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Abstract 

One of the mostly widely cited theories of phospholipid homeostasis is the theory of 

homeoviscous adaptation (HVA). HVA states that cells maintain membrane order 

(frequently discussed in terms of membrane fluidity or viscosity) within tight conditions in 

response to environmental induced changes in membrane lipid composition. In this article 

we use data driven modelling to investigate membrane order, using methodology we 

previously developed to investigate another theory of phospholipid homeostasis, the 

intrinsic curvature hypothesis. A set of coarse-grain parameters emerge from our model 

which can be used to deconstruct the relative contribution of each component membrane 

phospholipid to net membrane order. Our results suggest, for the membranes in the 

mammalian cells we have studied, that a ratio control function can be used to model 

membrane order. Using asynchronous cell lines we quantify the relative contribution of 

around 130 lipid species to net membrane order, finding that around 16 of these 

phospholipid species have the greatest effect in vivo. Then using lipidomic data obtained 

from partially synchronised cultures of HeLa cells we are able to demonstrate that these 

same 16 lipid species drive the changes in membrane order observed around the cell cycle. 

Our findings in this study suggest, when compared with our previous work, that cells 

maintain both membrane order and membrane intrinsic curvature within tight conditions. 
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1 Introduction 

 The theory of homeoviscous adaptation (HVA) builds on long-standing observations 

that the phospholipid composition of many organisms adjusts in response to changes in 

environmental temperature (Hazel, 1995).  In development of HVA, Sinensky (Sinensky, 

1974) observed using Electron Spin Resonance (ESR) that the order parameter of E. coli 

membranes remained constant, determined as a function of spin probe rotational 

correlation time, despite their phospholipid compositions changing in response to different 

growth temperatures. Subsequently, evidence for HVA as a conserved evolutionary 

mechanism emerged (Behan-Martin et al., 1993; Cossins and Prosser, 1978) and HVA has 

since been reported under many other changing environmental conditions, such as in 

response to hydrostatic pressure  (Behan et al., 1992; Cossins and Macdonald, 1986, 1984), 

osmotic pressure (Laroche et al., 2001) , low magnetic field strength (Santoro et al., 1997) 

and chemicals such as PCB-153 (Gonzalez et al., 2013), mitelfosine (Rybczynska et al., 2001) 

and crude oil (Mazzella et al., 2005). To date evidence for HVA has been found in species 

across the three domains of life and it is arguably the most widely used theory to explain 

phospholipid compositional changes, usually through the concept of maintaining membrane 

fluidity or membrane viscosity. Further examples of HVA, in addition to those given above 

are in mammalian cell culture lines (Anderson et al., 1981), zooplankton (Gladyshev et al., 

2011), Antarctic bacteria (Chattopadhyay and Jagannadham, 2001) and soy bean seedlings 

(Davy De Virville et al., 2002) as reviewed (Hazel, 1997, 1995; Vigh et al., 1998). It should be 

noted however that, whilst the terms membrane fluidity and membrane viscosity are in 

common usage, their physics arise from 3-dimensional molecular translation in liquids and, 

as such, these terms are not suited to describe translation in 2-dimensional membranes 

(Gawrisch, 2005) . Thus it is preferable to discuss HVA in terms of preservation of membrane 

order rather than membrane ‘viscosity’ or membrane ‘fluidity’. 

 Mechanistic insights into HVA have implicated the ratio of saturated to unsaturated 

fatty acids (ratio sats/unsats) as a critical membrane order modulation pathway in vivo. The 

most compelling evidence for this mechanism stems from data where the ratio sats/unsats  

follows a linear progression when plotted against the membrane fluorescence polarisation 

of diphenyl hexatrine (DPH) (Cossins and Prosser, 1978), for animal species adapted to 

different mean habitation temperatures, as reviewed (Hazel, 1995). The argument that 
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underpins the observation that the ratio sats/unsats modulates membrane order arises from 

the gel (Lβ) to fluid lamellar (Lα) phase transition temperature (Tm) values (Koynova and 

Caffrey, 1998) of the saturated and unsaturated lipid membrane components. Above the Tm 

the chains of phospholipids are disordered, below it they are ordered, with a gradual 

increase in order observed as the Tm is approached from above (Morrow et al., 1992). As a 

general rule across a homologous headgroup series, increases in saturated hydrocarbon 

chain length increase the value of Tm and increasing cis unsaturation decreases the value of 

Tm. The position of the cis unsaturation and branching in the chain has an effect on the Tm 

value as does the individual headgroup i.e. phosphatidylethanolamine (PE) or 

phosphatidylcholine (PC) (Cevc, 1991; Marsh, 2013, 1999), however the introduction of a 

single unsaturation into a saturated chain causes one of the biggest changes to Tm and 

membrane order. Thus the ratio sats/unsats accounts for the major structural contribution of 

each individual compositional lipid species to the mixed membrane order parameter. 

Several other metrics have also been shown to correlate broadly with in vivo membrane 

order, these are the PC: PE ratio and the unsaturation index (i.e. the sum of each fatty acid 

concentration multiplied by the number of its unsaturations) (Anderson et al., 1981; 

Bernabé Bloj et al., 1973). Ideally membrane order parameters, rather than Tm values, of the 

individual component lipids should be used to rationalise their effect on the average 

membrane order, however the literature does not contain enough of these order 

parameters to enable this for the complex mix of lipids in biological membranes. Hence 

qualitatively, within the HVA community, the effects of individual lipid compositional 

changes on membrane order are estimated from a phospholipid species’ Tm value.  Such 

that at a fixed environmental temperature, the difference (in temperature units) of the 

individual lipids from their Tm, weighted by their composition, represents a crude method 

for estimating the order they impart on a homogenous bilayer system. One of the 

limitations of this methodology is that the membrane order of individual lipids is often 

dependent on the other lipids in the system. For example in model membranes cholesterol 

increases the membrane order of phospholipid membranes as reported (Kaiser et al., 2009).  

Within the environmental context of HVA theory decreases in temperature, which 

will drive an increase in membrane order, are thought to be mediated homeostatically 

through the elevation of unsaturated lipid levels, which decrease membrane order. Of 
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course since the different lipid headgroups also have different contributions to the average 

membrane order there are a range of other lipid substitution mechanisms through which 

HVA might exhibit. These mechanisms are discussed in depth for Archaea by Oger and Cairo 

(Oger and Cario, 2013) and poikilotherms by Guschina and Harwood (Guschina and 

Harwood, 2006). Observations that cholesterol (Crockett and Hazel, 1995) has a regulatory 

role in preserving membrane order demonstrate that the modification of phospholipid 

composition is not the only mechanism through which membrane order can be regulated. 

