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Abstract 8 

This study presents an enhanced methodology for modelling the impacts of sea level 9 

rise on coastal wetlands. The tool integrates dGPS calibrated LiDAR data, isostatic 10 

uplift and sediment accretion rates to predict the location and extent of plant 11 

communities at three non-contiguous micro-topographical coastal wetlands in Estonia 12 

by 2100 in response to global sea level rise. Results showed an increase in surface 13 

elevation (related to sediment accretion and isostatic uplift) resulting in a decrease in 14 

local sea level in the majority of sites and scenarios in the north of the country although 15 

a rise in sea level is predicted in sites with limited allochthonous sediment supply 16 

predominantly impacting higher elevation plant communities. Wetlands situated on the 17 

west coast are likely to maintain equilibrium with sea level as result of lower 18 

sedimentation and isostatic uplift than more northerly sites. This study shows that 19 

dGPS calibrated LiDAR data and sediment accretion are essential to maintain model 20 

validity in Baltic coastal wetlands due to their low relief and could considerably improve 21 

current sea level rise impact models for other regions.  22 
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Introduction 26 

Coastal wetlands are among the most productive ecosystems in the world containing 27 

specialist plant species and providing a habitat for a wide diversity of taxa (Allen & 28 

Pye, 1998). They also provide important ecosystem services such as coastal 29 

protection (Gedan et al., 2011), carbon sequestration (Hopkinson et al., 2012), and 30 

nutrient cycling (Barbier et al., 2011). However, coastal wetlands are under threat from 31 

sea level rise (SLR) (Nicholls & Cazenave, 2010; Weisse et al., 2014) particularly 32 

those located in low lying countries with maritime borders (IPCC, 2013). Current 33 

predictions of global sea level rise suggest that SLR will be in the region of 0.26m – 34 

0.82m by 2100 (IPCC, 2013).  35 

In order to make an assessment of the threats to coastal wetlands from sea level rise 36 

a variety of models have been developed (Bertrand et al., 2011; Moeslund et al., 2011; 37 

Stratonovitch et al., 2012; Bellafiore et al., 2014). Typically, ecological modelling is 38 

based on knowledge of environmental gradients, which are used as ecological 39 

predictors (Burnside & Waite, 2011). Many sea level rise impact models developed for 40 

coastal wetlands utilise elevation data as a proxy for hydrology (Moeslund et al., 2011), 41 

and the most accurate remotely sensed elevation data available are LiDAR (Gesch, 42 

2009). However, LiDAR elevation data have inherent inaccuracies due to the 43 

impenetrability of laser pulses through vegetation (Sadro et al., 2007; Ward et al., 44 

2013). To overcome these inaccuracies Ward et al. (2013) developed a model that 45 

can accurately estimate the current distribution of plant communities in micro-46 

topographical coastal wetlands using dGPS calibrated LiDAR data.  47 

The recent IPCC (2013) report suggests that climate change will not affect only sea 48 

level and temperature, but is also likely to lead to increased storminess in many areas, 49 



3 
 

particularly in northern Europe and the Baltic (Rozynski & Pruszak, 2010). Previous 50 

studies have shown that in predominantly depositional areas, increased storminess 51 

and rising sea levels can facilitate wetland development through sediment deposition 52 

(Friedrichs & Perry, 2001; French, 2006; Schuerch et al., 2012; Tsompanglou et al., 53 

2012; Ward et al., 2014). A variety of studies have suggested that sediment deposition 54 

alone could, in a wide variety of coastal wetlands, keep pace with SLR, thus preventing 55 

any large scale wetland loss (Friedrichs & Perry, 2001; French, 2006; Kirwan and 56 

Temmerman, 2009; Mudd et al., 2009;). However, many predictive SLR impact models 57 

(Poulter & Halpin, 2008; Kont et al., 2008; Moeslund et al., 2011) neglect to take into 58 

account sediment accretion as a factor even where these data are available. 59 

This study tested the hypotheses: 60 

1) Does dGPS calibration improve modelling current plant community types in Baltic 61 

coastal wetlands? 62 

2) How does the consideration of dGPS LiDAR correction, sediment accretion rates 63 

and the impacts of increased storminess influence plant community distribution by 64 

