using a reference model 

of a conventional office building in the city of Rio de Janeiro and two groups of design parameters, dynamic 

thermal simulations are systematically applied to optimise design options with the aim to maximize the annual 

acceptable thermal comfort levels within the occupied spaces. This study not only defines the dimensional 

parameters to maximise the system airflows, but also investigates the significance of design decisions such 

as thermal mass and shading devices on the system performance. Options to avoid unintentional reverse flow 

on the upper floors and maintenance of balanced horizontal airflow rates across the floors are also addressed.  

Two optimized naturally ventilated building models with DSF are developed and evaluated in terms of thermal 

performance. Results show that acceptable thermal comfort levels can be met for nearly 70% of the occupied 

hours. Although the office building will still require other means of cooling during peak summer periods, the 

incorporation of DSF as part of a mixed-mode ventilation strategy can potentially have a significant impact on 

annual energy consumption.  

Highlights 

 Optimised DSF models demonstrate acceptable thermal comfort levels for nearly 70% of the occupied 

hours 

 Shading device characteristics are the most influential parameter on the thermal performance of DSF 

 Extending the cavity height by one and a half floors above the roof avoids reverse airflows on the 

upper floors  

 Similar airflows on all floors can be achieved by optimizing the free area of window openings 
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1.0 Introduction 

Double skin façade (DSF) is an architectural element that has recently gained recognition in modern office 

buildings as a solution for highly glazed façades to reduce the annual HVAC system loads [1]. A typical DSF 

consists of an additional fully glazed external skin installed over the conventional building façade, forming an 

air cavity in which sunshade devices are often installed to protect the internal rooms from overheating caused 

by excessive solar heat gains. The working principle of the technology is highly dependent on the climactic 

context [2-4], and this dependency accentuates when dealing with naturally ventilated buildings. The majority 

of the existing studies on DSF are however based on air-conditioned models that regard the DSF cavity as an 

‘isolated’ structure, and often treated as a local thermal feature without taking into account its interaction with 

the user space [5].  

Some studies have attempted to establish the overall airflows in naturally ventilated buildings with DSFs [6, 7], 

but integrated design strategies enabling effective and desirable airflows on each floor of multi-storey office 

buildings, in particular for warm and hot climates, are yet to be developed and analysed. This study is therefore 

an attempt to address this knowledge gap by systematically evaluating the influence of the key design 

parameters through computational dynamic simulation, with the aim to establish optimised models that enable 

detailed studies of the thermal performance when operating under the tropical climate.   

In the following sections, the working principle of the DSF in naturally ventilated buildings is introduced followed 

by the development of the generic base case model used in the simulations, including the architectural features 

and the internal gains profile, as well as the justification for the selection of the key design parameters for 

evaluation. Modelling, climate characterization, development of optimised models and simulation processes 

are described leading to critical evaluations of the impacts of the key design parameters on the building thermal 

performance. The paper concludes on the implications and significance of the findings to the wider application 

and research of DSF in tropical climates. 

2.0 Working principle 

The flow of air in the cavity of a DSF is mainly driven by solar-induced thermal buoyancy and pressure 

variations resulting from the effects of airflow (wind) around the building. The thermal buoyancy within the DSF 

generates a pressure difference which drives air flow as a function of the temperature difference between the 

warmer cavity air and the surrounding cooler air.  
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Figure 1 - DSF and the adjacent office floor cross-section with the heat transfer and airflow mechanisms 

In a naturally ventilated building with DSF, outdoor air is supplied from openings in the opposite façade and 

passes through the occupant space before entering the cavity. This air is then heated by solar and conduction 

gains, rises up and the resulting lowering of air pressure continues to draw air from the adjacent rooms, forming 

a continuous convective air stream [6, 8] as shown in Figure 1. The following empirical equation [9] shows that 

the key variables determining the airflow in a simple thermal chimney are its height, cross-sectional area, 

location of the openings and the temperature difference between the air in the cavity and the external air. 