Equally, however, observations that cholesterol (King and Spector, 1978) content is 

unchanged despite significant changes in fatty acid composition in Ehrlich ascites suggests 

cholesterol is not ubiquitous in regulating membrane order. These potential contradictions 

illustrate that a broad one-fit model to explain the preservation of membrane order in vivo 

is unlikely. Instead it seems probable that different membranes adapted for different 

functions may use different mechanisms to restore membrane order (Crockett and Hazel, 

1995). Additionally, work over the last decade has suggested that, rather than being a 

homogenous bilayer mixture, cell membranes are heterogeneous and contain 

microdomains of cholesterol, sphingomyelin, proteins and to a lesser extent saturated lipids 

(Simons and Sampaio, 2011). These ‘lipid rafts’ are widely accepted to be analogous to the 

disordered (Ld) and ordered (Lo) lipid phases observed in binary and tertiary lipid mixtures 

containing cholesterol (Kaiser et al., 2009). A number of other experimental factors further 

complicate the interpretation of HVA phenomena. Firstly the membrane order parameter is 

segmental, with respect to the length of phospholipid chains. And secondly, different 

membrane fluorescence probes sit at different depths in the membrane. In the past, failure 

to recognise the latter has caused conflicting data in the literature, as discussed 

(Demchenko et al., 2009).  

 One anomaly in HVA theory is that many species exposed to colder temperatures 

accumulate both polyunsaturated fatty acids (Cossins and Macdonald, 1986; Hazel, 1995) 

and monounsaturated fatty acids. This is tricky to reconcile with any mechanism whereby 

membrane order is the only property being maintained, since membrane order can be just 

as easily restored by accumulating monounsaturated fatty acids (Hazel, 1995). The theory of 

homeophasic adaptation (Vigh et al., 1998) suggests that control mechanisms might be in 

operation to maintain phospholipid membrane composition away from the inverse 
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hexagonal phase transition. Other theories of phospholipid homeostasis (Hermansson et al., 

2011), such as the intrinsic curvature hypothesis (Gruner, 1985) have emerged in response 

to these observations. It has also been suggested that cholesterol homeostasis enables cells 

to control lateral phase separation of their membranes such that lipid raft size and 

aggregation is controlled (Simons and Ikonen, 2000). In previous work (Dymond et al., 2008, 

2013; Dymond and Attard, 2008; Hague et al., 2013) we have presented detailed 

explanations of the intrinsic curvature hypothesis, which maintains that cells regulate 

membrane curvature elastic stress  throughout phospholipid homeostasis. Both HVA and 

the intrinsic curvature hypothesis are post-translational theories of phospholipid 

homeostasis. At the transcriptional level, membrane free fatty acids are implicated in the 

mechanisms of phospholipid homeostasis. The peroxisome proliferator-activated receptors 

(PPARs) are nuclear receptors that act as transcription factors, sensing fatty acids and lipid 

metabolites (Varga et al., 2011). Similarly the sterol-regulatory element binding proteins 

(SREBPs) activate the expression of around 30 genes involved in the synthesis and uptake of 

fatty acids, cholesterol and phospholipids (Georgiadi and Kersten, 2012). In E.coli the FadR 

transcription factor binds to DNA mediated by long chain acyl-CoAs (Xu et al., 2001), forming 

part of a pathway through which saturated and unsaturated membrane fatty acid levels 

control the expression of proteins involved in phospholipid homeostasis (Parsons and Rock, 

2013). Disentangling the different transcriptional and post-translational control mechanisms 

within phospholipid homeostasis is an ongoing challenge that requires new analytical tools 

suited to systematically analyse the large number of molecular species that make up omic 

data sets. 

 

1.1 Mechanistic insights into HVA from lipid compositional data 

The strength of the correlation between membrane order and lipid composition has 

led to several metrics of HVA, such as the ratio sats/unsats, the unsaturation index or the PC/ PE 

ratio being used to infer changes in cellular membrane fluidity (Anderson et al., 1981; 

Bernabé Bloj et al., 1973; Calder et al., 1990; Cooper et al., 2014; Ozawa, 2011; Yu et al., 

2014) and the mechanisms by which such changes occur. It should be noted that as early as 

1986, Cossins and Macdonald (Cossins and Macdonald, 1986) demonstrated that the ratio 
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sats/ unsats and the unsaturation index are not a perfect metric for HVA, concluding that it is 

likely that these measures do not take account of many of the subtleties of the relationship 

between lipid composition and membrane order. 

One disadvantage of the ratio sats/unsats is that it is derived from free fatty acids (or 

molecular derivatives thereof) and thus its production typically requires chemical treatment 

to render all component lipids into their fatty acid composites, which are then quantified by 

HPLC. This approach results in the loss of a significant amount of lipid structural detail. 

Progress in the field of lipidomics means that quantitative phospholipid compositions can 

now be relatively easily obtained with a higher level of structural confidence. This presents 

an opportunity to generate evidence based (data driven) models for membrane properties, 

which emerge from the net contributions of a large number of individual components, a 

method that in principle allows the physics of biological membranes to be reconstructed 

within a systematic framework. It should however be noted that a number of experimental 

limitations currently necessitate a coarse-grained deconstruction of the properties of 

biological membranes. These arise from the limitation of lipidomics to provide quantitative 

structural information of the many isomeric phospholipid species that occur in cells. 

 

1.2 Data driven modelling of control functions using quantitative lipidomic datasets 

 Recently we reported evidence for a homeostatic control mechanism in the 

phospholipid biosynthetic network of immortalised human cell lines. Our findings were the 

result of a tandem computational and experimental strategy using data driven modelling in 

combination with shotgun lipidomics (Dymond et al., 2013). The control mechanism we 

sought evidence for was a ratio control (Wade, 2004) mechanism derived from the intrinsic 

curvature hypothesis (Gruner, 1985), which we found was conserved with a coefficient of 

variance of 10% across 45 cell populations from three different cell lines, each with a unique 

phospholipid compositional profile. 

 We now use the same techniques and the same datasets to search for correlations 

using a control function parameterised for membrane order.  Ideally, the order parameters 

of the individual component lipids in pure systems, at fixed bilayer depth, ought to be used 
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to rank the contribution of individual lipids to mixed membrane order. However, currently 

the published data density of lipid order parameters is too low to enable this for each of 

lipids found in biological membranes, thus we use in vitro Tm values to rank the relative 

contributions of the component lipids to membrane order. Our ratio control equation is 

formulated as below; 

 𝑝𝑑𝑖𝑠 =  
∑  𝑤𝑛[𝐿𝑑𝑖𝑠,𝑛]𝑏

𝑛=0

∑  
1

𝑤𝑚

𝑎
𝑚=0 [𝐿𝑜𝑟𝑑,𝑚]

   Equation 1, 

which addresses the following question: given the set of all possible lipid species {L}, is there 

a universal pivot species, Lp, that defines how the set can be partitioned into subsets 

{Lord+LP}, {Ldis} such that the mean average ratio control function for membrane disorder pdis, 

has the minimum variance across the range of our independent lipidomic data sets? 