2100? 65 

3) What do these findings mean for assessing the impacts of sea level rise on coastal 66 

wetlands? 67 

Baltic coastal wetlands have been selected for this study as (i) they require greater 68 

model accuracy due to the low gradients [typically <1.2m above mean sea level], (ii) 69 

they are extensive [extending up to 2 km inland], (iii) they are of ecological importance 70 

(EC Habitats Directive, 1992) and (iv) they show micro-topographic variation between 71 

the range of wetland plant communities.  72 
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Materials and Methods 73 

Study area 74 

Post glacial isostatic rebound has caused much of the landmass of northern and 75 

western Estonia to rise from the sea (Eronen et al., 2001), producing a long shallow 76 

coastline. Average isostatic uplift rates of 2.5 mm/yr are found on the west coast with 77 

a maximum of 2.8 mm/yr in the far north west (figure 1). 78 

The Baltic Sea along the Estonian coast has almost no regular tide (0.02 m) (Suursaar 79 

et al., 2001). However, major fluctuations in sea level do occur due to seasonally 80 

changing meteorological conditions facilitating storm surges and variations in 81 

barometric pressure, causing an irregular influx of sediment to the coastal wetlands. 82 

The highest recorded sea level was during the 2005 storm Gudrun, which caused a 83 

2.75 m storm surge in Pärnu, Estonia. More typically, water levels do not vary more 84 

than between 0.3 m below and 0.4 m above m.s.l. (EMHI, 2012). The generally low 85 

relief of Baltic coastal wetlands (between -0.28 m and +1.2 m) means that they can be 86 

inundated during periods of elevated sea level. Burnside et al. (2007) identified six 87 

main plant communities with indicator species for Estonian coastal wetlands. These 88 

were: Clubrush Swamp (CS), Reed Swamp (RS), Lower Shore (LS), Upper Shore 89 

(US), Tall Grass (TG), and Scrub and developing Woodland (SW). Plant community 90 

distribution is characterised by different elevations above m.s.l. related to differing 91 

inundation frequencies and durations (Ward et al. 2010) (table 1).  92 

Three study sites were selected to model the potential effects of sea level rise on 93 

Estonian coastal wetlands in order to represent a range of controlling factors. The 94 

Tahu and Kudani wetlands (figure 1) are located in the Silma Nature Reserve in the 95 

northwest of Estonia along the south coast of the Baltic Sea. These two sites are 96 
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influenced by higher isostatic uplift rates than the third site, Matsalu. Tahu has access 97 

to an allochthonous sediment supply and sediment accretion rate data for this site are 98 

available. Kudani is cut off from an allochthonous sediment source, and 99 

autochthonous soil formation through plant decomposition is considered to be very 100 

low in these wetlands (Puurmann & Ratas, 1998). At both Tahu and Kudani, all of the 101 

six main plant community types were present. The Matsalu coastal wetland (figure 1) 102 

is located in Matsalu National Park and has both lower isostatic uplift and sediment 103 

accretion rates than Tahu but greater sediment accretion rates than Kudani. At 104 

Matsalu, the Clubrush Swamp plant community is not found at the lower elevations 105 

due to greater wave energy than at Tahu and Kudani. The Scrub and developing 106 

Woodland plant community is also absent from Matsalu due to a different management 107 

history to the other sites. 108 

Baseline plant community modelling 109 

In order to test hypothesis 1, does DGPS LiDAR calibration improve plant community 110 

modelling in Baltic coastal wetlands, and model the potential effects of sea level rise 111 

(hypothesis 2), a baseline digital elevation model was required. Ward et al. (2013) 112 

developed a methodology to produce an accurate (0.02 m) digital elevation model 113 

(DEM) for use in Baltic coastal wetlands using dGPS calibrated LiDAR data. The DEM 114 

was derived from medium point density LiDAR data with a footprint of 0.54 m and an 115 

average point density of 0.45 points/m2 collected by the Estonian Land Board in 2009 116 

using an ALS50-II laser/detector. dGPS calibration data were collected using a Trimble 117 