Q C A 2g∆H 	 t t /t 															Equation	1 

Where: Q = air flow rate, m3/s; CD = discharge coefficient of the opening; A = area of the opening, m2; g = 

acceleration due to gravity, m/s2; ∆HNPL = vertical distance from the neutral pressure line (NPL) to the aperture, 

m; ti = air temperature in cavity (higher temperature), K; to = outdoor temperature (lower temperature), K. 

However, in a real building these variables are highly influenced by a number of interacting factors such as the 

building compartmentation, the thermal properties of building fabric and glazing, and the internal heat gains. 

An important variable of the equation is the height of the neutral pressure line (NPL), which is defined as the 

point at which the inside and outside pressure gradients intersect and it determines the direction and 

magnitude of the airflows from the apertures [10]. As the location of the NPL is influenced by air leakage 

distribution over the building exterior and by the interior compartmentation of the building, it is not unique or 

necessarily located at the mid-height of a building. NPL may also exist locally across the vertical height of an 

opening, such as a window connecting the room and the cavity. This can cause local air recirculation which 

consequentely disturbs the overall air exchange between the two spaces [10]. 
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Air movement resulted from varying surface pressures due to wind acting across the building envelope is 

another important parameter. Studies by Gratia and De Herde [7] and Lou, Huang [11] indicate that the airflows 

in the cavities reach their minimum when the wind direction is parallel to the façade but they increase when 

perpendicular, especially if the DSF is located at the leeward side of the building. In reality wind and thermal 

stack effects never act in isolation and the magnitude and pattern of natural air movement through a building 

depends on the strength and direction of these natural driving forces and the resistances in the flow paths. 

When available and aptly applied, wind pressures can play a significant and enhancing role in driving air flows 

in the DSF. The wind pressure should therefore be utilised to promote airflow from the user room to the cavity 

although sometimes it may mask the thermal buoyancy effect. However, this study is conducted without the 

interference of wind in order to establish the baseline level of thermal comfort acceptance focusing on the 

understanding of the integrated influences of the identified design parameters. 

3.0 Key design parameters 

Two groups of design parameters identified by Barbosa and Ip [5] as having significant impacts on the 

performance of DSFs relevant to this study are: the ‘façade’ parameters - which comprise the features of the 

cavity and the external layer of the DSF and; the ‘building’ parameters - that involve the physical configurations 

of the building. Parameters identified and adopted in this study and their relevance to the performance of DSFs 

are summarised in Table 1. Their investigation also found that no suitable naturally ventilation model exists as 

most of the existing studies were conducted based on air-conditioned buildings. However, some of the generic 

principles identified on the air conditioned models can be applied to naturally ventilated buildings and they are 

therefore adapted as guidance in defining the design parameters and in developing the base case and 

alternative case models for the simulations. 
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Table 1 – Summary of the review findings related to the key DSF design parameters relevant to this study as identified by Barbosa and Ip [5] 

 Parameter State of art review findings 
   

F
aç

ad
e 

P
ar

am
et

er
s

 

Cavity depth 

 In air conditioned buildings, narrow cavity is preferred as it demands less energy consumption due to accentuated stack effect occurring in the cavity, 
which reduces the heat transmission to inside the occupied space [12, 13]. 
 In naturally ventilated buildings, the airflow behaviour inside the cavity still needs investigation to account for the effect of different configurations of 
the openings to the air flow at different floor levels.  

Shading device 

 Apart from reducing direct solar gains into the user rooms, the heat absorbed by shading device applied in the cavity can also increase the air 
temperature and the stack effect within it [14]. 
 When blinds placed in the middle of the cavity the movement of thermo-circulation is well established and the cooling consumption is decreased [15], 
whereas the inner position lead to a high temperature on the inner glass surface, reducing the heat transfer from the indoors [16] 
 Regarding the blind angles, horizontal positions may cause obstruction to the air circulation; therefore, vertical positions seem to be more appropriate 
to reduce hindrance to the flow of air in the cavity [14]. 
 The black roller blind is largely responsible for high gap temperatures, whereas a white coloured roller blind reduces gap temperatures by 11 °C [17].  