 In Equation 1 [Ldis,n] denotes the concentration of the disordering lipid n and wn is a 

weighting factor for lipid n, [Lord,m] is the concentration of the ordering lipid m and wm is the 

weighting factor for lipid m. Lipids with w values below that of the pivot lipid (Lp) will 

increase membrane disorder and lipids with w values above that of the pivot will increase 

membrane order. The variables a and b are the total numbers of ordering and disordering 

lipids respectively. Values of wn and wm are generated by a priori ranking of the structural 

contributions of each lipid to membrane order, guided by in vitro trends in individual lipid 

Tm values, as discussed in the methods section. Higher values of pdis equate with more 

disordered hydrocarbon chains. 

 Using the algorithm and quantitative lipidomic data for the HeLa, HL60 and HL60 

oleate cells (HL60 cells cultured with exogenous oleate) we have previously presented 

(Dymond et al., 2013), we separate the data into training and test sets. Then using randomly 

generated parameter sets to obtain values of w, see methods section, we calculate the 

mean pdis and the standard deviation for the test lipidome (HL60oleate), pdis oleate. We then 

calculate the coefficient of variance (cv oleate) of pdis oleate and repeat through 1 x 104 

iterations, using each lipid species in the lipidome as the pivot lipid. This gives us an 

extensive number of test parameter sets that can be used to construct values of w for each 

component lipid in the training lipidomes. For each of these test parameter sets, using the 

same control function in conjunction with the lipidomic data from the training sets (i.e. the 
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HeLa and HL60 lipidomes), the mean average pdis HL60 and pdis HeLa, associated standard 

deviations and cv HL60 and cv HeLa are calculated Finally, we calculate the mean coefficient of 

variance cv mean i.e. the mean average cv oleate, cv HL60 and cv HeLa and the standard deviation of 

cv mean. The lower the value of the cv mean the stronger the evidence for the existence of the 

control function in the test and training lipidomes. As a rule of thumb cv mean values of 10% 

and lower we consider to be strongly evidenced, in the range of 10% to 20% we consider 

weakly evidenced and above 20% we consider irrelevant. This process is shown 

schematically in Figure S1. 

One advantage of this data driven approach is that the solutions that emerge are 

inherently linked to the large volume of experimental data and therefore low cv mean values 

indicate the validity of the model. Another advantage is that whilst the control function is 

constructed in a linear form, in the sense that the individual molefraction of the 

components ranked by their phase transition temperature, Tm, are used to generate a set of 

parameters, the random iterative nature through which w is determined means the model 

can find non-linear relationships between the lipid composition and the membrane property 

of interest. It should however be noted that the parameters (w values) that emerge from 

these models represent the average contribution to membrane order of individual 

component lipids in the system.  This is significant because the presence of other lipids like 

cholesterol can have an ordering effect on phospholipids, an effect that is most significant 

for saturated lipids (Pan et al., 2008). 

The critical difference between this and our previous work is the a priori ranking of 

the contribution of each individual lipid to each control function. For the intrinsic curvature 

hypothesis the relative contribution of lipid headgroups to net stored elastic energy 

decrease in the order diacylglycerol (DAG) > phosphatidic acid (PA) > PE > 

phosphatidylinositol (PI) > PC > phosphatidylserine (PS), whilst the contribution to 

membrane disorder decreases in the order DAG > PI > PC > PS > PC > PA, as justified in the 

Material and Methods section. In both theories membrane curvature elastic stress and 

membrane disorder increase with the number of unsaturations in a hydrocarbon chain, 

although it should be noted there is no expectation that this should occur proportionally. It 

should also be noted that lipidomic data used in this study are for the PC, PE, PS, PI, PA, DAG 

headgroups. Since these lipids are predominantly found within the proposed liquid 
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disordered phase in biological membranes then, in the strictest sense; this study assesses 

membrane order in this phase. 

 In this publication we seek to provide insights into two questions; firstly, can we 

uncover evidence that membrane order modulation is occurring in parallel to intrinsic 

curvature modulation within the same data sets? And secondly, can our best parameter sets 

be used to systematically deconstruct the individual lipid contributions to membrane order 

seen in vivo?  
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2. Materials and Methods 

 All lipidomic and cell culture experimental methods plus extensive details of the data 

driven modelling methodology have been published previously (Dymond et al., 2013; Hague 

et al., 2013). The lipidomic datasets used here are freely available in the supplementary 

information of the above publications. For the purposes of data driven modelling the three 

cell sets, HeLa, HL-60 and HL-60 oleate (the HL-60 cell line cultured with exogenous oleate) 

were used as test and training data sets. The HL-60 oleate data was the training set and the 

HL-60 and HeLa data were the test data sets 1 and 2 respectively.  

 

2.1 Ratio control functions formalised for membrane disorder 

To be consistent with our previous methodology (Dymond et al., 2013) we coarse-

grained the individual contributions of the composite lipid species to net membrane order. 

Our coarse-graining of the phospholipid molecular structure takes account of the number of 

unsaturations per fatty acid (0 to 6) as well as different fatty acid and headgroup 

combinations. Chain length is not modelled for, thus we write all modelled phospholipid 

structures in the form of headgroup, number of unsaturations in first fatty acid and number 

of unsaturations in second fatty acid. Therefore PC 0:1 will refer to any PC lipid with a 

saturated and monounsaturated fatty acid combination regardless of chain length or 

position of unsaturation. 

 Values of wn and wm were constructed from Equation 2 

   w = (ch1 + ch2)Hg  Equation 2. 

Where values of ch1 and ch2 are the net contribution of each fatty acid chain to w and Hg is 

the headgroup contribution. Values of ch1 and ch2 were selected, based on individual lipid 

structure, from a list of randomly generated numbers between 0.00 and 1.00, ranked a 

priori such that for each fatty acid unsaturation, within a lipid hydrocarbon chain, the 

disorder imparted on the membrane increases with ch10 < ch11 < ch12 < ch13 < ch14 < ch15 < 

ch16, where the integer is the number of unsaturations in the fatty acid chain. Values of ch2 
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were similarly generated. This is in accordance with the trends in Tm values seen in the 

literature, summarised in Table 1.  

 

For example PC 18:0/18:0 has a Tm of 55.3 °C, which falls to 5.6 °C (PC 18:0/18:1cΔ9) through 

the introduction of one unsaturation. Similar, but less pronounced drops are seen when 

successive hydrocarbon chain unsaturations are added. Similarly, Tm values for each of the 

phospholipid headgroups were used to rank the individual headgroup Hg. These are 

summarised in Table 1 and ranked such that the contribution to disorder is HgPA < HgPE < HgPS 

< HgPC < HgPI < HgDAG. In the particular case of DAG we could find no appropriate Tm values for 

DAG that would allow ranking, however ESR studies show that dipalmitoylglycerol (DPG) 

decreases the membrane order parameter of dipalmitoylPC vesicles (Ortiz et al., 1988). 

