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Summary: The structural information in high-dimensional transposable data allows us to write the data recorded for

each subject in a matrix such that both the rows and the columns correspond to variables of interest. One important

problem is to test the null hypothesis that the mean matrix has a particular structure without ignoring the potential

dependence structure among and/or between the row and column variables. To address this, we develop a simple and

computationally efficient nonparametric testing procedure to assess the hypothesis that, in each predefined subset of

columns (rows), the column (row) mean vector remains constant. In simulation studies, the proposed testing procedure

seems to have good performance and unlike traditional approaches, it is powerful without leading to inflated nominal

sizes. Finally, we illustrate the use of the proposed methodology via two empirical examples from gene expression

microarrays.
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1. Introduction

In some applications, the measurements related to each subject are naturally organized in a

matrix, especially when the rows and columns correspond to two different sets of variables

and dependencies are expected to occur between and/or among them. Allen and Tibshirani

(2010) introduced the term ‘transposable data’ to acknowledge the structural information

and the presence of two-way dependencies in matrix-valued random variables. Examples

of transposable data can be found in spatiotemporal studies (Genton, 2007; Mardia and

Goodall, 1993), in cross-classified multivariate data (Galecki, 1994; Naik and Rao, 2001), in

genetics (Allen and Tibshirani, 2010, 2012; Efron, 2009; Teng and Huang, 2009), in functional

MRI (Allen and Tibshirani, 2010) and in time-series (Carvalho and West, 2007; Lee, Daniels,

and Joo, 2013).

Our work is motivated by biological studies that use microarrays to study gene expression

patterns in multiple tissue samples taken from the same subject (Sottoriva et al., 2013; Zahn

et al., 2007). For each subject, the row variables correspond to genes, the column variables

to tissue samples and the measurements are mRNA gene expression levels. A biologically

important objective is to check whether different subsets of the samples share a common

mean vector of gene expression levels. Application of standard statistical methods, such as

the analysis of variance (ANOVA), is hindered by two factors: (i) the ‘large p, small N ’

setting (the number of genes will typically exceed the number of subjects); and (ii) the high-

dimensional dependence structure (since the genes and the tissue samples are not expected

to be independent of each other).

To introduce these concepts in mathematical terms, suppose that an experimentalist

collects N independent and identically distributed (i.i.d.) transposable r×c random matrices

X1, . . . ,XN . For each subject, there are r row variables and c column variables and the high-

dimensional setting is indicated by letting the sample size (N) be much smaller than the
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number of observations (rc) for a single subject. The goal is to test pre-specified hypotheses

about M = E[Xi], the r × c mean matrix of the transposable data.

To illustrate some difficulties of this task, consider the simple hypothesis

H0 : M = µ1Tc vs H1 : M 6= µ1Tc , (1)

where µ is an unknown r-variate parameter vector and 1s denotes an s-variate vector of

ones. The null hypothesis suggests that the mean-relationship between the row and column

variables is completely determined by the row variables. In the motivating examples, H0

in (1) is consistent with no genes showing differential expression across the multiple tissue

samples. To the best of our knowledge, no statistical procedure exists to test hypothesis (1)

directly in high-dimensional transposable data unless there are only two dependent column

variables (c = 2). In this case, one approach is to employ the test proposed by Chen and

Qin (2010) for comparing the mean vector of paired high-dimensional random vectors. To

accomplish this, one needs to form the random vector of the difference of the two columns

for each subject and then test the hypothesis of a zero mean vector. Unfortunately, there is

no straightforward way to apply or extend this test when c > 2. In particular, attempts to

do this essentially infer rather than test the mean relationship between the row and column

variables. For example, suppose that M = [µ,−µ,µ,−µ] and consider the following naive

algorithm to test hypothesis (1). First, create two groups of column variables, one based on

the first two columns and the other based on the last two. Second, for each group create N

r-variate random vectors by averaging the appropriate columns in each matrix, and then for

each subject create the r-variate vectors of the difference of the two groups. Thirdly, test

hypothesis (1) using the test statistic of Chen and Qin (2010) as above. It can be shown that

this vector-based test statistic will be powerless since the transformed random vectors will

indeed have a zero mean vector.

By contrast, we propose a simple approach to test hypothesis (1) that overcomes theoretical
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problems. In this direction, let Pc = Ic − Jc/c where Is is the identity matrix of size s and

Js is the s× s matrix of ones, and let tr(A) denote the trace operator of the matrix A. Note

that Pc is a symmetric and idempotent (P2
c = Pc) matrix such that tr(MTMPc) = 0 if and

only if H0 in (1) holds. Since the Frobenious norm, tr(MTMPc), measures deviations from

H0, it seems meaningful to develop a test statistic based on the unbiased estimator of this

norm,

1

N(N − 1)

∑
i 6=j

tr(XT
i XjPc).

Under rather weak conditions about the dependence structure of the row and column vari-

ables, outlined in Section 2.2, this estimator asymptotically follows a normal distribution,

and hence, the critical region of the test statistic can be defined under H0.

