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Abstract— The paper describes modelling and control tech-
niques studied and applied to selected pantograph-catenary
(PAC) systems. The work has been co-funded by the European
Union under the ERDF project: PAntograph-Catenary Interac-
tion Framework for Intelligent Control (PACIFIC). Mechanical
models of PAC systems are implemented in MATLAB using
novel techniques, where applicable. Next, important physical
phenomena affecting the reliability of power collection using
PAC systems are considered: electrical arcing and thermal
effects are both modelled. A range of control systems are then
implemented within selected PAC model simulations: Linear
Matrix Inequalities (LMI), and crisp and fuzzy versions of PID
controllers are tested. MATLAB is used extensively. All of the
PAC system and controller pairings are found to perform well
in their chosen implementations, preparing the way for future
extension of the PACIFIC project work into the non-linear
domain using non-linear fuzzy controllers.

I. INTRODUCTION

This paper presents completed work, and work-in-
progress, undertaken as part of the EU ERDF Interreg IV
project: PAntograph-Catenary Interaction Framework for In-
telligent Control (PACIFIC). The work concerns the demon-
stration of modelling and control techniques for pantograph-
catenary (PAC) systems. The paper starts by featuring finite-
element and lumped-parameter models for PAC systems;
the lumped-parameter models are implemented in MATLAB
and incorporate embellishments for improving the realism of
simulations of motion at elevated speeds. Fourth and sixth
order models are presented with novel features, as applicable.
Augmenting and following on from the modelling work,
control systems are added to the simulation. Linear Matrix
Inequalities (LMI) are implemented in conjunction with a
multiple model to control a fourth order PAC system, running
at constant speed. Proportional Integral Derivative (PID)
and Fuzzy Proportional Derivative Plus Integral (FPD+I)
controllers are then applied to a sixth order PAC model,
simulating running at variable speed. The majority of the
work is implemented in MATLAB and Toolboxes thereof.

A. Catenary Finite Element model

A variety of catenary models are proposed in the literature
from a simple model which considers only static variation
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of stiffness along a span to a complete finite element
model (FEM) which describes more accurately the non-linear
dynamic interaction of pantograph-catenary. High accuracy
models are required especially for in the high-speed range
where the wave reflection becomes a major cause of contact
loss [1].

Moreover, the effect of other elements such as brackets,
registration arms and droppers should be taken into consid-
eration (Fig. 1). The common mathematical model that can
be used for the messenger and contact wires is [1], [2] :

ρA
∂ 2z(x, t)

∂ t2 + c
∂ z(x, t)

∂ t
−T

∂ 2z(x, t)
∂x2 = q(x, t)

which describes the wire as an homogenous string mass per
unit length ρA with tensile force T and viscous damping
determined by the parameter. The function q(x, t) represents
the force distribution on the string and parameter z represents
the vertical displacement from equilibrium profile. The beam
models (Euler-Bernoulli-Timoshenko beam) give more accu-
rate results as discussed in [3]. The Euler-Bernoulli beam
model takes the bending stiffness of the wire into account
and, in addition, the Timoshenko beam model considers the
effects of shear deformation and rotary inertia. The equation
of two-node Euler-Bernoulli-Timoshenko beam is given by:

ρA
∂ 2z(x,t)

∂ t2 + c ∂ z(x,t)
∂ t +EI ∂ 4z(x,t)

∂ t4

−T ∂ 2z(x,t)
∂X2 = q(x, t)

where EI (E is the Young modulus and I is the moment
of inertia) denotes the flexural rigidity of the wire. For the
messenger wire only, the effects of droppers and brackets are
presented in qm(x, t) function by:

qm(x, t) =
n◦drop

∑
j=1

fdr,i(t)δ (x− x j)

−
n◦brk
∑
k=1

fbr,k(t)δ (x− xk)

where fbr,k(t) is the external forces by n◦brk brackets which
are located in xk, fdr,i(t) represent the external force by
n◦drop droppers which are located in xi and δ (t) represents
Dirac delta function atx = 0. The contact wire is subjected
to the external forces on the registration arms fre, j(t) instead
of external forces on the brackets fbr,k(t) and the contact
force represented by fc(t), hence the function qc(x, t) can be
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written as:

qc(x, t) = fc(t)δ (x−Vt)−
n

∑
j=1
◦drop fdr,i(t)δ (x− x j)

−
n

∑
j=1

reg fre, j(t)δ (x− x j)

Brackets are really stiff constraints that can be considered
as fixed points. This component has been modelled as spring-
damper system with high stiffness coefficient, and zero
damping and masses.