Similar studies point to the ‘fluidising’ ability of pure DAGs being slightly inferior to mixed 

chain PI (soy bean (Peng et al., 2012) and pig liver (Larijani and Dufourc, 2006)). Detailed 

profiles of the fatty acid distributions across the PI component lipids are unavailable but the 

reduced fatty acid profile of the soy PI (Avanti Polar Lipids) shows it is 31% palmitoyl (16:0) 

and 50% linoleyl (18:2 cΔ9,12). As an upper limit, assuming the maximum concentration of PI 

16:0/ 18:2 existed in the sample, then 19% of the 18:2 fatty acid would need to distributed 

across the remaining 7% stearyl (18:0), 5% oleyl (18:1) and 7% 18:3. Each of these potential 

PI combinations has a lower Tm value than the PI 16:0/ 18:2cΔ9,12, suggesting all will elevate 

the disordering effect of PI 16:0/ 18:2cΔ9,12. In effect this means that the PI soy mixture is at 

most 60% PI 16:0/ 18:2cΔ9,12, thus we conclude that pure DAG 16:0/ 18:2cΔ9,12 is likely to be 

more disordering of PC membranes than pure PI 16:0/ 18:2cΔ9,12, therefore we rank DAG 

after PI. 

For each parameter set (generated iteratively) we calculate pdis for each cell 

population (flask) and then determine the arithmetic mean of pdis (pdis oleate, pdis HL60 and pdis 

HeLa) and standard deviation for each cellular lipidome (HL60oleate, HL60 and HeLa). The 

coefficient of variance cv (i.e. the standard deviation/ mean expressed as a percentage) is 

calculated for each lipidome (cv oleate, cv HL60 and cv HeLa) and the mean average cv (cv mean) and 

standard deviation of the cv mean are computed and plotted against each other. Parameter 
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sets with lowest variance across the training and test data sets appear towards the bottom 

left of these plots. 

 

3. Results and Discussion 

3.1 Membrane disorder proxies from data driven modelling 

 Using our lipidomic datasets we applied our data driven modelling techniques to 

look for parameter sets consistent with the preservation of membrane order using the 

methodology previously described (Dymond et al., 2013).  Figure 1 shows the results of the 

data driven modelling, which are plots of the cv mean versus the standard deviation of the cv 

mean. Values to the lower left hand corner of these plots indicate parameter sets with the 

least variance across all (circa 45) of the cellular populations. 

Figure 1 shows that the cv mean, for the different parameter sets tested against the 

control function for membrane order in Equation 1, have a variance as low as 6 to 8% and a 

standard deviation in the range of 0 to 5%. Since we have previously reported, for a 

separate control function derived from the intrinsic curvature hypothesis, a cv mean of 10 % 

and standard deviation close to zero (Dymond et al., 2013) the evidence for the existence of 

the HVA inspired control function is, superficially at least, comparable to the evidence for 

intrinsic curvature control function. The immediate implication of this result is that the 

preservation of membrane order is as well evidenced within our phospholipid data as 

membrane curvature elastic stress, since a comparable result has been arrived at through 

an identical process but with a different control function. This finding is consistent with the 

idea that the compositional changes we have reported in phospholipid membranes, across 

these three mammalian lipidomes (Dymond et al., 2013; Hague et al., 2013), occur to 

conserve both membrane order and intrinsic curvature (curvature elastic stress). To the best 

of our knowledge this is the first study to demonstrate any evidence of concomitant 

preservation of more than one membrane property across a set of in vivo lipid 

compositional changes. Before we discuss the implications of these findings, we consider 

how well these parameter sets capture the underlying trends of the individual lipid 
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contributions to membrane order, choosing one parameter set to follow through and 

further analyse the data. 

 

3.2 Refining proxies of membrane disorder  

In principle any of the parameter sets in Table 2 could be used to deconstruct the 

individual lipid contributions to membrane disorder in any of the cell sets. However it is 

useful to consider if any of these parameter sets is individually better suited than the others 

to deconstruct the contribution of each lipid to membrane order. We briefly consider a 

number of different ways to overcome this problem however prior to this it is worth 

considering the limitations of our lipidomic data by way of guiding the decision. 

As noted previously, we have measured the cellular concentration of PC, PE, PS, PA, 

PI and DAG lipids and used these to construct an evidence based control function, strictly 

speaking the data driven modelling is therefore only assessing the contribution of these 

lipids to net membrane order. Given all the evidence from model membranes, we would 

expect a contribution to membrane order from the lipid membrane components we have 

not measured, such as, the protein, cholesterol and sphingomyelin. However since the 

phospholipids we have quantified in our datasets are predominantly associated with the 

proposed liquid disordered phase, and other lipids like sphingomyelin are associated with 

the cholesterol-rich ordered domains (Kaiser et al., 2009) the parameter sets in Table 1 

could be considered a proxy measure of the liquid disordered phases regions of the cell 

bilayer (Wu et al., 2013). In this instance the concentration of cholesterol and sphingolipids 

would be much lower than that observed in whole cell extracts and thus the membrane 

order induced by cholesterol would not be as significant.  

Another point to consider is that, given the dynamic exchange of lipids laterally 

across lipid bilayers and between regions of different order in the membrane it is likely that 

single molecules of same lipid species will exist in different molecular environments such 

that each molecule might have different contributions to membrane order, depending on its 

neighbouring molecules. Hence the w values that emerge from these studies effectively 

represent the average contribution of each lipid species to net membrane order. Bearing 
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these considerations in mind, there are two ways to refine the data. Firstly, membrane 

order parameters derived from mixtures of phospholipids and cholesterol, below the 

composition of lateral phase separation into the Ld and Lo phases, could be plotted against 

their respective lipid values of w generated from each of the parameter sets in Table 2. 

Secondly, the order parameters of pure lipids could be plotted against the respective lipid 

values of w generated for each of the parameter sets in Table 2. In both cases the 

magnitude of R2 could be used to select the best data set. This second method effectively 

suggests that all cholesterol exists in separate domains within the bilayer where it has little 

or no effect on the membrane order of the phospholipids present in the liquid disordered 

phase. However, experimental evidence in model membranes suggests that cholesterol has 

different solubility in (Wassall et al., 2004), and different ordering effects on, the acyl chains 

of (Pan et al., 2008) saturated, unsaturated and polyunsaturated lipid membranes. Thus the 

first method of refinement is preferable, the difficulty being that the concentration of 

cholesterol in the liquid disordered phase of complex lipid mixtures in vivo is not known. If it 

emerges that cholesterol is not abundant in this liquid disordered region then the average 

nature of the value of w, would suggest the second method is better suited, since it does 

not overestimate the role of cholesterol.   