The main contribution of this paper is that we extend this idea to test more complicated

hypotheses than hypothesis (1) for the mean matrix. In particular, we consider the hypothesis

H0 : M = [µ11
T
c1
,µ21

T
c2
, . . . ,µg1

T
cg ] vs H1 : M 6= [µ11

T
c1
,µ21

T
c2
, . . . ,µg1

T
cg ], (2)

where c1, . . . , cg are positive integers such that
∑g

q=1 cq = c with at least one cq > 2 and

µ1, . . . ,µg are g unknown r-variate parameter vectors. H0 in (2) states that in each one of

the given g column groups there is no column effect upon the mean of the row variables.

Since g is known but arbitrary, the proposed testing procedure is not limited by the number

of column groups or the group size under consideration. For example, hypothesis (1) is a

special case of hypothesis (2) with g = 1 and c1 = c while the hypothesis that two column

variables, say the first two, have a common mean vector is obtained by setting g = c − 1,

c1 = 2 and c2, . . . , cg = 1. Similarly to testing hypothesis (1), the proposed test statistic will

be based on an asymptotic argument via a pivotal quantity that is the unbiased estimator

of the distance of the mean matrix from H0 in (2).

This article is structured as follows. In Section 2, we introduce the high-dimensional

working framework and we construct the test statistic for testing hypothesis (2). Also, we
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discuss the asymptotic power of the proposed test, we argue that the required assumptions

that make the high-dimensional setting manageable are weak, and we provide guidelines to

ease the computational task whenever straightforward calculation of the test statistic is time-

consuming. In Section 3, we examine the performance of the proposed testing methodology in

finite samples using simulations. In Section 4, we apply the proposed testing methodology to

two microarrays studies where gene expression levels are measured in different tissue samples

(Sottoriva et al., 2013; Zahn et al., 2007). In Section 5, we summarize the main findings of

our research and discuss how this method can be extended to test additional hypotheses for

the mean matrix. The Appendix contains technical details.

2. Test Statistics for the Mean Matrix

As the generative process for transposable data, consider a matrix-valued extension of the

nonparametric model for vectors considered in Bai and Saranadasa (1996) and Chen and

Qin (2010)

Xi = Wi + M (3)

for i = 1, . . . , N , where

(1) M = E[Xi] is the r × c mean matrix,

(2) Wi is an r× c matrix of random variables such that vec(Wi) = Σ1/2vec(Zi), and where

vec(A) denotes vectorization of the matrix A,

(3) Σ = Σ1/2Σ1/2 = cov[vec(Xi)] is an (rc)× (rc) positive-definite covariance matrix,

(4) Z1, . . . ,ZN are i.i.d. r × c random matrices and Ziab is the (a, b)-th element of Zi,

(5) E[Ziab] = 0, E[Z2
iab] = 1, E[Z4

iab] = 3 + B for a finite constant B > −2, E[Z8
iab] <∞ and

for any positive integers l1, . . . , lq with
∑q

ν=1 lν 6 8

E[Z l1
ia1b1

Z l2
ia2b2

. . . Z
lq
iaqbq

] = E[Z l1
ia1b1

]E[Z l2
ia2b2

] . . .E[Z
lq
iaqbq

]

for (a1, b1) 6= (a2, b2) 6= · · · 6= (aq, bq).
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The matrix-variate normal distribution (Dawid, 1981; Gupta and Nagar, 2000), a common

and sensible choice for modeling transposable data, is a special case of model (3). To see

this, let Ziab be i.i.d. random variables from a standard normal distribution N(0, 1) and let

Σ = Σ2 ⊗Σ1, where Σ1 is the covariance matrix of the row variables, Σ2 is the covariance

matrix of the column variables and ⊗ denotes the Kronecker product operator applied to

matrices. However, we underline that model (3) is more general. It can handle departures

from the matrix-variate normal model by relaxing the normality and/or the covariance

structure assumption. First, the distribution of the “white-noise” random variables in Zi

remains unspecified. In fact, the white noise random variables do not need to be independent

or identically distributed. The latter holds because the results of this paper are not affected

even if the assumption of common fourth moments for the elements of Zi is dropped. Finally,

the dependence structure between and among the row and column variables is not limited

to a Kronecker product form.

To construct the test statistic for testing hypothesis (2), we need additional notation. Let

P{c1,c2,...,cg} = diag(Pc1 ,Pc2 , . . . ,Pcg) be the c × c block diagonal matrix where the positive

integers are defined by H0 in (2). For notational ease, suppress the index set in P{c1,c2,...,cg}

and write instead P. Further, note that P is a projection matrix as it is both idempotent

and symmetric. The key to our proposal is to observe that tr(MTMP) = 0 if and only if

H0 in (2) holds. To see this, note that tr(MTMP) = tr(PMTMP) is the sum of squares of

the elements of MP, whose (a, b)-th element equals the difference between µab, the (a, b)-

th element of M, and µ̄
(k)
a , the average of the a-th row in the mean matrix when this is

restricted to the column group, say k, to which column b belongs under H0 in (2). Therefore,

it is sensible to consider the unbiased estimator of tr(MTMP)

GN =
1

N(N − 1)

∑
i 6=j

tr(XT
i XjP),
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whose variance is

Var[GN ] =
2

N(N − 1)
tr
(
[Σ(P⊗ Ir)]

2
)

+
4

N
vec(MP)TΣvec(MP).