fbri = cbr,i · ż+ kbr, i · z

where: fbri,cbri and kbri are the ith bracket force, damping
and stiffness respectively. Like the brackets, even the regis-
tration arms can be modelled as a complete spring damper
mass system.

fregi = mregi · z̈+ cregi · ż+ kregi · z+mregi ·g

where fregi, mregi, cregi, kregi are ith registration arm force,
mass, damping and stiffness respectively. Droppers, in order
to achieve a more general formulation of the problem, are
modelled with the spring-damper-mass scheme so:

Model of catenary system represents the mass summed for
half of the dropper and its clamp represents the mass of

registration arm

fdri · (z̈mi− z̈ci)+ cdri · (żmi− żci)
+kdri · (zmi− zci)+ fdro +mdri ·g

where: fdri, mdri, cdri, kdri are ith dropper force, mass,
damping and stiffness respectively and zmiand zci are vertical
displacement between messenger and catenary wires at ith

dropper position. The above model can be extended in 3D
considering the horizontal displacement of contact wire as it
is presented in [4], [5].

II. PAC MODELLING

A. PAC 4th order model

The pantograph is shown in Figure 1 and it is represented
by the 2 degrees of freedom mechanical system in Figure
2. The catenary is generally represented by a time-variant
stifness k(t) as in [6].

The state space representation of the PAC system is [7]:{
ż(t) = A(t)z(t)+Bu(t)
y(t) =C(t)z(t) (1)

where

z =
[
z1 z2 z3 z4

]T =
[
x1 ẋ1 x2 ẋ2

]T

Fig. 1. Pantograph mechanism

Fig. 2. The pantograph 4th order model

A(t) =



0 1 0 0

−k1 + k(t)
m1

− b1

m1

k1

m1

b1

m1

0 0 0 1

k1

m2

b1

m2
− k1

m2
−b1 +b2

m2


,

B =

[
0 0 0

1
m2

]T

, C(t) =
[
k(t) 0 0 0

]
,

with (see [6]):

k(t) = K0

(
1+α cos

(
2πV

L
t
))

(2)



V is the train speed (m/s); L the span length (m); K0 the
average equivalent stiffness (N/m); α is the stiffness variation
coefficient in a span. Typical values of the model parameters
are given in Table 1. We also have ([6])

α =
Kmax−Kmin

Kmax +Kmin
, K0 =

Kmax +Kmin

2
Kmax, Kmin being the maximum and minimum stiffness

value in a span (N/m), respectively.

B. PAC 6th order model

In this section, the PAC system is represented by the 3
degree of freedom mechanical system in Figure 3.

Fig. 3. PAC 6th order model

The state space representation of the PAC system is:{
ẋ = A(t)x+Bc fc +Bq fq
y =Cx (3)

where

x =
[
x1 x2 x3 x4 x5 x6

]
T

=
[
x1 ẋ1 x2 ẋ2 x3 ẋ3

]
T

A(t) =

0 1 0 0 0 0
− k1+kc(t)

mc(t)
− b1+bc(t)

mc(t)
k1

mc(t)
b1

mc(t)
0 0

0 0 0 1 0 0
k1
m2

b1
m2

a33 a34
k2
m2

b2
m2

0 0 0 0 0 1
0 0 k2

m3

b2
m3

a65 a66


with

a33 =−
k1 + k2

m2
, a34 =−

b1 +b2

m2

a65 =−
k2 + k3

m3
a66 =−

b2 +b3

m3

Bc =
[
0 0 0 1

m2
0 0

]
T

Bq =
[
0 0 0 0 0 1

m3

]
T

C =
[
−k1 −b1 k1 b1 0 0

]
.

The catenary parameters present a periodic behaviour varying
along each span, with small variations due to the droppers.
This can be represented by a combination of harmonic
functions ([2])

mc(t) = mc0 +∑
3
i=1 mci cos( 2iπ

L x(t))

bc(t) = bc0 +∑
3
i=1 bci cos( 2iπ

L x(t))

kc(t) = kc0 +∑
3
i=1 kci cos( 2iπ

L x(t))

III. PAC PHYSICAL PHENOMENA

A. Pantograph arcing

Pantograph-catenary contact losses and overhead line ther-
mal effect have been studied within the framework of the
PACIFIC project. The loss of contact between the pantograph
and the catenary creates an electric flash (electric arc) which
accelerates the degradation of both the contact strips on
the bow and the contact wire resulting in a poor energy
quality factor. Also as a consequence of contact losses,
the pantograph arcing generates the EMC problems. Arcing
distorts the current and voltage waveforms during the current
zero crossing (CZC). The Figure 4, below, [8] represents 3
modes of contact losses:

Fig. 4. 3 possible modes of contacts sliding contacts during pantograph
arcing

• Mode 1: The arc root can glide continuously along the
contact wire. This would happen when the pantograph
and the contact wire are firmly connected or the train
is moving at a very slow speed.