5700 system (accuracy 0.02 m). Calculations for dGPS calibration of the LiDAR 118 

elevation data were conducted in Matlab R2010a using the Ward et al. (2013) 119 

methodology. DEM interpolation was conducted based upon raw values for LiDAR 120 

within ArcGIS 10.1 and using a Delaunay triangulated irregular network (TIN). dGPS 121 
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calibration data were added to the last return LiDAR point values. DEMs for each site 122 

were categorised using plant community elevation preferences (table 1) (Ward et al., 123 

2010) (baseline scenario a). The dGPS calibrated plant community model was used 124 

as a baseline for modelling the location of the plant communities by 2100 using 125 

modelling parameters explained in the following section. Validation of the baseline 126 

plant community models was conducted using a stratified random ground truth survey 127 

in July, 2010. At each site 15 points were selected within each predicted plant 128 

community yielding ninety 1m2 quadrats at both Tahu and Kudani and sixty at Matsalu 129 

(due to the lower number of plant communities) and the presence and abundance of 130 

all plant species recorded. Validity of plant community models compared to ground-131 

truthed data was assessed using a Fleiss’ Kappa coefficient (Landis & Koch, 1972).  132 

Environmental modelling parameters 133 

The baseline model was modified by integrating isostatic uplift rates (Eronen et al. 134 

2001), sea level rise data (IPCC 2013) and sediment accretion estimates (Ward et al. 135 

2014) (figure 2) to predict the location and extent of the plant communities in response 136 

to local sea level by 2100 (hypothesis 2). Current IPCC (2013) estimates of global sea 137 

level rise are between 0.26 m and 0.82 m by 2100 dependant on scenario. Therefore 138 

a mid-range SLR figure of 0.54 m was selected to represent climate driven sea level 139 

rise. At the Tahu and Kudani coastal wetlands, isostatic uplift rates were included 140 

based on studies by Vallner et al. (1988) and Eronen et al. (2001) (figures 1 and 2). 141 

Both the sea level rise and isostatic uplift data were utilised in scenarios b, c, d and e. 142 

In scenario b only sea level rise and isostatic uplift were utilised (sediment accretion 143 

data not incorporated) to identify changes in plant community location using the dGPS 144 

calibrated baseline model. 145 
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A further parameter incorporated into the model was sediment accretion, [Nolte et al., 146 

(2013) terminology]. Past rates of sediment accretion for the Tahu and Matsalu coastal 147 

wetlands were based on data derived from 210Pb radionuclide dating of sediment cores 148 

and independently verified using the 137Cs dating method (Ward et al., 2014). Mean 149 

accretion rates for Tahu were 1.9 mm/yr, and for Matsalu 0.9 mm/yr. No accretion 150 

rates were used for Kudani (figure 2) as it is largely separated from the sea, and hence 151 

lacks a significant allochthonous sediment source and is unlikely to have significant 152 

autochthonous organic production. These mean accretion rates were utilised in 153 

scenarios c and e, although in scenario e the dGPS correction to the LiDAR was not 154 

used for comparison.  155 

Increased storminess has been linked to greater sediment accretion in predominantly 156 

depositional wetlands (Allen, 2000; Kolker et al., 2009; Schuerch et al., 2012). Ward 157 

et al. (2014) have shown that increased sedimentation occurs during periods of greater 158 

storminess at both the Tahu and Matsalu sites. The IPCC (2013) report states that 159 

there is likely to be an increase in the frequency of extreme weather events. In order 160 

to take this into account in the model the number of elevated accretion periods 161 

recorded in the sedimentary record (Ward et al., 2014) for each site was doubled, as 162 

has been suggested by Bender et al. (2010), and a new mean for sedimentation 163 

calculated. Scenario d incorporated the increased storminess sediment accretion data 164 

to the dGPS calibrated baseline plant community model to predict the location of the 165 

plant communities by 2100. 166 

The plant community extent outputs using each of these parameters were compared 167 

and the results discussed in terms of current models in order to assess the impacts of 168 

the individual parameters on model outputs (hypothesis 3). 169 
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Results 170 

Baseline plant community modelling  171 

The dGPS calibrated LiDAR based plant community models were able to accurately 172 

describe the location of the plant communities at Tahu (κ coefficient 0.63, 70.6% 173 

correctly identified), Matsalu (κ coefficient 0.89, 91.7% correctly identified) and Kudani 174 