Outer skin 
glazing 

properties 

 The properties of the glazing materials selected for the DSF layers impact on the heat transfer rates. The use of single glazing with high transmittance 
at the external layer allows for a high heat gain into the cavity, thus increases the buoyancy force for natural ventilation [18].  

Structure  The height of the façade cavity is crucial to the DSF performance due to the creation of the buoyancy effect. The stack effects of multi-story and shaft 
types are more accentuated, increasing the cavity ventilation rate and demanding lower energy consumption than the other structure types [12] [19].  

Openings  A bigger opening area across the cavity reduces the flow resistance, thus allowing for a greater amount of air flow through the cavity. Thus, maximizing 
the opening area at the top of the DSF tends to promote higher airflow that helps to extract warm air from the cavity [12]. 
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Inner skin 
materials 

 The application of glazing on the inner layer of the DSF causes higher temperature in the skin when compared to a window of a single skin model 
[20]. 
 Applying adequate optical properties on the layers of the DSF is the most effective way to reduce cooling loads, with particular influence on the direct 
gain and stack effects [8]. 
 In warm climates double glazing minimises both the convective and the radiative components of heat transfer across the façade, leading to a smaller 
heat gain from the exterior ambient into the user space [21]. 

Wall-window 
ratio and 
openings 

 The WWR appears as one of the greatest influence on annual cooling load. High WWR applied on the inner layer of the DSF can improve the airflow 
through the user room; however, the WWR threshold should be identified to avoid excessive solar gain. 
 WWR between 50% and 70% promotes a reduction in the thermal transfer through the façade, but for a WWR = 90%, the thermal transfer increases 
[22]. 

Height of the 
cavity/Number 

of floors 

 A taller cavity produces a stronger buoyancy force, creating a greater airflow rate [23]. 
 It is recommended that the solar chimney above the cavity should be more than two-floor high, although building legislation should be also considered 
in this decision [6]. 
 In naturally ventilated buildings, the DSF may be able to promote higher natural ventilation in the lowest floors, but mechanical systems may be 
required on the upper floors unless the cavity is extended beyond the roof. 
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4.0 Methodology 

4.1 Base case 

The base case model is used as a benchmark reference for evaluating the performance when different 

controlled and variable parameters are applied. Development of the model is based on a topology study of 

office buildings in Brazil by Carlo [24] and future office layout by Voordt and Maarleveld [25]. The model 

developed comprises of 11 floors of open plan office of dimensions 12m x 15.5m and 3.5m floor-to-floor height, 

with longest side facing north/south.  

Selection of envelope composition draws on the recommendations from the Brazilian code for thermal 

performance of buildings [26], the relevant construction examples by Morishita, Sorgato [27] and study of 

predominant window to wall ratio (WWR) in office buildings by Carlo [24]. The model preserved the typical 

Brazilian wall construction which consists of an insulation material sandwiched between two layers of ceramic 

block, plastered and finished in white. Both the south and north façades have WWR of 50% with windows 

placed across the width and at mid height of the floor.  

A north facing multi-storey type DSF, without any interior vertical or horizontal partitions [28], with a depth of 

50cm is selected, covering the entire face of the building from the first floor. Thermal properties of the principal 

elements of the building fabric, occupancy profile and the internal gains are summarised in Table 2. 