• Mode 2: The arc root can hop in smaller lengths down
the contact wire. The voltage will have either smaller
overshoots or notches just after the CZC.

• Mode 3: The arc root elongates to a long length. This
can happen with high current and high speed either at
every CZC.

To take account of the pantograph arcing, these 3 modes have
been implemented in the pantograph-catenary interaction
simulation programme using a circuit breaker represented
by the Mayr arc model, as shown in Figure 5.

The Mayr model is applied for the approximation of the
electric arc behaviour in the range of the CZC. It is a function
of the arc conductance. The arc is described by the rate of



Fig. 5. Electric model of the pantograph-catenary interaction

change of the conductance with the arc current and voltage.
The Mayr arc model is described by the following equation
[9]:

1
g

dg
dt

=
d lng

dt
=

1
τ
(

ui
P
−1)

where:
g: the dynamic conductance of the electric arc column
(supposed to have an exponential variation versus the stored
energy,
u: instantaneous value of the arc voltage,
τ: time constant of the electric arc at the ’current zero’
moment,
Uc: the electric arc voltage, considered to be constant.

The simulation results for voltage and current waveforms
for the 3 modes are given in Figures 6 to 8 below.

Fig. 6. Voltage (V) (upper) and current (A) waveforms for 1stF Mode

Fig. 7. Voltage (V) (upper) and current (A) waveforms for 2nd Mode

During the first mode, it can be seen that the arc current
waveform is sinusoidal and at the CZC, there is a peak

Fig. 8. Arc voltage (V) and current (A) waveforms for 3 rd Mode

of the arc voltage. For the second mode, Figure 7 shows
that at each CZC the voltage signal has either overshoots
or notches. In Figure 8, it can be observed that during the
short period the current is zero, there is an overshoot on
the arc voltage. All these results are in accordance with the
experimentation in [8]. In Figure 9, the simulation is related
to 2 arcs appearing consecutively. Within the Pacific test
bench, further investigation and experimentation are expected
to confirm the arc modelling.

Fig. 9. Arc voltage (V) and current (A) waveforms for repetitive arcing

B. Thermal effects
The contact occurring between contact strip and contact

wire is mostly influenced by the dissipated power at the
contact. In the case of electromechanical contact under study,
the dissipated power is due to arcing, friction effect and Joule
effect. Neglecting the arcing effect, it is proposed according
to [10], to estimate the heat flow per unit area, q, as:

q =
µPν

An
+

Rel,cI2

An



The electrical contribution is assumed as a normal force
Peq,el = Rel,cI2/(µν), P being normal force on sliding in-
terface between the 2 bodies, the friction coefficient, ν the
sliding speed and I the current flow intensity.

Based on this theory, the model established with 2D
Comsol Multi-PFhysics allows the evaluation of the thermal
contact between the contact strip and the contact line (Figure
10) whereas the temperature change is given in Figure 11
within 3000s of contact duration.

Fig. 10. Temperature distribution in the contact line/contact strip system

Fig. 11. Temperature as time function for the contact strip

For the copper based contact strip with: µ = 0.76, I =750
A, V = 70 m/s, Rc = 0.008Ω. Under the normal force N =
100 N, T max is equal to 99◦C with the friction and Joule
powers estimated at 5320 W and 4500 W respectively; larger
than the Joule effect in this case. It can be concluded that in
this particular case of a copper contact strip, mechanical and
electrical parameters (speed, normal force, friction coefficient
and current) are the essential parameters governing the heat
transfer.

IV. LMI CONTROL AND OBSERVATION

A. LMI PAC Control
In this section, LMIs (Linear Matrix Inequalities) are used

to control the PAC system modelled by the multiple model

(3). LMIs have been extensively used in control theory [22]
due to their simple formulation and available computing
solvers such as the LMI MATLAB Toolbox.