Next, we define the asymptotic framework needed to derive the limiting distribution of GN .

We handle the high-dimensional setting without specifying the limiting rate of the pairwise

ratios of the triplet (N, r, c). This is a pragmatic restriction in many applications, including

our motivating examples, where the number of row (genes) and/or column (multiple samples)

variables are not expected to increase proportionally to the sample size. Instead, we assume

that as N →∞ and rc = r(N)c(N)→∞, the following conditions hold:

tr
(
[Σ(P⊗ Ir)]

4
)

= o
{

tr2
(
[Σ(P⊗ Ir)]

2
)}

(4)

and

vec(MP)TΣvec(MP) = o

{
1

N
tr
(
[Σ(P⊗ Ir)]

2
)}

(5)

or

1

N
tr
(
[Σ(P⊗ Ir)]

2
)

= o
{

vec(MP)TΣvec(MP)
}
. (6)

The assumption rc → ∞ is quite flexible and it does not require r → ∞ and c → ∞

simultaneously. On the contrary, the number of row or column variables is allowed to be

fixed provided that the other dimension of the transposable data tends to ∞. Condition (4)

specifies the class of covariance matrices for Σ under consideration. In Section 2.2, we argue

that this class is quite large and thus, the proposed testing procedure is not seriously

restricted. At least one of the conditions (5) and (6) is needed to control the asymptotic

variance of GN and to derive the asymptotic distribution of GN , given in Theorem 1.

Theorem 1: Under the nonparametric model (3), condition (4) and either condition (5)

or condition (6)

GN − tr(MTMP)√
Var[GN ]

 N(0, 1)

where  denotes convergence in distribution as N → ∞ and rc = r(N)c(N) → ∞.
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Consequently, under H0 in (2),

GN√
2tr ([Σ(P⊗ Ir)]2) /[N(N − 1)]

 N(0, 1).

The final step to construct the test statistic is to estimate tr ([Σ(P⊗ Ir)]
2) consistently. To do

this without estimating the high-dimensional covariance matrix Σ, note that tr ([Σ(P⊗ Ir)]
2) =

tr(Ω2) where Ω = (P ⊗ Ir)Σ(P ⊗ Ir) is the positive semi-definite covariance matrix of

Yi = vec(XiP), and let

TN =
1

DN
2

∑
i 6=j

(YT
i Yj)

2 − 2
1

DN
3

∑∗

i 6=j 6=k
YT
i YjY

T
i Yk +

1

DN
4

∑∗

i 6=j 6=k 6=l
YT
i YjY

T
k Yl

where Ds
t = (s − t)!/s! and

∑∗ denotes summation over mutually exclusive indices. Since

tr(Ω4) = o
{

tr2(Ω2)
}

, E[TN ] = tr(Ω2) and Var[TN ] = o{tr2(Ω2)}, it follows that TN is a

ratio-consistent estimator of tr(Ω2). Therefore, the proposed test rejects H0 in (2) with an

α significance level if and only if

G∗N =
GN√

2TN/[N(N − 1)]
> za,

where za is the upper α-quantile of N(0, 1).

To study some properties of G∗N , consider the transformation Xi 7−→ aAXi + C where

a 6= 0 ∈ <, A is an r× r orthogonal matrix and C is an r× c matrix of constants such that

CP = 0r×c, and where 0s×t denotes the zero matrix of size s× t. As desired, the test statistic

is invariant to (i) orthogonal rotations of the row variables (ii) to scalar multiplication and

(iii) to a location shift of the mean matrix under H0 in (2). In addition, (iii) also implies that

the nominal size of the test statistic is not affected by the magnitude of the true mean matrix

M given that this satisfies H0 in (2). Although the test statistic was derived for testing the

mean structure of row variables across groups of column variables, we emphasize that the

same procedure can be used to test the mean structure of column variables across groups

of row variables. For doing this, one needs to apply the transformation Xi 7−→ XT
i prior to

calculating the test statistic.
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2.1 Asymptotic power

Investigation of the asymptotic power of the proposed test relies on Theorem 1. Under

condition (5), the leading order power is

βN = Φ

(
−za +N

tr(MTMP)√
2tr(Ω2)

)
,

where Φ is the cumulative distribution function of N(0, 1). The power of the proposed test

is bounded since

Φ

(
−za +N

tr(MTMP)√
2tr(Σ2)

)
6 βN 6 Φ

(
−za +N

tr(MTM)√
2tr(Ω2)

)
,

and thus a sufficient condition for the proposed test to have non-trivial power is

lim
N,(rc)→∞

N
tr(MTMP)√

2tr(Σ2)
> 0.