Table 2 – Characterisation of the building model 

Building envelope 

Roof: U value = 0.18 W/m2K 

Ground floor: U value = 0.28 W/m2K 

Masonry walls: U value = 0.61 W/m2K 

WWR = 50% 

Outer layer of DSF 

12mm clear single glass: U value = 3.9 W/m2K 

Transmittance = 0.67 
 

Figure 2 – Axonometric view of the 
building model 

 Internal gains  Lighting 
Total 

[W/m2]  
People 

[W/m2] 

Equipment 

[W/m2] 

 
 [W/m2] 

Occupancy 
8 am – 6 pm 

9.8 8.4 
 

18.7 
36.9 

Non 
occupancy 

0.0 0.0 
 

0.0 

4.2 Defining parameters 
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The parameters and variables to apply in the simulation models are divided into four groups summarised in 

Table 3 and graphical representations of the corresponding scenarios are shown in Figure 3. The parameters 

of ‘cavity width’, ‘cavity bottom opening’ and ‘window positions’ in group A are tested to maximize the absolute 

air flow extraction by natural ventilation by varying the cavity width, closure of the cavity bottom aperture and 

repositioning of the windows. Group B consists of the ‘shading devices’ and ‘inner skin material’, which deal 

with the thermal mass of shading devices in the cavity as well as materials used on the inner layer of the DSF. 

Group C attempts to resolve the low or unintentional reverse flows through the upper floors of the building to 

reduce the risk of severe overheating by extending the cavity above the roof and closure of some windows 

openings to the DSF. The last group aims to achieve even horizontal airflows across each floor by adjusting 

the window opening areas and the gradual increase of cavity width with height. 

Table 3 - Parameters and variables defined for simulations  

 
Case 

Design 
parameter 

Scenario Variables 

     

G
ro

u
p

 A
 

A1 Cavity width 

  A1.1  25 cm 
 50 cm 
 100 cm 

*A1.2 

  A1.3 

A2 
Cavity 
bottom 
opening 

*A2.1  Bottom open 
 Bottom closed   A2.2 

A3 
Windows 
positions 

*A3.1  North and south walls in the middle of the wall  
 South window on the bottom, north windows on the top of the 
wall    A3.2 

 

G
ro

u
p

 B
 

B1 
Shading 
devices 

*B1.1  No shading device 
 Concrete  
 Metal 

  B1.2 

  B1.3 

B2 
Inner skin 
material 

*B2.1  Masonry (white wall) 
 Low emissivity reflective double glazing   B2.2 

 

G
ro

u
p

 C
 C1 

Cavity 
extension 
above roof 

*C1.1  Cavity height = building height 
 1.75m above roof 
 3.5m above roof 
 5.25m above roof 

  C1.2 

  C1.3 

  C1.4 

C2 
Upper 
windows 
closed 

*C2.1  All windows open 
 Window of 10th floor closed 
 Windows of 9th and 10th floors closed 

  C2.2 

  C2.3 
 

G
ro

u
p

 D
 

D1 
Tapered 
cavity 

*D1.1  Equal cavity width over the floors 
 Inclined outer skin (base = 100cm; top = 20cm) 
 Inclined inner skin (base = 100cm; top = 20cm) 

  D1.2 

  D1.3 

D2 
Windows 
sizes 

*D2.1  Equal windows size over the floors 
 Calculated window sizes   D2.2 

*Base case 
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Figure 3 - Pictorial diagrams of the simulation scenarios 

4.3 Simulation modelling and climate characterization 

A total of 17 (base case plus 16 alternatives) naturally ventilated building models with DSF were tested in the 

building thermal simulation software IESVE [29], which used the airflow network approach based on 

(macroscopic) zone mass balance and inter-zone flow-pressure relationships [30]. 

The weather data of Rio de Janeiro (Brazil), which is a tropical city with hot and humid climate according to 

the Köppen-Geiger's system classification [31], was selected for this study. Psychometric analysis based on 

the software Analysis Bio from the Federal University of Santa Catarina in Brazil [32] indicated 64% of hours 

in thermal discomfort in such climate due to the occurrence of high temperatures and relative humidity; with 

annual averages of 27°C and 80% respectively. Although mechanical cooling is necessary during the summer, 

Brazilian Association of Technical Standards [26] recommended the exploitation of passive strategies using 

natural ventilation as it could potentially satisfy comfort requirement as high as 61% of the year. Moreover, 

high solar availability of this city over the year with mean annual global radiation of 211 W/m2, as shown in 