A search of the scientific literature looking for order parameter data that would 

enable refinement of the parameter sets by either of the methods above was made. To 

achieve our goal, order parameters for a series of phospholipids with the same headgroup 

and chain length and at least 0, 1, 2, 3, 4 unsaturations are required. Studies would also 

need to be performed at the same temperature and either with or without cholesterol at 

defined compositions. Additionally the order parameter of lipids with the PC, PE, PA, PI, PS, 

DAG headgroups with a fixed chain length and saturation both in the presence and absence 

of cholesterol would also be useful. Unfortunately we could find no studies in the literature 

that satisfied all these requirements individually or in a combination that allowed direct 

comparison; therefore as a next best option we referred back to the Tm values shown in 

Table 1 to guide our selection. 

As noted in section 1, within the historical context of HVA the gel to fluid lamellar 

transition temperatures of phospholipids has been used to qualitatively predict their effect 

on membrane order within biological membranes. In the absence of enough membrane 
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order parameter data we plotted the Tm temperatures shown in Table 1 for phospholipids 

with the isomeric fatty acid combinations found in mammalian cells i.e. the omega 3, 6 or 9 

isomers against each of the values of w that emerge from the parameter sets in Table 2. 

Using this method, plots of Tm versus w should tend towards a linear dependence such that 

the R2 value could be used to refine the parameters in Table 2. The limitation of this method 

is that Tm is only a rough metric of membrane order in the pure lipid system. Plus this 

approach only considers pure lipid systems and takes no account of the ordering effect of 

lipids like cholesterol, which are greatest for saturated lipids. On the other hand, the 

advantage of this method is that there are enough Tm values in the literature to enable a 

reasonable comparison for both saturated and unsaturated lipids. Table 2 shows the R2 

values for each of the parameter sets, Figure 2A shows the best data fits for changes in 

unsaturation and fatty acid distribution and Figure 2B shows the best data fit for changes in 

headgroup, which both stem from proxy T2-14, shown in Table 2. 

 

The R2 values for Figure 2A and Figure 2B are 0.97 and 0.93 respectively, we repeated this 

analysis for the C20 PC analogues shown in Table 1, which have more unsaturation than the 

C18 analogues, and found that parameter set T2-14 once again gave the highest R2 score (R2 

= 0.98), Table 2. Since it is well established that the ordering effect of cholesterol is less 

significant for polyunsaturated lipids we anticipate that this method of refinement would 

underestimate the effect of cholesterol on the saturated and monounsaturated lipids 

present. Therefore to address the possible limitations of using parameter set T2-14 we 

considered how well it could account for the ordering effect of cholesterol on lipids 

containing saturated and monounsaturated fatty acid chains. This was accomplished using 

some of the limited amount of suitable order parameter data in the literature and assumes 

that the majority of the cholesterol associated with cell membranes is heterogeneous as 

discussed. 

The orientational membrane order parameter for the lipids DOPC, SOPC and DPPC 

obtained in 10% cholesterol (Pan et al., 2008), are 0.32, 0.40 and 0.57 respectively. The 

value of 10% cholesterol was chosen because in membranes containing Lo and Ld phases of 

DOPC, DPPC and SOPC and cholesterol around 10% of the cholesterol was found to partition 



Chemistry and Physics of Lipids 191 (2015) 136–146 
Article history: Received 24 February 2015 Received in revised form 14 July 2015 Accepted 11 September 2015 Available online 12 September 2015 

into the Ld phase (Chen et al., 2007). In the absence of data for 

distearoylphosphatidylcholine (DSPC) we assume that the orientational order parameter of 

DPPC is identical to DSPC, within error. Since the theoretical maximum of the order 

parameter is 1, then bearing in mind the inverse relationship between the order parameter 

and the output of the control function, plots of w versus the order parameter of DOPC, 

DPPC and SOPC should go through 1. Confining the data in this way gives an R2 value of 0.96 

for parameter set T2-14. Thus it would appear, within the limits of our coarse grain model, 

that parameter T2-14 is suited to model the ordering effects of cholesterol on lipids 

containing saturated and monounsaturated fatty acids and thus we use this parameter set 

to further analyse the data. 

 

3.3 Deconstructing lipid contributions to HVA inspired ratio control functions 

The values of pdis that emerge from parameter set T2-14 for each of the cell lines we 

have studied are 0.98 ± 0.08, 0.71 ± 0.07 and 0.46 ± 0.01 for pdis HL60, pdis oleate and pdis HeLa 

respectively. Considering the HL60 and HeLa cell lines first, the fact that pdis HL60 and pdis HeLa 

are different suggests the disordered domains of these cell membranes have different 

optimal order. This is qualitatively consistent with fluorescence polarisation studies using 

DPH which have shown that the polarisation of the membranes of HL60 cells is 0.248 (Van 

Blitterswijk et al., 1987), whilst other studies at the same temperature and also with DPH 

show the polarisation of the membrane of HeLa cells is 0.232 (Fox and Delohery, 1987). An 

increase in polarisation indicates an increase in membrane disorder, so the values of Pdis 

that emerge from our proxy are qualitatively consistent with these experimental 

observations.  If we now consider HL60 cells in the presence and absence of exogenous 

oleate, we would expect the values of pdis HL60 and pdis oleate to be similar, on the assumption 

that membrane order is kept within tight boundaries, and this is what we see. 

 As a further measure we investigated whether or not any of the top ten parameter 

sets with the smallest standard deviation as shown in Figure 1 had R2 values comparable or 

greater than proxy T2-14, none were found. In addition we have explored ways of 

calibrating our proxy for membrane order to the microviscosity of a cell membrane, which is 

in the region of 100 to 300 centipoise (Wu et al., 2013). In principle this ought to be possible 
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by calculating the pdis values, with parameter set T2-14, of mixed membrane bilayers with 

known viscosity. However there are insufficient microviscosity measurements of known 

composition mixed membranes to enable us to calibrate to. We can, however, use 

parameter set T2-14 to systematically understand how individual lipids contribute to 

increases and decreases in membrane order. 

 Figure 3 shows a plot of the individual w values which emerge from parameter set 

T2-14 for each of the commonly occurring lipids in biological systems. The w value of the 

pivot species PS 0:4 (Lp) for parameter set T2-14 is 0.7544, which means that lipids with w 

greater than 0.7544 contribute to increasing membrane disorder (relative to the pivot 

species) and lipids with lower values increase membrane order. There are no reported Tm 

values for PS 0:4 lipids, such as PS 18:0/20:4cΔ5,8,11,14, however we can plot the individual w 

values for each combination of headgroup and fatty acid using parameter set T2-14 to find 

lipid species with known Tm values that have a w value close to 0.7544 . This plot, Figure 3, 

shows that, 0.7544 occurs somewhere between the w value for PC 0:1 and PC 0:2. 