To gain insight into the asymptotic power, assume independent row and column variables

and no row-effect in the mean structure, that is µab = µb where µab is the (a, b)-th element

of M. Then

N
tr(MTMP)√

2tr(Ω2)
= N

√
r

2(c− g)

g∑
k=1

ck∑
b=ck−1+1

(µb − µ̄(k))2,

where c0 = 0 and µ̄(k) is the average of the mean of the row variable a in group k. Contrary

to univariate tests that require multiple testing correction, the asymptotic power of the

proposed test is an increasing function of the number of row variables r regardless of the

differences µb − µ̄(k). Thus, in high-dimensional settings it should be more beneficial to

utilize the global test proposed herein than to apply univariate tests, a speculation that was

empirically verified in simulations.

Under condition (6), similar conclusions can be drawn about the power of the test statistic

since the leading order power term becomes

βN = Φ

(
N

tr(MTMP)√
2tr(Ω2)

)
.
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2.2 Class of covariance matrices under consideration

Condition (4) defines the class of covariance matrices to which the proposed test is applicable.

To provide a few examples of this class, note that if tr(Σ4) = o
{

tr2(Σ2)
}

then condition (4)

holds. This includes the cases where Σ has bounded eigenvalues or it has a few eigenvalues

that diverge slowly to infinity (Chen and Qin, 2010) or when Σ implies a (banded) first

order autoregressive correlation pattern such that the rc variances are bounded away from 0

or ∞ (Chen et al., 2010). In addition, condition (4) is also satisfied when Σ is a compound

symmetry correlation matrix, i.e. Σ = ρIrc + (1− ρ)Jrc for −1/(rc− 1) < ρ 6 1. As before,

this result extends to the case where Σ satisfies a compound symmetry correlation pattern

and the variances are bounded away from 0 and ∞.

Because of the popularity of the matrix-variate normal distribution in modelling trans-

posable data, we study the implications of condition (4) when Σ = Σ2 ⊗ Σ1. In this case,

condition (4) becomes

tr
[
(PΣ2)

4
]

tr(Σ4
1) = o

{
tr2
[
(PΣ2)

2
]

tr2(Σ2
1)
}
,

which is met if, for example, Σ1 and Σ2 satisfy any of the covariance structures mentioned

above. Therefore, a Kronecker product dependence pattern for Σ does not seem to impose

restrictions on applying the proposed testing procedure.

When the number of row or column variables is fixed, the class of covariance matrices

for Σ might be slightly restricted depending on which set of variables (row or column) is

fixed. To see this, suppose that Σ = Σ2 ⊗ Σ1. If the number of column variables is fixed,

then condition (4) becomes tr(Σ4
1) = o

{
tr2(Σ2

1)
}

, and it follows that Σ1 cannot satisfy a

compound symmetry correlation structure. However, if the number of row variables is fixed,

then condition (4) becomes tr [(PΣ2)
4] = o {tr2 [(PΣ2)

2]}, and therefore the compound

symmetry correlation structure is an acceptable dependence structure for Σ2.
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2.3 Computational details

The proposed testing procedure does not require explicit estimation of the high dimensional

matrix parameters M or Σ but only of tr(Ω2). This is computed efficiently through TN by

applying the transformation Xi 7−→ XiP. Although the provided form of TN is computa-

tionally intensive for large N , the task of calculating TN can be greatly simplified as shown

in Himeno and Yamada (2012).

One way to calculate GN is to apply first the transformation Xi 7−→ XiP and then use

the corresponding expression given in the Appendix. However, if c >> r, then it seems more

sensible to ignore the transformation step and calculate GN by applying the circular property

of the trace operator, i.e. writing tr(XT
i XjP) as tr(XjPXT

i ).

To this end, note that column groups of size one do not contribute to the test statistic,

meaning that the value of G∗N does not change if column groups of size one (ck = 1) are

ignored. This is not surprising since no mean comparisons are performed therein. Hence,

these column variables should be removed prior to calculating the test statistic.

3. Simulation Studies

We investigated the nominal size and the power of the proposed testing procedure using

simulations. The simulated random matrices X1, . . . ,XN satisfied model (3). To study the

nonparametric nature of the proposed methodology, three distributional scenarios were con-

sidered for the elements of Zi:

Scenario 1: A normality scenario, in which Ziab
i.i.d∼ N(0, 1).

Scenario 2: A centralized gamma distributed scenario, in which Ziab = (Z∗iab − 8)/4 and

Z∗iab
i.i.d∼ Gamma(4, 0.5).

Scenario 3: A mixture of Scenarios 1 and 2, in which the random variables in the upper
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half of Zi are distributed as in Scenario 1, while the remaining random variables are

distributed as in Scenario 2.

Conditional on N , M, Σ and the distributional scenario, we draw 1000 replicates while keep-

ing the significance level fixed at 5%. For each competing testing procedure, we calculated the

empirical size as the proportion of rejections when M = 0r×c and the empirical power as the

proportion of rejections when M 6= 0r×c as defined in Sections 3.1 and 3.3. To distinguish

the test statistics of the proposed methodology used in the simulations, we denoted by

H{c1,c2,...,cg} the test statistic G∗N of the proposed methodology based on P{c1,c2,...,cg}. Further,

we let [t] denote the integer part of t ∈ <.