Figure 4, offers a source of heat that can be used to drive the airflow through the DSF. 
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Figure 4 – Monthly average temperature and global radiation of Rio de Janeiro 

Acceptability limit for typical building applications in the thermal comfort evaluation is based on the 

requirements for acceptable thermal indoor environments of ASHARE-55 [33], which takes into account the 

outdoor air temperature, the indoor air speed and the indoor operative temperature. The simulated cases meet 

with the conditions considered by ASHARE-55 [33] as the standard is primarily intended for naturally 

conditioned spaces where near sedentary physical activity levels as those typical of office work, with metabolic 

rates ranging from 1.0 to 1.3 met, are performed and where occupants may freely adapt their clothing to the 

indoor  and /or outdoor thermal conditions within a range at least as wide as 0.5–1.0 clo. 

5.0 Results and discussion 

This section presents a selection of the resulting air flows for the base case and for all the variables defined. 

For each alternative case, the annual average net airflow through the north windows of all floors is presented. 

The positive values indicate net airflows moving from the offices towards the cavity whereas the negative 

values represent reverse flows. In addition, for the base case, the annual operative temperatures of all the 

floors according to different seasons of the year are presented based on the ASHARE 55 [33] thermal comfort 

matrix. 

5.1 Base case 

Figure 5 shows the hourly averages of the direct solar radiation incident on the north façade and the 

corresponding outside and cavity temperatures for the base case. The increase in cavity temperature bears a 

direct but non-linear relationship to the amount of solar radiation reaching the façade. The annual average of 

the differences between these temperatures reaches a maximum at midday of 5.7°C while on a sunny day this 

can reach up to 9.8°C. 
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Figure 5 - Annual mean outside and cavity temperature 
distribution and direct radiation on the north façade 

Figure 6 – Annual mean of the net airflow for each floor 
for the base case 

The mean annual net airflows for each floor, top and bottom of the cavity are shown in Figure 6. Airflows across 

each floor gradually reduces and on floors above the neutral pressure line NPL on the 9th floor, when the 

pressure in the cavity is higher than the adjacent window, air flow changes from the cavity towards the occupied 

space. 

Figure 7 is a plot of the ASHARE 55 [33] thermal comfort matrix showing the annual operative temperatures 

that fall within and outside the acceptable limits between 1st and 10th floors. Using yearly percentages in terms 

of comfortable and uncomfortable sensations during occupied hours (both due to too hot/too cold conditions) 

for each floor, Figure 8 shows the base case achieved an average of 61.6% of occupied hours of acceptable 

thermal comfort, varying between 43.9% on the top floor and 70.2% on the bottom floor. Although the net 

airflow on the 10th level is negative, the higher air speed and moderate cavity temperatures during milder 

seasons explain the thermal comfort acceptability over 40% of the time. 
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Figure 7 – Annual operative temperatures of the base case 
(1st and 10th floors) plotted on the ASHRAE [33] thermal 
comfort matrix 

Figure 8 - Annual distribution of thermal comfort (%) on 
each floor of the base case 

5.2 Group A: cavity width, cavity bottom opening and windows positions 

Two cavity widths of 25cm (case A1.1) and 100cm (case A1.3) were tested. The results show that although a 

marginal higher air cavity temperature of 0.8°C on average occurred in the narrower cavity in relation to the 

wider one, the airflow rates through the offices were lower than the base case (Figure 9) due to the greater 

flow resistance within the cavity. Although airflow improvement of 115% was observed when a wider cavity 

was used, the mean room air speed increase in the offices is small; this resulted in minor improvement of only 

2.3% on the overall acceptable level of thermal comfort.   