 Shown in Table 1, PC 18:0/18:1cΔ9 has a Tm of 5.6 °C and PC 18:0/18:2cΔ9,12 has a Tm 

of -16.5 °C, taking the midpoint between these two lipid species suggests that broadly 

speaking lipids with Tm values less than -5 °C increase membrane disorder and lipids with Tm 

values above -5 °C increase membrane order relative to the pivot species. The Tm of PC 

16:0/18:1cΔ9 is -4 °C (Marsh, 2013; Tada et al., 2009), which is the closest value to that 

predicted by the parameter set T2-14. It is significant that the most dominant lipid in the 

HeLa and HL60 lipidomes is PC 16:0/18:1cΔ9 suggesting that all the lipids in the lipidome 

pivot around this species, at least under the 37 °C cell culture conditions. It is also the 

second most abundant lipid in the HL60oleate lipidome (Dymond et al., 2013) only slightly 

lower in abundance than PC18:1cΔ9/18:1cΔ9. In a sense these observations are not 

surprising since we would expect the most dominant lipid species to exert the greatest 

effects on membrane order, however that this emerges from our data driven modelling is 

evidence of the robustness of the technique.  

 We can further explore the mechanisms by which the different cell types modify 

membrane order by looking at the individual contributions of lipids (wn [Ldis, n] or wm
-1 [Lord, 

m]) to either the total numerator ∑  𝑤𝑛[𝐿𝑑𝑖𝑠,𝑛]𝑏
𝑛=0  or total denominator ∑  

1

𝑤𝑚

𝑎
𝑚=0 [𝐿𝑜𝑟𝑑,𝑚] of 
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the control function (Equation 1). We are now at a distinct advantage since the control 

function in conjunction with parameter set T2-14 enables us to apply a consistent set of 

criteria to rationalise lipid compositional changes relative to the pivot species. Figure 4 (A 

and B) shows the five most dominant lipids from the PC and PE headgroups for both the 

numerator and denominator of the control function using parameter set T2-14. 

 

The dominant lipids in the PC contribution to the numerator are PC 16:0/18:1, PC 16:0/16:1, 

PC 16:0a/18:1, PC 16:0/ 16:0  and PC 18:0/18:1  in all three lipidomes, see Figure 4. The 

most dominant lipid is PC 16:0/18:1, circa 15 to 20% of all the denominator species in all 

three lipidomes. A similar trend is seen in the PC species that contribute to the numerator 

with PC 18:1/18:1, PC 16:1/18:1, PC 18:1/18:2. PC 18:1/20:4 and PC 16:0/20:4  being the 

most dominant lipid species in the HL60 and HL60 oleate lipidomes. Significantly, the pivot 

species PC 16:0/ 18:1 splits the PC lipids into two sets i.e. the saturates and 

monounsaturates which contribute exclusively to the denominator (including PC16:0/18:1) 

and the polyunsaturates which contribute to the control function numerator. 

 Within the PE fraction there is more diversity in the five lipid species which 

contribute most to the numerator and denominator. PE 18:1/18:1 makes the biggest 

contribution to the numerator (from 10% to 30%) in all three lipidomes. The other PE 

species PE 18:1/20:4, PE 18:0/22:6, PE18:0/22:5, PE 18:1/18:2 are scattered about the 5% 

mark, with different lipidomes showing different trends. In the denominator the PE species 

show significant diversity, PE18:0/18:1 is the most dominating PE species in the HeLa and 

HL60oleate lipidomes and the second most dominating in the HL60 lipidome. The most 

dominating PE species in the HL60 lipidome is PE 18:0/20:4, which also features in the top 3 

dominating lipids in the HeLa and HL60oleate PE fractions. PE 16:0/18:1  and PE 18:0/20:2  

also occur. In contrast to PC the denominator is contributed to by saturated, 

monounsaturated and polyunsaturated PE species. The numerator contains only 

polyunsaturated PE lipids. This latter observation illustrates the difficulty of judging the 

effects of individual lipid changes on membrane order, since increases in the 

polyunsaturated PE 18:0/ 20:4 might be expected to contribute to increasing membrane 
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order. However our systematic approach and parameter set T2-14 show that PE 18:0/ 20:4 

will in fact increase membrane order relative to the pivot lipid. 

 It is worth noting that in summation all the lipid species in Figure 4 make up in the 

region of 70 to 80% of the total lipid contribution to either the numerator or the 

denominator respectively, in all three lipidomes. In terms of their molar percentage, these 

lipid species are also the most dominant in all three lipidomes. The remaining 20 to 30% of 

the contribution to either the numerator or denominator of the control function is made up 

of by a combination of the remaining lipid species (circa 130). 

 It is interesting to consider the mechanism through which the HL60 cell line 

maintains membrane order in response to incubation with exogenous oleate. Figure 4 

shows that in the PC contribution to the denominator, HL60 cells respond by elevating the 

PC 16:0/ 18:1 (from 13% to 18%) but at the loss of PC 16:0/ 16:1 (from 7% to 4%). In the 

numerator, Figure 4B, there is clear elevation in PC 18:1/ 18:1 (from 7% to 12%) but this 

time at the expense of PC 16:1/ 18:1 (from 7% to 3%). In the PE fraction the contribution of 

PE 18:0/ 18:1 to the denominator increases from13% to 18% in response to oleate, 

accompanied by a slight drop in PE 18:0/ 20:4, in the numerator there is a large increase in 

PE 18:1/ 18:1 (from 12% to 30%) accompanied by a small drop in the other 4 dominant 

species. Therefore in response to excess oleate which drives the production of more 18:1 

containing lipid species, overall membrane order would appear to be maintained by subtle 

variance of the other dominant species. In particular it appears that 16:1 fatty acids are 

being replaced by 18:1 fatty acids in these dominant species. 

 If we consider the subcellular distribution of PC and PE lipids, found predominantly 

in the outer and inner membrane leaflets respectively, in conjunction with the results 

shown in Figure 4. Then given that the PC and PE lipid species are split across the both the 

denominator and numerator of the control function, it is plausible that the membrane order 

of each leaflet might be controlled independently. This is consistent with the observation of 

Seigneuret et al.(Seigneuret et al., 1984) who used ESR spin labelled analogues of PC, PS and 

PE lipids finding that the outer membrane leaflet of Human Erythrocytes was more ordered 

than the inner membrane leaflet. 
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3.4 Dynamics of the lipid contribution to membrane order in synchronised HeLa cells 

 Previous work on adherent cells has shown that as Chinese Hamster Ovary (CHO) 

cells pass through the cell cycle, membrane ‘fluidity’, as measured by ESR using 5-doxyl-

stearic acid as a spin probe, is at its highest during G2/M and at its lowest in S phase with a 

low value observed in early G1 (Swartz et al., 1980). Since we have previously reported cell 

cycle changes (Hague et al., 2013) in the lipid content of adherent HeLa S3 cells we used 

parameter set T2-14 with these data. Figure 5 shows the variance of the pdis HeLa sync using 

parameter set T2-14 over the cell cycle. 