3.1 Comparison with univariate tests that require multiple testing correction

For testing the hypothesis of no column effect in the mean matrix, i.e. testing hypothesis (1),

we compared the proposed testing procedure, evaluated using H{c}, to univariate tests that

require multiple testing correction.

First, we considered the ANOVA test of no group effect and the Kruskal-Wallis test.

These tests were applied sequentially to each of the r row variables and the resulting p-

values were adjusted using the false discovery rate (FDR) correction and the Bonferroni

(BON) correction. To ensure a fair comparison, no dependence structure (Σ = Irc) was

assumed between and among the row and column variables. To evaluate the empirical power

of the three competing testing procedures, we used M = [0r×7, tJr×3] where Jk×l denotes

the k × l matrix of ones. The constant t was selected such that tr(MTM)/
√
r(c− 1) = 0.1,

i.e. by fixing the quantity that determines the upper bound of the asymptotic power of

any test statistic of the proposed methodology equal to 0.1. Table 1 displays the results

under Scenario 3 - similar patterns were observed under the other two scenarios. Unlike the

Kruskal-Wallis test which seemed to be conservative unless N = 100, the empirical sizes for

H{c} and the ANOVA test appeared to be a good approximation of the nominal size even for
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N = 10. Despite the conservativeness of the proposed test for N = 10, it was always more

powerful than the ANOVA and the Kruskal-Wallis test. In fact, the power of the proposed

test increased as r increased while that of the competing testing procedures decreased. This

trend validates our speculations about the power of the proposed test over univariate tests

in high-dimensional settings.

[Table 1 about here.]

Next, note that if the column variables are independent, then the columns of the N random

matrices can be classified in c groups, one group for each column variable, such that each

group contains N independent r-variate random vectors. In this case, an alternative approach

to test hypothesis (1) is to apply the two-sample mean test proposed by Chen and Qin

(2010) to all possible pairs of groups, and then adjust the resulting p-values for multiple

testing. To satisfy the required assumptions of the Chen-Qin test, Σ was set equal to a block

diagonal matrix with c blocks. Each block of Σ satisfied a first-order autoregressive form

({ρ|a−b|}16a,b6r) where ρ = 0.5 in the first c/2 blocks and ρ = 0.4 elsewhere. Table 2 shows

the empirical sizes of the two competing testing procedures across the three distributional

scenarios. The Chen-Qin test appeared to have a highly inflated empirical size even when

r = 500 while the proposed test seemed to preserve the nominal size. For this reason, we did

not proceed to power investigations.

[Table 2 about here.]

3.2 Nominal size

Using H{c}, H{[0.7c],[0.3c]} and H{[0.5c],[0.2c],[0.3c]}, we examined in greater detail the size of the

proposed methodology. For the dependence structure, we assumed that Σ = Σ2⊗Σ1 where

Σ1 = {0.85|a−b|}16a,b6r and Σ2 = 0.5(Ic + Jc). We also employed an exchangeable form for

Σ but the simulation results were similar and so we do not present them here. To reflect
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practical situations where the dimension of the mean vector is at least equal to the sample size

(N) and the number of row variables (r) is greater or equal to the number of column variables

(c), we set N = 10, 30, 50, 100, r = 100, 500 and c = 10, 100. Also, we covered the case where

the number of row variables is much smaller than the number of column variables by using

r = 10 and c = 100, 500. Table 3 contains the empirical sizes under Scenario 3. Again,

similar results were observed for the other two distributional scenarios, a fact that validates

empirically the non-parametric nature of the methodology. The discrepancy between the

empirical and nominal size was small for all three test statistics. As desired, this confirms

the robustness of the testing procedure to the number of groups and to the group sizes.

[Table 3 about here.]

3.3 Power considerations

Using H{c}, H{[0.6c],[0.4c]} and H{[0.4c],[0.2c],[0.4c]}, we evaluated the empirical power of the pro-

posed methodology under two different configurations of the mean matrix. First, we defined

M = [0Tr×[0.7c],µ1T[0.3c]] and similarly to Chen and Qin (2010), we let µ contain a varying

proportion (0%, 25%, 50%, 75%, 95% and 99%) of non-zero elements. At each proportion

level, we employed two types of allocations for the non-zero elements: (i) equal allocation

and (ii) linearly increasing allocation where two nonzero-elements of µ satisfy µl1 < µl2 if

and only if l1 < l2. We set r = 100, c = 10 and we used a Kronecker product form for Σ

with Σ1 = {0.8|a−b|}16a,b6r and Σ2 = 0.5(Ic + Jc). To make the results comparable across

the different proportion levels, the non-zero elements of µ were defined in such a way that

tr(MTM)√
tr(Σ2

1)tr(Σ
2
2)

= 0.1.