(κ coefficient 0.81, 80.0% correctly identified) (table 2) providing a robust static plant 175 

community model as a baseline for scenario model development.  176 

At Tahu the model was able to accurately predict the location of the plant community 177 

types in only 25% of cases (κ = 0.10), at Matsalu only 14.2% of cases (Kappa 178 

coefficient 0.03) and at Kudani 27.8% of cases (κ = 0.13), a substantial deterioration 179 

in model validity. In the majority of cases incorrect identification of the plant 180 

communities was due to the overestimation of elevation due to interference in LiDAR 181 

penetrability through the vegetation canopy. This resulted, in the majority of cases, in 182 

the model predicting the adjacent higher elevation plant community e.g. RS in place 183 

of CS. 184 

Plant community model for 2100 185 

Tahu 2100 186 

Tahu has the highest sediment accretion and isostatic uplift rates of the studied sites 187 

and thus is likely to experience the least impact from SLR. Scenario b predictions 188 

(discounting sediment accretion but utilising the calibrated LiDAR) suggest a 9.7% 189 

loss of the total wetland area and considerable decrease in the extent of the higher 190 

elevation plant communities, namely TG -42.4% and SW -37.7% (table 4). However, 191 

scenario c (utilising the sediment accretion data and the dGPS calibration of the 192 
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LiDAR) suggests a progradation of the wetland into the Baltic Sea (figure 3c) and a 193 

consequent increase in the wetland area of 1.7% by 2100 (table 4). In scenario d 194 

assuming an increase in storminess, sediment accretion rates (2.5 mm/yr averaged 195 

over a 100 year period) are almost as high as isostatic uplift (2.8 mm/yr) (figure 2) 196 

suggesting that during storm events sediment accretion is even higher. The model 197 

predicts that there will be an increase of 12.6% of the current wetland area (table 4, 198 

figure 3d). The model output including sediment accretion estimates but not utilising 199 

the calibrated LiDAR (figure 3e, scenario e) predicts progradation of the wetland, with 200 

an increase of 28.5% of the total wetland area by 2100 (table 2). 201 

Matsalu 2100 202 

Matsalu is typified by lower uplift and sediment accretion rates than Tahu. In scenario 203 

b (dGPS calibration but discounting sediment accretion) there is a small predicted loss 204 

of the wetland area (-1.0%, table 4 and figure 4b). In this model output the greatest 205 

predicted losses occur in the US (-53.0%) and TG (-27.1%) plant communities (table 206 

4). In model output c (utilising the dGPS correction and assuming no change in 207 

sediment accretion rates), there is a predicted loss of 0.8% of the wetland area by 208 

2100 (table 4, figure 4 c). The greatest losses are expected in the higher elevation 209 

plant communities US (-29.5%) and TG (-18.9%). In model output d, averaged 210 

sediment accretion rates over a 100 year period assuming an increase in storminess 211 

are 1.6mm/yr comparable with those of isostatic uplift 2.0mm/yr, suggesting that 212 

during storm events sediment accretion exceeds the rates of isostatic uplift as at Tahu 213 

(figure 2). In this model output, the model predicts a 0.5% decrease in the total area 214 

of wetland by 2100 (table 4, figure 4d). In model output e (taking into account 215 

sedimentation but not including the dGPS calibration), there is predicted to be little 216 
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change in plant community extent and no increase in the total wetland area (table 4, 217 

figure 4e). 218 

Kudani 2100 219 

The Kudani site along with Tahu has the highest isostatic uplift rates in Estonia and in 220 

the modelling an assumption was made that there was no significant sediment 221 

accretion (figure 2). Model output b (utilising the dGPS calibration) suggests a 222 

decrease of 10.1% in the total extent of the wetland by 2100 (figure 5b, table 4). The 223 

lower elevation plant communities, although of limited extent, are expected to increase 224 