In order to increase the airflow drawn from the offices, case scenario A2.2 had the aperture of the cavity bottom 

closed. Figure 10 shows such a change resulted in threefold increase in the net airflow on the 1st floor 

compared to the base case but only small differences in the other floors. The reduction of air supplied by the 

bottom cavity aperture caused a drop of pressure in this region, which created a higher pressure difference 

between the first floor and the section of the cavity in front of it. On the upper floors, this pressure differential 

is balanced and airflow rates similar to the base case are observed. The mean annual increase in air speed 

on the 1st floor enhanced the acceptable thermal comfort level on this floor by 4.5%. 

In case scenario A3.2, the south windows were placed to the bottom and the north windows to the top of the 

walls to enhance the buoyancy force through greater height difference between their inlet and outlet apertures. 

The results are particularly noticeable on the 1st and 10th floors, as shown in Figure 11.  
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Figure 9 - Annual mean of the net airflow for each floor for 
parameter ‘cavity width’ 

Figure 10 - Annual mean of the net airflow for each floor 
for parameter ‘cavity bottom opening’ 

 

Figure 11 - Annual mean of the net airflow for each floor for parameter ‘’windows position’ 

5.3 Group B: shading device and inner skin material 

In case scenario B1.2, when shading device made of concrete of higher thermal mass was applied within the 

cavity, higher cavity temperatures were resulted due to the higher absorptance property of the material, 

whereas when aluminium was selected (case B1.3), lower cavity temperatures were observed, both relative 

to the base case. Figure 12 illustrates those cases on the winter solstice day, when the differences among the 

cases are likely to be more pronounced. 

Although the application of metal shading device within the cavity reduced the overall airflow in the offices as 

shown in Figure 14, this option improved the thermal comfort in the building by 9% in relation to the base case, 

which can be explained by the reduction in direct solar and conduction heat gains from the cavity. On the other 

hand, the use of concrete increased heat gains from cavity to the occupied spaces; hence the improvement in 

the overall building thermal comfort relative to the base case was of only 4.3%. 
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Figure 12 – Cavity temperature for the alternatives of 
case scenario B.1  ‘shading device’ 

Figure 13 – Cavity temperature for the alternatives of 
case scenario B.2 ‘inner reflective skin’ 

Figure 15 shows that the use of fully reflective glazing on the inner DSF skin (case scenario B2.2) resulted in 

a similar trend of net airflows through the north windows as the base case with only a reduction of 2% on the 

overall thermal comfort. This can be attributed to the higher solar heat gains into the offices and higher 

convective gains from the cavity as its temperature tend to be higher than the base case (Figure 13).  

  

Figure 14 - Annual mean of the net airflow for each floor 
for parameter ‘shading device’ 

Figure 15 - Annual mean of the net airflow for each floor 
for parameter ‘inner skin material’ 

5.4 Group C: cavity extension above roof and upper windows closed 

Cases in group C were used to resolve the reverse in flow direction on the top floor of the building model by 

extending the height of the cavity (175, 350 and 525 cm above the roof) to raise the NPL above the highest 

window of the building (case scenarios C1). Figure 16 shows the extension of 525 cm (one and half floor) 

achieved the intended ventilation flow paths on all floors with thermal comfort enhancement of 9% on the top 

floor compared to the base case. 
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When extending the cavity height above the top of the building is not viable, mechanical ventilation for the 

upper floors with windows closed should be considered as tested in case scenarios C2. Results in Figure 17 

shows that closing windows on the top three floors would be necessary to ensure no reverse flow to occur.  

  

Figure 16 - Annual mean of the net airflow for each floor 
for parameter ‘cavity extension above roof’ 

Figure 17 - Annual mean of the net airflow for each floor 
for parameter ‘upper windows closed’ 

5.5 Group D: tapered cavity and windows sizes 

Cases in this group aimed to achieve even flow through each floor by modifying the cavity width (cases D1) or 

adjusting the size, hence their resistances (case scenario D2.2) of the window openings. As shown in Figure 

18 and Figure 19, net airflows of both alternatives were similar from the 1st to 9th floors. This strategy appeared 

effective in evening out airflows and consequently similar acceptable annual comfort levels of approximately 