Table 4 displays the simulation results for H{6,4}. Similar trends occurred for H{4,2,4} but not

for H{10}, which was extremely powerful in these settings. This indicates that as we move

away from H0, the power of the proposed methodology increases. Conditional on the sample

size, the empirical power was similar across the three distributional scenario and it did not
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depend on the type of allocation or the proportion level. The proposed testing procedure

was powerful to the sparsity scenarios considered and their empirical power approached 1.00

as N increased.

[Table 4 about here.]

The second configuration of M we employed involved a multiplicative mean vectors scenario

in which M = [µ1T[0.9c], tµ1T[0.1c]] with t 6= 0 ∈ <. In this simulation scheme, the following

settings were used: µ = 1r, t = 1.15, Σ1 = {0.85|a−b|}16a,b6r and Σ2 = 0.5(Ic + Jc) for

r = 100, 500 and c = 10, 100. Table 5 displays the simulation results based on H{c} across

the three distributional scenarios. The tests based on H{[0.6c],[0.4c]} and H{[0.4c],[0.2c],[0.4c]} were

more powerful and hence we do not show these results. In addition to the desired trends

mentioned above, the test appeared to be consistent as the number of row and/or column

variables increased.

[Table 5 about here.]

4. Two Examples

We applied our proposed testing methodology to two datasets.

4.1 The glioblastoma dataset

The glioblastoma (GB) dataset describes an experimental study designed to investigate the

heterogeneity of GB (Sottoriva et al., 2013). For each of the patients (N = 8) included in

the study, mRNA samples were extracted from the tumor mass, the tumor margin and the

subventricular zone. From the tumor mass, 5 RNA samples were collected from different

fragments such that earlier fragments were closer to the tumor margin and later fragments

closer to the subventricular zone. Gene expression levels were then measured from the mRNA

samples using microarrays. The data for each subject were organized in a matrix where the
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row variables (r = 16810) correspond to genes and the column variables (c = 7) to the

margin, the subventricular zone and the five tumor fragments ordered in the spatial order

described above.

A biological objective in this study was to assess whether for each gene the mean expression

level was constant across the tumor fragments, i.e., testing the hypothesis H0 : M =

[µ1,µ2,µ31
T
5 ], where µ1,µ2 and µ3 are unknown r-variate vectors. The test statistic equals

−0.282 (p-value= 0.611), meaning that we fail to reject the null hypothesis. Since we rejected

any hypothesis that implies a simpler mean structure than the one tested (results not shown),

it seems sensible to assume that the mean vectors of the margin, subventricular zone and

tumor fragments are not equal.

We investigated further the mean gene expression levels using Gene Ontology (GO) terms.

The GO terms classify genes into groups such that the genes within a group are involved

in the same biological process and therefore, similar behavior in the gene expression levels

might be expected. From the 1316 gene groups in the GB dataset, we selected 166 groups

that had more than 10 genes in order to be closer to the high-dimensional assumptions. To

determine the mean structure in each of these groups, we employed the following stepwise

strategy. First we tested the assumption of no differentially expressed genes in each group,

that is the hypothesis of a constant mean vector across the margin, the subventricular zone

and the tumor fragments. For the groups that we rejected the null hypothesis, we tested

the hypothesis of a common mean vector between the subventricular zone and the tumor

fragments. The gene groups where the null hypothesis was rejected were then tested for

the hypothesis of a common mean vector between the margin and the subventricular zone.

Finally, the groups that rejected all the null hypotheses were tested for the hypothesis of a

common mean vector between the margin and the tumor fragments. Note that at each step

of this procedure, we applied an FDR correction. In this way, we identified 5 gene groups
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in which each gene had a constant mean expression level across the different tissue samples,

102 groups in which each gene had the same mean expression level in the subventricular zone

and in the tumor fragments, 25 groups in which each gene had the same mean expression

level in the margin and the subventricular zone, and 34 groups that satisfied the global mean

relationship described in the previous paragraph.

4.2 The mouse aging dataset

The atlas of gene expression in the mouse aging data (Zahn et al., 2007) contains mouse

mRNA gene expression levels measured in different tissues. For each mouse (N = 40),

mRNA expression levels were extracted for r = 8932 genes from up to 16 tissues. Here,

we considered c = 9 tissues (adrenal glands, cerebrum, hippocampus, kidney, lung, muscle,

spinal cord, spleen and thymus) for which mRNA gene expression levels were available for

all the mice.