(CS 150.6%, RS 160.7% and LS 5.8%) at the expense of the higher elevation 225 

communities (US -35.9%, TG -26.0% and SW -32.0%) at Kudani by 2100. Model 226 

output e not using the dGPS calibration are substantially different, predicting an 227 

increase in the total extent of the wetland of 2.1% (figure 5e, table 4). 228 

Discussion 229 

Hypothesis 1: ‘does dGPS calibration improve modelling current plant 230 

community types in Baltic coastal wetlands?’ 231 

The relationship between elevation above mean sea level and plant community type 232 

provided a basis for developing predictive plant community models for coastal 233 

wetlands (Ward et al., 2010). However, elevation differences between some of the 234 

plant communities in these Baltic coastal wetlands were small, with a minimum of 0.04 235 

m. Hence it was necessary to obtain highly accurate elevation data that covered a 236 

variety of Baltic coastal wetland sites. Due to the small size of some of the plant 237 

community patches, as is typical in many mosaic coastal wetlands, it was also 238 

necessary to obtain high resolution data for the study areas. The most widely available 239 
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data that fulfil these conditions are LiDAR elevation. The results of this study have 240 

shown that plant communities can be accurately identified using dGPS calibrated 241 

LiDAR data. LiDAR data have been successfully used in several studies to develop 242 

plant community models over large field areas (Morris et al., 2005; Prisloe et al., 2006; 243 

Sadro et al., 2007; Chust et al., 2008; Moeslund et al., 2011). However, none of these 244 

studies modelled plant communities at such a fine scale as that developed in this study 245 

for micro-topographical coastal wetlands, hence the requirement for the dGPS 246 

calibration.  247 

This study has shown that in environments with a strong relationship between plant 248 

community type and small changes in elevation, dGPS calibrated LiDAR is a robust 249 

data choice due to its elevation accuracy and the density of the point cloud and a 250 

significant improvement on models utilising non-calibrated LiDAR. In this study plant 251 

community models run without the dGPS correction provided a substantially inferior 252 

outcome (with dGPS calibration κ = 0.63-0.89 and without κ = 0.03-0.13), addressing 253 

hypothesis 1 (does dGPS calibration improve modelling current plant community types 254 

in Baltic coastal wetlands?). 255 

In previous studies in tidal coastal wetlands, with a greater range in relief, calibration 256 

and adjustment have not been used and are perhaps not necessary to produce a 257 

robust model able to distinguish plant communities based on their elevation range 258 

(Morris et al., 2005; Prisloe et al., 2006; Poulter & Halpin, 2008; Moeslund et al., 2011). 259 

However, the improvements in the accuracy of the model developed in this study could 260 

significantly enhance the accuracy of models developed by using dGPS calibration 261 

data for any tidal coastal wetlands with a greater relief. This suggests that dGPS 262 

integration would also improve the robustness of correlative plant community models 263 

in wetlands with greater relief such as tidal salt marshes. 264 
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Hypothesis 2: ‘how does the consideration of dGPS LiDAR correction, sediment 265 

accretion rates and the impacts of increased storminess influence plant 266 

community distribution by 2100?’ 267 

The predictive plant community models developed in this study, incorporated the main 268 

factors predicted to influence the future location and extent of vegetation in coastal 269 

wetlands: isostatic uplift, eustatic sea level rise, and sediment accretion (McFadden et 270 

al., 2007). Previous studies assessing the effects of sea level rise on coastal wetlands 271 

have been limited due partly to the use of inaccurate elevation data, whereas greater 272 

accuracy is required for micro-topographical coastal wetlands, and especially the 273 

exclusion of sediment accretion data. In the model outputs not utilising dGPS 274 

calibrated LiDAR (model output e) to predict plant community distribution by 2100 275 

progradation of the wetland is seen (figures 3, 4 and 5) a significant difference to the 276 

dGPS calibrated model outputs. 277 

In many coastal wetlands sediment accretion is a primary driver of wetland 278 

development (Webb et al., 2013) and accretion rates are therefore an important factor 279 

to be taken into account when modelling the effects of sea level rise on coastal 280 

environments (McFadden et al., 2007). This study has utilised historical sediment 281 

accretion rates derived from 210Pb dating (Ward et al., 2014) and extrapolated the 282 

results for sea level rise modelling (Craft et al., 2009). The results showed that 283 

sediment accretion has a considerable effect on modelling local sea level rise impacts 284 

on wetland plant communities, highlighted by the substantial differences in the 285 

predicted distribution of the plant communities (figure 3b, c, d, e), particularly at Tahu. 286 