65% were achieved over all the floors, except for the top floor where only 45% of thermal acceptance was 

accomplished. 
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Figure 18 - Annual mean of the net airflow for each floor 
for parameter ‘inclined skin’ 

Figure 19 - Annual mean of the net airflow for each floor 
for parameter ‘windows size’ 

Case scenario D2.2 demonstrated similar flow rates among all building levels could be achieved as illustrated 

in Figure 19. In this case, windows sizes were calculated such that the neutral pressure level occurs at a point 

above the highest window and the flows from each floor are balanced. Acceptable thermal comfort levels of 

around 64% were achieved. 

5.6 Acceptable thermal comfort comparison 

Table 4 presents the acceptable percentage of thermal comfort resulted on each floor for the cases simulated. 

It compares the thermal comfort acceptability of the alternate options applied in the models and highlights their 

relative effectiveness in improving the thermal comfort. Some alternatives improved the thermal comfort of the 

whole building, such as increasing the cavity width and applying shading devices, which enhanced the annual 

thermal comfort by up to 9% in comparison with the base case. Impacts of other parameters such as the cases 

of ‘bottom closed’ and ‘windows position’ were more specific to the bottom floor, where improvements of 

approximately 4% in the thermal acceptability were observed. By extending the cavity above the roof of the 

building, the problem of reverse flow on the top floor was resolved, which resulted in 9% of thermal comfort 

improvement on that floor. The strategies of inclining the outer skin and adjusting the flow resistances through 

calculation of window sizes according to their positions relative to the building height enabled attainment of 

desirable similar airflows on each floor, providing approximately 65% of thermal acceptability from the 1st to 

the 9th floor. 
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Table 4 – Effect of design parameters to annual thermal comfort  

Design 
parameter 

Scenario Variable 

Annual thermal comfort acceptance (%)  

1st 

floo
r 

2nd 

floo
r 

3rd 

floo
r 

4th 

floo
r 

5th 

floo
r 

6th 

floo
r 

7th 

floo
r 

8th 

floo
r 

9th 

floo
r 

10th 

floo
r 

Mean 
Overall 

Base case 
Refer to 
Table 3 

70.2 67.8 65.8 64.1 63.0 61.7 61.1 60.2 58.5 43.9 61.6 

Cavity 
width 

A1.1 25 cm 67.4 64.3 62.0 60.7 59.8 59.3 58.7 57.9 56.9 44.8 59.2 

A1.3 100 cm 72.0 70.8 68.8 67.3 66.0 65.1 64.1 62.9 59.4 42.2 63.9 

Bottom 
closed 

A2.2 
Bottom 
cavity 
closed 

74.7 67.8 65.0 63.5 62.0 61.3 60.8 60.0 58.2 43.8 61.7 

Windows 
position 

A3.2 
Up north, 
bottom 
south 

70.7 66.7 63.8 62.0 60.7 60.2 59.2 58.0 55.3 43.0 60.0 

 

Shading 
device 

B1.2 Concrete 73.6 72.5 70.7 68.8 67.4 66.4 65.6 64.7 62.9 47.0 65.9 

B1.3 Aluminium 74.1 74.0 73.2 72.4 71.9 71.4 70.9 70.4 69.4 58.6 70.6 

Inner skin 
material 

B2.2 
Reflective 

glazing 
69.1 65.9 64.3 61.9 61.0 59.9 59.2 58.0 55.5 40.5 59.5 

 

Cavity 
extension 

C1.2 1.75 m 69.9 67.3 65.3 63.8 62.3 61.3 60.6 59.8 58.1 43.8 61.2 

C1.3 3.50 m 69.9 67.3 65.3 63.8 62.3 61.3 60.6 59.9 58.6 47.8 61.7 

C1.4 5.25 m 69.9 67.3 65.3 63.8 62.3 61.3 60.6 60.0 59.3 52.8 62.2 

Windows 
closed 

C2.3 9th and 10th 70.4 68.0 65.9 64.4 63.2 61.5 58.6 41.3 - - 61.6 

 