A multiple mode is derived for instance for the 4th order
model case. To this end, it can be seen from (2) that k(t)
can be bounded as

K = K0(1−α)≤ k(t)≤ K = K0(1+α)

inducing

−k1 +K
m1

≤−k1 + k(t)
m1

≤−k1 +K
m1

Consequently, the PAC state space system model (1) can be
rewritten in terms of a multiple model, that is

{
ż = (µ1A1 +µ2A2)z+Bu
y = (µ1C1 +µ2C2)z

(4)

where µ1 +µ2 = 1, and

µ1 =
K− k(t)
K−K

≥ 0, µ2 =
k(t)−K
K−K

≥ 0



A1 =



0 1 0 0

−k1 +K
m1

− b1

m1

k1

m1

b1

m1

0 0 0 1

k1

m2

b1

m2
− k1

m2
−b1 +b2

m2


C1 =

[
K 0 0 0

]

A2 =



0 1 0 0

−k1 +K
m1

− b1

m1

k1

m1

b1

m1

0 0 0 1

k1

m2

b1

m2
− k1

m2
−b1 +b2

m2


C2 =

[
K 0 0 0

]

(5)

Now considering the PAC system described by (3), the
control objective is to drive the output contact force y(t)
to a desired constant yd , the typicaly desired value being
yd = 100 N.

To this end, an integrator is introduced

w(t) =
∫ t

0
(yd− y(θ))θ

or equivalently:

ẇ(t) = yd− y(t) (6)



This ensures a zero steady state error. Indeed, at the steady
state where ẇ(t) = 0, y(t) = yd is obtained due to equation
(8).

Combining this equation with the system dynamics (3)
yields: ż = (µ1A1 +µ2A2)z+Bu

y = (µ1C1 +µ2C2)z
ẇ(t) = yd− y(t) =−µ1C1−µ2C2 + yd

which can be written more compactly under the augmented
state space representation:

ża = (µ1F1 +µ2F2)za +Gu+Myd (7)

where

za =

[
z
w

]
, Fi =

[
Ai 04×1
−Ci 0

]
, G =

[
B
0

]
, M =

[
04×1

1

]
.

Next, the control law u =−Fza with F = (1/2)GT X−1 is
applied, X being the positive definite solution of the LMIs.{

F1X +XFT
1 −GGT < 0

F2X +XFT
2 −GGT < 0 (8)

B. LMI PAC Observer
The augmented system {Fi,Hi} with Hi =

[
Ci 0

]
is not

observable, whereas {Ai,Ci}, i = 1,2, is. Hence an observer
is assumed for the state vector z, the last state variable w of
za can be estimated by a direct calculation from its dynamic
equation (8), i.e. ẇ(t) = yd − y(t), y(t) being the measured
output at time t.

Therefore the observer has the form{ ˙̂z = (µ1A1 +µ2A2)ẑ+Gu+(µ1L1 +µ2L2)(y− ŷ)
ŷ = (µ1C1 +µ2C2)ẑ

(9)

where: Li = (1/2)X−1CT
i , i=1,2; X is a positive definite

matrix satisfying the LMIs{
AT

i X +XAi−CT
i Ci < 0, i = 1,2

X > 0 (10)

This dynamics should be combined with the integrator equa-
tion (8) in order to get the overall augmented state za in (9).

C. LMI Simulation
Using the MATLAB LMI toolbox, conditions (10) with

α = 10 and β = 50 for the controller and (12) for the observer
have been proven to be feasible with the parameters given
in [7] and reproduced in Table 1. In Figure 12, the obtained
contact force can be seen corresponding to a desired value
of 100 N. Figures 13 to 16 illustrate the resulting state space
variables as defined for system (1). These plots clearly show
satisfactory behaviour and highlight the feasibility of the
proposed methods.

However, it should be noted that the results correspond
to a specified constant speed V and are only valid for the
chosen speed.

Fig. 12. The contact force

Fig. 13. The pantograph head displacement x1

V. FUZZY CONTROL

A. Mechanical System Model

A sixth-order model of a PAC system has been constructed
in MATLAB, as per section II.B of this paper, drawing on
previous work in the PAC modelling arena; [24], [25]. This
relatively high-order model was chosen for its ability to
express in detail interactions between the pantograph and the
catenary, without recourse to more complex finite-element
implementations. Variable parameter values are also available
for this type of model. One of the primary advantages of the
chosen sixth-order physical model is that a good assessment
of the effect of train speed on the catenary may be made;
this is of critical importance when simulating high-speed
trains and their special problems of power collection. The
time-varying expressions for adding speed to the model were
of the form considered in section II.B of this paper; time-
varying parameters for the catenary: mass, stiffness and
damping were included. The system was expressed as a
system of differential equations and solved as a simulation
of the closed-loop system indicated in Figure 17.

Initially, the model was simulated in open-loop mode,
which confirmed that it was behaving as expected. After
this, closed-loop assessments were made, using appropriate
control algorithms. A systematic design process for fuzzy
logic control systems has been published in [26], offering



Fig. 14. The head speed ẋ1

Fig. 15. The frame displacement x2

the potential for a high probability of robustness. The rec-
ommended process is as follows:

1) A conventional (crisp) PID controller is built and tuned
using established techniques first.