Many previous studies of the impacts of sea level rise in coastal wetlands have ignored 287 

sediment accretion (Suursaar et al., 2006; Kont et al., 2008, Moeslund et al., 2012). 288 

Moeslund et al. (2011) justify this exclusion from their dynamic correlative model by 289 
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suggesting that accretion rates vary greatly within sites and that the majority of 290 

sediment accretion data available are generalised from few samples. However, whilst 291 

extrapolation of accretion data from few samples can be problematic due to the spatial 292 

variability of sediment deposition the exclusion of these data is likely to provide greater 293 

dynamic model prediction errors. Results from this study have shown that sediment 294 

accretion rates taking into account increased storminess are of a similar magnitude to 295 

isostatic uplift (1.6-2.5 mm/yr compared with 2.0-2.8 mm/yr respectively). Ward et al. 296 

(2014) have estimated that during periods of elevated sediment accretion, rates can 297 

be as high as 5 mm/yr, well in excess of isostatic uplift. In the model outputs assuming 298 

an increase in storminess (output d in figures 3, 4 and 5) the impacts of sea level rise 299 

are reduced and in the case of Tahu progradation is predicted to take place. This has 300 

been predicted to be the case in sheltered coastal wetlands in many areas of the world 301 

including the Baltic (Schuerch et al., 2013; Tweel and Turner, 2014; Schindler et al., 302 

2014; Ward et al., 2014) suggesting that this is a useful addition to plant community 303 

modelling parameters. 304 

Hypothesis 3: ‘what do these findings mean for assessing the impacts of sea 305 

level rise on coastal wetlands?’ 306 

The model developed in this study accurately predicted the location and extent of plant 307 

communities in micro-topographic non-tidal Baltic coastal wetlands. The model also 308 

has potential applications in other appropriate open environments such as floodplains, 309 

tidal coastal marshes or for the restoration of wetlands. It does however, have 310 

limitations that should be taken into account when interpreting the results. As with any 311 

correlative model, there is regional specificity and hence the particular model 312 

developed in this study is unlikely to be valid in locations other than Estonia without 313 

further ground-truthing. The model is also based on the assumption that sea level and 314 
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sediment accretion will be the only environmental variables that will change due to 315 

climate effects by 2100. However, IPCC (2013) climate change scenarios suggest that 316 

temperature will also increase and several studies have suggested that this could 317 

cause a northward migration of some plant species (Dullinger et al., 2004; Aitken et 318 

al., 2008; Hilyer & Silman, 2010), which is likely to affect community composition in 319 

coastal wetlands, particularly at the extreme geographical ranges of individual species.  320 

Salt marshes are an obvious environment for the further application of the dynamic 321 

plant community model presented in this study. Several authors have related the 322 

zonation of marsh communities to elevation above mean sea level and hence tidal 323 

range (Cutini et al., 2010; Moffett et al., 2010; Suchrow & Jensen, 2010; Moffett et al., 324 

2012). However, tidal ranges vary greatly, so any plant community model would likely 325 

be valid only for areas with similar tidal regimes. As correlative plant community 326 

models have been suggested to be location specific (Franklin, 1995) in localities with 327 

different tidal regimes model parameters will need to be adjusted. Furthermore, salt 328 

marshes, whilst retaining a similar zonal character typically consisting of a low marsh, 329 

middle marsh and a high marsh (Nottage & Robertson, 2005), have a geographically 330 

varying species composition requiring the use of different plant community 331 

classifications dependent on location (Pennings et al., 2003). Ellenberg (1988), 332 

Rodwell (1992) and Isaach et al. (2006) have produced plant community 333 

classifications for continental European, UK and South American salt marshes 334 

respectively, which would be suitable for use as base model development. With 335 

regards to the geomatic stages involved in applying the plant community tool to salt 336 

marshes, the conceptual model developed in this study (figure 2) would be applicable 337 

for other coastal wetland systems.  338 

Conclusions 339 
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Remotely sensed data have been successfully used in many studies to develop plant 340 

community models over large field areas. However, previously developed models are 341 

unable to work effectively at such a fine scale as that developed in this study. The 342 

addition of the dGPS calibration to the model represents an improvement to previous 343 