Our goal was to determine if there exist groups of tissues that have similar gene expression

levels. To explore this, first we tested the hypothesis of no tissue effect which was rejected

since G∗N = 481.28 (p-value< 0.001). This is not surprising since we do not expect con-

servation of the gene expression across the tissues. However, a small subset of genes called

‘housekeeping’ genes are presumably expressed at a relatively constant level across many

or all known experimental conditions. Hence, an interesting question is whether they have

constant gene expression levels across tissues. To do this, we created a list of 22 housekeeping

genes by considering 8 genes that are commonly classified as housekeeping genes in the

literature (de Jonge et al., 2007) and 14 genes that were suggested as housekeeping genes

in de Jonge et al. (2007). We rejected the hypothesis of no tissue effect upon the mean

expression level of the housekeeping genes (G∗N = 382.93 and p-value< 0.001). Hence, the

expression levels of the housekeeping genes in mice should not be considered to be constant

across different tissues in mice.
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5. Discussion

We proposed a novel non-parametric procedure to test the mean matrix in high-dimensional

transposable data. In particular, our methodology can determine whether in each of the given

groups of column variables the mean of every row variable remains constant. Of course, the

role of the row and column variables is interchangeable in transposable data and hence the

proposed tests can be applied to check the effect of the row variables upon the mean vector of

the column variables. The simulation studies verified the robustness of the proposed testing

procedure to the number of row or column groups, to the size of each group, to the number

of column and row variables relative to the sample size, and to the underlying dependence

structure between and among the row and column variables. Compared to univariate testing

procedures that preserve the nominal size, the proposed test was substantially more powerful.

In a sense, we developed a theoretically sound non-parametric testing procedure that extends

the application of ANOVA based tests to high-dimensional matrix-valued random variables

by making mild assumptions about the dependence structure. A practical advantage of the

proposed test is the computationally simplicity because the cumbersome task of estimating

high-dimensional matrix parameters is avoided.

We emphasize that a critical point in our proposal is the choice of the projection matrix P.

Although Theorem 1 holds for any projection matrix, say P∗, to avoid trivial power under

certain alternatives it is essential to require that MP∗ = 0r×c if and only if the corresponding

null hypothesis is true. To illustrate this, note that an alternative way to test hypothesis (1)

is to consider the projection matrix P∗ = Jc/c (instead of Pc = Ic − Jc/c). It can be shown

that the asymptotic power of the resulting test statistic is trivial if, for example, c is even

and the mean vector is µ for the odd columns of M and −µ for the even columns. Thus

attention is required when projection matrices other than the suggested ones are used.

It is important to note that it might be possible to modify the proposed methodology in
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such a way that the same type of test statistic can be used to test hypotheses other than

hypothesis (2). For example, consider testing the hypothesis of a known r × c matrix of

constants M0, i.e. H0 : M = M0. To do this, we can center the data by subtracting M0 and

then employ the test statistic G∗N calculated using P = Jc/c. Another example is testing the

hypothesis H0 : µ1 − µ2 = µ0, where µ1 and µ2 are the unknown r-variate mean vectors

of the first and second column variable respectively, and µ0 is an r-variate vector of known

constants. To test this hypothesis, one needs to subtract µ0 from the first column of each

data matrix and then test hypothesis (2) with g = 2, c1 = 2 and c2 = . . . = cg = 1 using

the transformed data. In a similar way, the proposed method can be extended to test known

differences in the mean vectors of two or more column groups. In future work, we aim to

develop test statistics for hypotheses that cannot be directly handled by the proposed testing

methodology, e.g. the hypothesis of a mean-restricted matrix (Allen and Tibshirani, 2010),

that is M = µ1Tc + νT1r where µ is an r-variate vector of constants and ν is a c-variate

vector of constants.

From a practical point of view, we expect that the experimental design will dictate the null

hypothesis of interest about the mean-relationship between the row and column variables,

as was the case with the glioblastoma dataset. In applications like the mouse aging dataset,

where it is not clear which column groups should be formed under the null hypothesis, we

suggest the following simple strategy. First, test whether there is no column (or row) effect

upon the mean of the row (column) variables. If we fail to reject this hypothesis, assume

that the mean of the row (column) variables is independent of the column (row) variables.

Otherwise, perform the test that two column (row) variables have the same mean vector for

all pairs of column (row) variables, and then apply a multiple testing correction. If all the

adjusted p-values are very small, then assume an unstructured mean matrix M. Otherwise,
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record the column (row) pairs for which the adjusted p-values< 0.05, form g column (row)

groups and test hypothesis (2) as defined by the g groups.

We plan to include our testing methodology in an R package but currently R functions are

available upon request.
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Appendix

Sketch of the proof of Theorem 1

Without loss of generality, let P be an idempotent and symmetric matrix and define Yi =

vec(XiP) for all i, where E[Yi] = vec(MP) and cov[Yi] = Ω = (P⊗ Ir)Σ(P⊗ Ir). Rewrite

relations (4), (5) and (6) as tr(Ω4) = o
{

tr2(Ω2)
}

, vec(M)TΩvec(M) = o
{

tr(Ω2)/N
}

and

tr(Ω2)/N = o
{

vec(M)TΩvec(M)
}

respectively, and note that

GN =
1

N(N − 1)

∑
i 6=j

tr(XT
i XjP) =

1

N(N − 1)

∑
i 6=j

YT
i Yj.

With this parameterization, the asymptotic distribution of (GN −E[GN ])/
√

Var[GN ] can be

derived in a similar fashion as in the proof of Theorem 1 in Chen and Qin (2010).
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Table 1
Empirical size and power of H{10}, ANOVA and Kruskal-Wallis test at 5% significance.