2) Next, the crisp PID controller is replaced with an
equivalent linear fuzzy controller.

3) The next stage offers a real chance to exploit the
benefits of fuzzy control through the addition of non-
linearity.

4) Finally, the controller is fine-tuned, before introduction
to the target real-life application.

With reference to this design process, a PID controller
algorithm was added to the model in question first.

B. PID Control

For the purpose of this work, the following discrete
approximation for crisp PID control was used:

u(n) = Kp
(
e(n)+

1
Ti

Σ
n
j=1e( j)Ts +Td

e(n)− e(n−1)
Ts

)
Attempts were made to derive the adjustable parame-

ters (Kp, Ti and Td) of the PID controller using Ziegler-
Nichols frequency response tuning method. These efforts
were frustrated by the margin of operation being rather
narrow between under- and over-shoot. Finally, reasonable
results were obtained using hand-tuning techniques described
in [26] and [27].

Fig. 16. The frame speed ẋ2

Fig. 17. Arrangement of the Control System for a PAC System

C. Fuzzy PID Control

A linear fuzzy controller was built around the mechanical
system model, for comparison with, and development from,
the PID controller. A single-input, single output fuzzy system
is shown in Figure 18. This is similar to the control tech-
niques used in this work, since the derivative and integral
of the error signal were derived inside the controller from
the error signal. It will be noted that there is potentially
somewhat greater complexity in implementing the fuzzy
logic system, compared with the PID controller.

An approximation to fuzzy PID control, the Fuzzy PD+I
controller in [26], was used, as shown in Figure 19. This
implementation uses a control surface representing the P and
D parameters, in combination with a conventional integrator.
There are more gain parameters to set in the FD+I fuzzy
controller, compared with the PID controller (Error gain GE,
change in error gain GCE, integral of error gain GIE, and
output gain GU); these ensure that the error e and change in
error ce inputs and the u output are scaled as accurately as
possible, to match the control surface and rule ranges.

The implementation of the PD section of the linear FPD+I
controller was as shown in Figure 20. The combination of
linear membership functions and effectively a summation
arising from the resulting flat control surface gives a linear
control system.

Comparative test runs were arranged using the PID and
FPD+I controllers. An example of a simulation is given in



Fig. 18. Single-input Single-output Fuzzy Controller
([28])

Fig. 19. FPD+I Controller
([26])

Figure 21, in which a train was to remain stationary until
time t = 10 seconds before accelerating linearly to 300km/h
and then from t = 80 seconds onwards, hold this speed.

D. Results

Plots of Control Force and resulting Contact Force are
shown for a reference contact force of 100 N; the initial two
seconds of the waveforms are shown expanded for clarity.
It will be noted from Figures 22 and 23 that the PID and
FPD+I results are similar, as should be the case for this
linear comparison example. For both controllers, there is a
degree of high frequency noise that could perhaps be filtered,
yielding better performance.

VI. CONCLUSION

MATLAB code has been written, modelling a sixth-order
pantograph-catenary (PAC) rail power collection system in
connection with crisp and fuzzy PID-type controllers. Initial
simulation results have been given for a train undergoing an
acceleration cycle from 0 - 300 km/h. The results were found
to be reasonable and similar for both controllers, during

Fig. 20. A Four-rule Example of Implementation of the linear PD
Controller

Fig. 21. Profile of train speed for test simulation

this initial comparison test. However, the inherently complex
nature of the PAC system led to difficulty with tuning these
linear controllers.

The Interreg-funded PACIFIC project is enabling several
novel approaches to PAC modelling and control to be tested.
MATLAB has been used to implement various mechanical
models of PAC systems and components thereof. A multiple
model has been combined with the LMI control technique to
produce a new control demonstration. A range of crisp and
fuzzy controllers is being evaluated and a comparison of PID
and fuzzy PID controllers has been demonstrated. Electric
arc and thermal models have been successfully developed

TABLE I
PAC PARAMETERS

Parametres Notations Value
Catenary K0 3.6 kNm−1

α 0.5
L 65 m

Pantograph head m1 8 kg
b1 120 N sm−1

k1 10 kNm−1

Pantograph frame m2 12 kg
b2 30 N sm−1



Fig. 22. PID Controller Results

Fig. 23. FPD+I Controller Results

and applied to demonstrate physical phenomena in PAC
systems.

Future work is concentrating on improving the perfor-
mance of the fuzzy controller through exploiting the oppor-
tunities of non-linearity. Experiments will also be extended
to cover other fuzzy control paradigms.
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