At 12 hours, when the majority of cells are in G2/M, the control function predicts a 

maximum in membrane disorder (pdis HeLa sync ≈ 0.55). Whilst at 9 hours when the majority of 

cells are in S phase pdis HeLa sync ≈ 0.34 and at a minimum, a slow decrease in pdis HeLa sync is 

observed from the G1/ S boundary (0 hours). This is consistent with low ‘fluidity’ in S phase 

and high ‘fluidity’ in G2/M reported by Swartz et al. (Swartz et al., 1980) 

 To understand the origin of increased membrane disorder in G2/M we looked at 

how the different lipid species change over the cell cycle. In the HeLa cell, total PC is 

maximal at 9 hours in S phase and total PE is maximal at 12 hours in G2/M (Hague et al., 

2013). The temporal coincidence of high membrane disorder with high PE and low 

membrane disorder with high PC suggests that PE and PC lipids are driving the changes in 

pdis HeLa sync seen in Figure 5. However since the PC and PE lipids are distributed in both the 

numerator and denominator of the control function, as shown in Figure 4, compositional 

changes in the PC and PE lipids must drive the fluctuations in the control function, Figure 5. 

To determine which of the lipid species are most dominant in bringing about the changes to 

membrane disorder observed in each of the phases of the cell cycle, we calculated the 

terms wn [Ldis, n] or wm
-1 [Lord, m]. For each lipid, these were expressed as a percentage of the 

total numerator ∑  𝑤𝑛[𝐿𝑑𝑖𝑠,𝑛]𝑏
𝑛=0  or total denominator ∑  

1

𝑤𝑚

𝑎
𝑚=0 [𝐿𝑜𝑟𝑑,𝑚]for each time point 

in the cell cycle lipidome of the HeLa cell, depending on which set the control function 

placed the lipid species into. Plots of the most dominant lipid species and strongest 

correlations with cell cycle phases are shown in supporting information (Figures S2 to S5) 

and briefly summarised below. 
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PC 16:0/16:0 and PC 16:0/ 16:1 both contribute up to 7% of the denominator in late S phase 

(9 hours) from a 3% low in G2/ M. The biggest single contributor to the denominator is PC 

16:0/18:1 which peaks at 22% in late S phase from a low of 15% in G2/M. PC 18:0/18:1 also 

contributes to the denominator peaking at 7% in late S phase, dropping to 3% in G2/M. PC 

16:1/ 18:1 contributes to the numerator, peaking at 8% in late S phase from around 5% in 

G2/M and G1. PC 18:1/ 18:1 follows the same trend peaking at 20% before dropping to 10% 

in G2/M.  

 In the denominator of the PE fraction, PE 16:0/18:1  falls through S phase from 4 to 2 

%, prior to rising back to 4% in G2/M and then up to 6% in G1. PE 18:0/18:1 is lowest in late 

S2, circa 9 hours on Figure S3, down to 6% from about 10%. PE 18:0/20:4 peaks at about 

10% in G2/M, in G1 (at 15 hours) it drops to 3. In the numerator PE 18:1/ 18:1 drops during 

S phase down to 10% from 15%, over the same time PE 18:1/ 20:4 drops from 8% to 4 %. If 

we remove any of the above lipid species from the control function calculation we still see 

cell cycle dependent changes in pdis, this strongly suggests no single lipid species is driving 

the changes in membrane order observed. 

 All DAG, PS and PA species contributed less than 1% to either the numerator or 

denominator of the control function therefore we disregard these as having any specific 

role. In the PI species we see some correlations with the onset of G2/M (data not shown); 

however the changes observed are small in magnitude. If we remove all PI lipid species from 

the control function, the maximum at 12 hours, Figure 5, is still observed suggesting that 

these species are not significant in driving the membrane disorder seen at 12 hours. 

However, the coincidence of elevated PI species with the G2/M phase suggests they are 

associated with the PI-PLC cycle, cellular division (Sun et al., 1997) and nuclear signalling, 

detailed data driven modelling studies of the lipid composition of the nuclear envelope will 

be needed to further investigate this possibility. 

 

4 Conclusions 

 Using a data driven modelling approach we have shown that a ratio control function 

for membrane disorder, inspired by HVA theory, is well evidenced within our lipidomic data 
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sets, cv(mean) in the range of 6 to 8 %. Refining of our parameter sets gave a parameter set 

(T2-14) with a cv (mean) of 6.93%. This parameter set predicts that the cell membranes 

optimise disorder around the pivot lipid species (w = 0.7544) Lipids with w values greater 

than this increase membrane disorder and lipids with w values lower than this increase the 

optimised membrane order. With this parameter set we were able to systematically 

deconstruct the individual contribution of each of circa 130 lipid species to the control 

function and ultimately to membrane order. This implicated around 16 lipid species 

containing either a PC or PE headgroup, which had the biggest contribution to the control 

function. Parameter set T2-14 predicted the previously demonstrated (Swartz et al., 1980) 

high membrane ‘fluidity’ in the G2/M phase and low membrane ‘fluidity’ in S phase of the 

cell cycle. In synchronized populations of HeLa cells these same lipid species emerge as 

exerting the most effect on membrane order. We were unable to point to any single specific 

lipid species that might be used by the cell to drive global membrane disorder changes 

about the cell cycle. 

 One of the unanswered questions in our work is the connection between membrane 

disorder and the intrinsic curvature hypothesis. In particular our work raises the possibility 

that both membrane disorder and intrinsic curvature are separately regulated in vivo and 

that the changes in total phospholipid composition induced in response to environmental 

change reflect both control functions. Equally, however it is not implausible that regulation 

of the membrane disorder control function might concomitantly retain the intrinsic 

curvature control function with tight boundary conditions, or vice versa. This is a complex 

issue outside of the scope of this publication however it does set the direction for our future 

work. 

  Aside from allowing us to look in detail at the possible mechanisms behind 

phospholipid homeostasis, data driven modelling has enabled us to develop a systematic, 

evidence based approach that aids the understanding of large lipidomic datasets. It is 

possible that the best parameter set we report here (T2-14) might be used in conjunction 

with Equations 1 and 2 as a proxy for looking at the mechanisms by which membrane order 

is maintained in vivo. Of course the nature of data driven modelling is that parameter sets 

can be refined as more and more data sets become available. It will be interesting to see 

how a less coarse-grained approach in tandem with lipidomics of subcellular organelles and 



Chemistry and Physics of Lipids 191 (2015) 136–146 
Article history: Received 24 February 2015 Received in revised form 14 July 2015 Accepted 11 September 2015 Available online 12 September 2015 

the heterogeneous ‘lipid raft’ structure with membranes builds a better picture of the in 

vivo biological membrane. What is clear from this work is that the systematic approach that 

emerges from data driven modelling of lipidomic data has the potential to begin the 

deconstruction of complex biological membrane systems. 
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Figure 1 cv mean versus standard deviation for data derived from a ratio control function 

(Equation 1) for membrane disorder. Values towards the bottom left of the graph, expanded 

in the inset, show parameter sets that give consistently the lowest variance in pdis across all 

cell types. The 15 parameter sets giving the lowest cv mean values are shown in Table 2. 