LiDAR based models (Morris et al., 2005; Chust et al., 2008; Moeslund et al., 2011). 344 

Without dGPS calibration, this study reported Kappa values of only 0.03-0.13 for Baltic 345 

coastal wetlands, compared to Kappa 0.63-0.89, dependant on site, when the 346 

calibration was used. Moreover, previous studies investigating the effects of sea level 347 

rise on coastal wetlands have neglected to include sediment accretion data (Morris et 348 

al., 2005; Chust et al., 2008; Moeslund et al., 2011). The results of this study have 349 

shown that sediment accretion in some Baltic coastal wetland sites can contribute to 350 

greater vertical growth at the littoral edge of the wetland than isostatic uplift, 351 

particularly during periods of increased storminess. Thus, dGPS calibrated LiDAR and 352 

sediment accretion data are essential to maintain model validity in Baltic coastal 353 

wetlands due to their low relief. These data could also considerably improve sea level 354 

rise impact models for coastal wetlands in other geographical areas including micro, 355 

meso and macro-tidally influenced saltmarshes and wet grasslands.  356 
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Figure 1: Study sites in a regional and national context. Isostatic uplift rates are shown 546 

in millimetres (rates reproduced from Eronen et al., 2001). 547 

 548 

Figure 2: Conceptual model of local sea level rise at Tahu, Kudani and Matsalu study 549 

sites by 2100. Factors decreasing local sea level are denoted with a minus and those 550 

increasing local sea level are denoted with a plus sign. 551 
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 552 

Figure 3: Tahu plant community model output. Plant community location is mapped 553 

showing the (a) baseline 2010 locations using the dGPS correction, (b) changes by 554 

2100 using the dGPS correction but no sediment data, (c) changes by 2100 using the 555 

dGPS correction and assuming no change in sedimentation rates, (d) changes by 556 

2100 using the dGPS correction and assuming an increase in sedimentation rates due 557 

to greater storm activity, (e) changes by 2100 not using the dGPS correction and 558 

assuming no change in sedimentation rates. See table 1 for explanation of plant 559 

community codes. 560 
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 561 

Figure 4: Matsalu plant community model output. Plant community location is mapped 562 

showing the (a) baseline 2010 locations using the dGPS correction, (b) changes by 563 

2100 using the dGPS correction but no sediment data, (c) changes by 2100 using the 564 

dGPS correction and assuming no change in sedimentation rates, (d) changes by 565 

2100 using the dGPS correction and assuming an increase in sedimentation rates due 566 

to greater storm activity, (e) changes by 2100 not using the dGPS correction and 567 

assuming no change in sedimentation rates. See table 1 for explanation of plant 568 

community codes. 569 
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 570 

Figure 5: Kudani plant community model output. Plant community location is mapped 571 

showing the (a) baseline 2010 locations using the dGPS correction, (b) changes by 572 

2100 using the dGPS correction but no sediment data, (c) changes by 2100 not using 573 

the dGPS correction and assuming no change in sedimentation rates. See table 1 for 574 

explanation of plant community codes. 575 
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 576 

Table 1: Elevation ranges of the six plant community types above mean sea level used 577 

in the model (BK77 as measured at Kronstadt, in m). Elevation ranges calculated using 578 

a Leica rtk dGPS derived from 2100 records per plant community. 579 

Community Elevation range (m) 

Clubrush Swamp (CS) -0.20 to 0.07 

Reed Swamp (RS) 0.07 to 0.15 

Lower Shore (LS) 0.15 to 0.27 

Upper Shore (US) 0.27 to 0.47 

Tall Grass (TG) 0.47 to 0.69 

Scrub Woodland (SW) 0.69 to 1.2 

 580 

Table 2: Percentage of quadrats of each plant community type correctly identified at 581 

each site utilising the dGPS calibration. A Fleiss’ Kappa coefficient was used to assess 582 

plant community model accuracy at Tahu, Matsalu and Kudani (from Ward et al., 583 