ANOVA Kruskal-Wallis
H{10} FDR BON FDR BON

r N Power Size Power Size Power Size Power Size Power Size

100 10 0.138 0.063 0.051 0.047 0.051 0.046 0.013 0.014 0.013 0.014
30 0.412 0.057 0.091 0.045 0.088 0.045 0.062 0.040 0.060 0.039
50 0.756 0.053 0.136 0.045 0.125 0.044 0.115 0.043 0.112 0.043
100 0.997 0.044 0.319 0.047 0.294 0.045 0.317 0.048 0.285 0.047

500 10 0.186 0.063 0.075 0.066 0.075 0.066 0.011 0.008 0.011 0.008
30 0.703 0.039 0.096 0.060 0.094 0.059 0.051 0.033 0.047 0.033
50 0.974 0.040 0.102 0.042 0.093 0.040 0.082 0.026 0.077 0.026
100 1.000 0.051 0.261 0.054 0.244 0.053 0.253 0.048 0.233 0.047



Testing the Mean Matrix in High-Dimensional Transposable Data 23

Table 2
Empirical size of H{10} and the Chen-Qin test at 5% significance.

Scenario 1 Scenario 2 Scenario 3
r N H{10} Chen-Qin H{10} Chen-Qin H{10} Chen-Qin

100 10 0.066 0.179 0.048 0.179 0.065 0.173
20 0.058 0.144 0.050 0.150 0.059 0.144
30 0.069 0.147 0.059 0.157 0.056 0.158
50 0.046 0.142 0.057 0.126 0.063 0.169

500 10 0.059 0.114 0.045 0.104 0.057 0.097
20 0.046 0.115 0.051 0.090 0.054 0.091
30 0.046 0.084 0.054 0.081 0.040 0.078
50 0.050 0.091 0.054 0.090 0.050 0.077
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Table 3
Empirical size of the proposed methodology under the mixture distributional scenario at 5% significance.

N r H{c} H{[0.7c],[0.3c]} H{[0.5c],[0.2c],[0.3c]}

c 10 100 10 100 10 100
10 100 0.064 0.056 0.059 0.056 0.057 0.058

500 0.068 0.067 0.068 0.067 0.060 0.067
30 100 0.063 0.053 0.061 0.050 0.060 0.049

500 0.049 0.054 0.053 0.048 0.049 0.049
50 100 0.058 0.046 0.059 0.048 0.064 0.048

500 0.060 0.058 0.066 0.062 0.054 0.059
100 100 0.047 0.055 0.050 0.053 0.057 0.058

500 0.047 0.048 0.049 0.040 0.048 0.044

c 100 500 100 500 100 500
10 10 0.055 0.065 0.052 0.067 0.052 0.068
30 10 0.061 0.059 0.057 0.058 0.057 0.055
50 10 0.054 0.053 0.057 0.053 0.056 0.054
100 10 0.062 0.045 0.065 0.045 0.058 0.045
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Table 4
Empirical power of H{6,4} for the sparsity scenario with r = 100 at 5% significance.

Equal Allocation Increasing Allocation
N #{µ1l = µ2l} Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

10 99% 0.194 0.213 0.173 0.194 0.213 0.173
95% 0.175 0.207 0.164 0.172 0.213 0.163
75% 0.166 0.204 0.171 0.168 0.205 0.173
50% 0.174 0.211 0.169 0.172 0.207 0.169
25% 0.173 0.203 0.170 0.169 0.203 0.168
0% 0.167 0.201 0.165 0.164 0.199 0.166

30 99% 0.605 0.609 0.606 0.605 0.609 0.606
95% 0.626 0.582 0.605 0.623 0.589 0.605
75% 0.632 0.634 0.635 0.637 0.637 0.642
50% 0.643 0.646 0.649 0.651 0.648 0.650
25% 0.645 0.647 0.654 0.647 0.645 0.653
0% 0.658 0.644 0.663 0.662 0.643 0.666

50 99% 0.903 0.868 0.882 0.903 0.868 0.882
75% 0.896 0.897 0.899 0.904 0.898 0.896
50% 0.938 0.936 0.934 0.947 0.941 0.936
25% 0.962 0.955 0.949 0.965 0.958 0.954
5% 0.964 0.959 0.954 0.967 0.964 0.958
0% 0.965 0.966 0.961 0.969 0.967 0.963
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Table 5
Empirical power of H{c} for the multiplicity scenario at 5% significance.

c 10 100 10 100 10 100

N r Scenario 1 Scenario 2 Scenario 3

10 100 0.097 0.317 0.128 0.282 0.103 0.303
500 0.210 0.778 0.207 0.813 0.206 0.781

30 100 0.291 0.975 0.313 0.964 0.294 0.966
500 0.809 1.000 0.782 1.000 0.790 1.000

50 100 0.590 1.000 0.551 1.000 0.576 1.000
500 0.997 1.000 0.992 1.000 0.998 1.000