 

 

Figure 2, linear fits of Tm versus w for a series of biologically relevant C18 PC lipids with 

different unsaturation distributions (A) and dipalmitoyl lipids with different headgroups (B), 

w values are derived from Equation 2 and parameter set T2-14, full lipid structural details 

and Tm values are given in Table 1.
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Figure 3, the distribution of the major lipids found in mammalian cells as ranked by the w 

values that emerge from parameter set T2-14. The bold line shows the w value of the pivot 

species, lipids above the pivot contribute to the control function numerator (Ldis) and net 

membrane disorder. Lipids below the pivot lipid, and including the pivot species contribute 

to the denominator (Lord) of the control function and net membrane order. 
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Figure 4, (A and B) the percentage contribution of the five most dominant PC and PE lipid 

species to the denominator and numerator of the control function shown in Equation 1. 

Values were obtained using parameter set T2-14, where available in the literature (Marsh, 

2013) Tm / °C values are shown on the figure. 
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Figure 5 variance predicted by parameter set T2-14 using cell cycle associated lipid 

compositional changes (empty squares), sum of the species that contribute to the control 

function denominator ∑  
1

𝑤𝑚

𝑎
𝑚=0 [𝐿𝑜𝑟𝑑,𝑚] (empty inverted triangles) and sum of the species 

that contribute to the control function numerator ∑  𝑤𝑛[𝐿𝑑𝑖𝑠,𝑛]𝑏
𝑛=0  (filled triangles). Lipid 

compositions and cell cycle data were obtained from Hague et al. (Hague et al., 2013). 
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Table 1 Tm values for biologically occurring lipid isomers obtained from Marsh (Marsh, 2013) 

and used to rank the coarse grained contributions to membrane disorder within control 

functions shown in Equations 1 and 2. 

Lipid Tm /°C 

PC 18:0/18:0 55.3 

PC 18:0/18:1cΔ
9
 5.6 

PC 18:0/18:2cΔ
9,12

 -16.5 

PC 18:0/18:3cΔ
9,12,15

 -12.5 

PC 18:1cΔ
9
/18:1cΔ

9
 -17.3 

PC 18:2cΔ
9,12

/18:2cΔ
9,12

 -57 

PC 18:3cΔ
9,12,15

/18:3cΔ
9,12,15

 -60 

  PC 20:0/20:0 66.4 

PC 20:0/20:1cΔ
11

 19.7 

PC 20:0/20:2cΔ
11,14

 1.8 

PC 20:0/20:3cΔ
11,14,17

 4.4 

PC 20:0/20:4cΔ
5,8,11,14

 -6.8 

PC 20:1cΔ
11

/20:1cΔ
11

 -4.3 

PC 20:4cΔ
5,8,11,14

/20:4cΔ
5,8,11,14

 -69.2 

  PA 16:0/16:0 64.5 

PE 16:0/16:0 64.4 

PS 16:0/16:0 57.4 

PC 16:0/16:0 41.4 

PI 16:0/16:0 40.9 
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Table 2, the fifteen parameter sets that gave the least variance across ratio control functions derived from lipid contributions to membrane order.  

R
2
 values are for C18, C20 and headgroup analogues shown in Table 1. 

Pdis identifier T2-1 T2-2 T2-3 T2-4 T2-5 T2-6 T2-7 T2-8 T2-9 T2-10 T2-11 T2-12 T2-13 T2-14 T2-15 

Ch10 0.11 0.18 0.06 0.1 0.12 0.14 0.07 0.13 0.13 0.09 0.06 0.23 0.04 0.31 0.03 

Ch11 0.34 0.43 0.29 0.45 0.36 0.35 0.14 0.42 0.27 0.25 0.35 0.39 0.2 0.48 0.18 

Ch12 0.35 0.49 0.3 0.53 0.39 0.45 0.25 0.43 0.37 0.33 0.36 0.53 0.37 0.57 0.2 

Ch13 0.36 0.54 0.4 0.54 0.47 0.56 0.25 0.45 0.37 0.4 0.45 0.72 0.4 0.58 0.25 

Ch14 0.65 0.78 0.42 0.81 0.61 0.65 0.26 0.78 0.58 0.48 0.54 0.76 0.48 0.61 0.4 

Ch15 0.72 0.84 0.52 0.83 0.74 0.73 0.64 0.84 0.65 0.78 0.77 0.82 0.59 0.91 0.76 

Ch16 0.85 0.91 0.97 0.91 0.83 0.8 0.8 0.87 0.75 0.9 0.95 0.86 0.83 0.98 0.83 

Hg PA 0.53 0.57 0.58 0.63 0.62 0.36 0.29 0.45 0.63 0.66 0.56 0.77 0.35 0.77 0.27 

Hg PE 0.7 0.81 0.72 0.74 0.83 0.41 0.65 0.51 0.76 0.76 0.68 0.85 0.55 0.8 0.44 

Hg PS 0.73 0.81 0.74 0.78 0.85 0.44 0.68 0.51 0.81 0.94 0.75 0.9 0.62 0.82 0.45 

Hg PC 0.78 0.9 0.74 0.87 0.85 0.48 0.69 0.55 0.92 0.95 0.76 0.91 0.62 0.9 0.48 

Hg PI 0.9 0.93 0.81 0.9 0.91 0.48 0.79 0.7 0.93 0.95 0.81 0.98 0.65 0.95 0.53 

Hg DAG 0.99 0.98 0.96 0.93 0.93 0.49 0.85 0.76 0.93 0.98 0.97 0.99 0.82 0.97 0.56 

Lp(species) DAG 0:3 PI 1:2 PS 0:4 DAG 0:2 PA 0:2 PA 0:3 DAG 0:1 DAG 0:2 DAG 0:1 DAG 0:1 DAG 0:1 DAG 0:1 DAG 0:1 PS 0:4 PS 0:3 

Lp(value) 0.4653 0.6696 0.3552 0.5859 0.4464 0.2520 0.1785 0.4256 0.3720 0.3332 0.3977 0.6138 0.1968 0.7544 0.126 

cv (mean) 6.44 6.55 6.60 6.65 6.69 6.70 6.71 6.71 6.79 6.83 6.85 6.92 6.93 6.93 7.00 

s.d. 3.30 3.35 2.69 3.55 4.14 3.78 4.80 2.90 3.82 3.69 3.83 3.68 4.35 4.43 4.12 

R
2
 (C18) 0.86 0.94 0.86 0.93 0.90 0.91 0.92 0.86 0.97 0.92 0.87 0.79 0.94 0.97 0.90 

R
2
 (C20) 0.67 0.87 0.93 0.86 0.92 0.96 0.94 0.71 0.82 0.96 0.91 0.89 0.96 0.98 0.85 

R
2
 (Hg) 0.69 0.61 0.50 0.84 0.43 0.83 0.45 0.64 0.84 0.67 0.65 0.70 0.49 0.93 0.55 

 