Tapered 
cavity 

D1.2 
Inclined 

inner skin 
67.8 66.7 66.1 65.7 65.6 65.5 65.5 65.1 63.0 44.8 63.6 

D1.3 
Inclined 

outer skin 
68.6 67.5 66.7 65.9 65.6 65.4 65.3 64.8 62.6 44.7 63.7 

Calculated 
windows 

size 
D2.2 

Calculated 
WWR 

64.5 63.9 63.9 63.9 63.9 63.8 63.8 63.4 62.8 54.8 62.9 

6.0 Optimized cases  

Following a multitude of tests based on the outcomes of the evaluation on individual parameters, two optimized 

models utilising a combination of parameters to maximize thermal comfort were developed. These models 

maximized the absolute flow rates while resolving the reverse flow through the upper floors and attaining even 

airflows at each floor level.  The characteristics of these two models are: 

Optimised model 1 - the DSF cavity bottom is closed and 3.5m extended (equivalent to one floor) above the 

roof. Concrete shading device is placed inside the cavity with white masonry wall inner layer. The outer DSF 

glazing is inclined outward such that similar horizontal flow rates across all floor levels. The windows of WWR 

of 40% are positioned at the bottom and on the top of the south and north walls respectively.  

Optimised model 2 - the straight DSF cavity of 1m has its bottom closed and it is extended 3.5m above the 

roof. Windows are sized to achieve similar flowrates across all floors levels [9]. Concrete shading device is 

applied in the cavity with white masonry wall inner layer. 
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Figure 20 – Annual mean of the net airflow for each 
floor of ‘Optimized model 1’ 

Figure 21 - Annual operative temperatures of 
‘Optimized model 1’ (5th floor) plotted on the ASHRAE 
[33] thermal comfort matrix 

Results in Figure 20 to Figure 23 show that higher levels of thermal comfort acceptance were achieved by 

both models while similar airflows were generally maintained on all the floors. Net flow rates in optimized model 

1 are marginally higher but the overall thermal comfort levels are similar at approximately 68% and 69% 

respectively. The top floor presented the lowest hours of thermal comfort acceptance of 58% in case 1 and 

62% in case 2 due to the higher heat gain and minor reverse flow coming from the cavity. Hourly operative 

temperatures for the whole year are plotted in the adaptive comfort charts (Figure 21 and Figure 23) in colour 

to highlight the thermal acceptability according to the seasonal variations, which show that most of the 

uncomfortable hours occur when the prevailing mean outside temperature is above 24°C.  

   

Figure 22 – Annual mean of the net airflow for each 
floor of ‘Optimized model 2’ 

Figure 23 - Annual operative temperatures of 
‘Optimized model 2’ (5th floor) plotted on the ASHRAE 
[33] thermal comfort matrix 

7.0 Conclusions 

This paper presents a fundamental study on the potential application of double skin façades (DSFs) in naturally 

ventilated office buildings under tropical climates. Using a reference model of an office building in Rio de 

Janeiro, the key DSF design parameters are individually evaluated and optimised design options that can 
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maximize the annual acceptable comfort levels in the occupied space are established. Results show that the 

most influential parameters on the overall building thermal performance are the application of shading devices 

within the cavity, followed by the cavity width and tapered cavity with an inclined outer layer. Other alternatives 

such as the ‘bottom closed’ and ‘window position’ have improved comfort on specific floors while extending 

the cavity height by one and a half floor above the building roof proved to be effective in resolving the reverse 

flow resulting in thermal comfort improvement on the top floor. 

Results of optimised models show that the incorporation of DSF is able to achieve approximately 70% of 

occupied hours within the acceptable comfort levels. Although the office buildings will still require other means 

of cooling during peak summer periods, the incorporation of DSF, potentially as a part of a mixed-mode 

ventilation strategy, will have significant impact to energy consumption. 
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