2013). See table 1 for explanation of plant community codes. 584 

  Observed   Expected Community   Correctly 

Interpolation community CS RS LS US TG SW identified 

Tahu CS 86.7 10     86.7 

 RS 13.3 90     90 

 LS   80 53.3 26.7  80 

 US   20 46.7 20  46.7 

 TG     53.3 33.3 53.3 

 SW      66.7 66.7 

  κ coefficient 0.63  Mean 70.6 
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Matsalu RS N/A 100.0    N/A 70 

 LS N/A  80.0 6.7  N/A 80 

 US N/A  20.0 86.7  N/A 43.3 

 TG N/A   6.7 100.0 N/A 46.7 

  κ coefficient 0.89  Mean 91.7 

Kudani  CS 100.0      100.0 

 RS  100.0     100.0 

 LS   80.0 20.0 13.3  80.0 

 US   20.0 60.0 26.7 6.7 60.0 

 TG    20.0 60.0 13.3 60.0 

 SW      80.0 80.0 

    κ coefficient 0.81   Mean 80.0 

 585 

Table 3: Percentage of quadrats of each plant community type correctly identified at 586 

each site utilising modelling with no dGPS correction. A Fleiss’ Kappa coefficient was 587 

used to assess plant community model accuracy at Tahu, Matsalu and Kudani. See 588 

table 1 for explanation of plant community codes. 589 

  Observed   Expected Community   Correctly 

Interpolation community CS RS LS US TG SW identified 

Tahu CS        0.0 

 RS 83.3       0.0 

 LS 16.6 100.0   20.0   0.0 

 US   93.3 20.0 33.3  20.0 

 TG   6.6 60.0 30.0  30.0 

 SW     36.6 100.0 100.0 

  κ coefficient 0.10  Mean 25.0 

Matsalu RS N/A      N/A 0 

 LS N/A 80.0     N/A 0 

 US N/A 20.0 50.0 10.0  N/A 10 

 TG N/A  50.0 90.0 100.0 N/A 46.7 

  κ coefficient 0.03  Mean 14.2 

Kudani  CS        0.0 

 RS 100.0       0.0 

 LS  86.6      0.0 

 US  13.3 66.6 26.6   26.6 

 TG   26.6 10.0 40.0  40.0 

 SW   6.6 73.3 60.0 100.0 100.0 

    κ coefficient 0.13   Mean 27.8 

 590 
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Table 4: Predicted changes in the extent of each plant community and total wetland 591 

area from 2010 by 2100 at Tahu, Matsalu and Kudani. Model parameters are: a = 592 

baseline situation in 2010, b = using dGPS correction but no sediment data, c = using 593 

dGPS correction and sediment data assuming no increase in storm activity, d = using 594 

dGPS correction and sediment data assuming an increase in storm activity, e = not 595 

using dGPS correction but using sediment data assuming no increase in storm activity 596 

(except Kudani where no sediment accretion is assumed). See table 1 for explanation 597 

of plant community codes. 598 

Plant 
community 

a (ha) 
b (% 

change) 
c (% 

change) 
d (% 

change) 
e (% 

change) 

Tahu      

CS 0.6 133.3 14.7 -6.2 -1.1 

RS 4.5 137.8 0.5 -2.3 7.0 

LS 11.7 112.8 -23.5 -4.6 2.1 

US 37.8 -2.1 -7.1 2.0 5.7 

TG 35.6 -42.4 4.7 2.0 10.1 

SW 26.8 -37.7 17.4 33.2 71.1 

Total 117.0 -9.7 1.7 12.6 28.5 

Matsalu      

RS  12.5 60.8 28.8 13.6 0.0 

LS  48.9 76.9 49.9 24.7 -0.1 

US  45.5 -53.0 -29.5 -11.6 -0.3 

TG  85.1 -27.1 -18.9 -11.2 0.4 

Total  192 -1.0 -0.8 -0.5 0.0 

Kudani      

CS  1.4 150.6 - - 1.1 

RS  2.1 160.7 - - -1.8 

LS  36.0 5.8 - - -3.6 

US  9.2 -35.9 - - 10.9 

TG  10.0 -26.0 - - 14.0 

SW  20.0 -32.0 - - 13.5 

Total  78.7 -10.1 - - 2.1 

 599 


