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Abstract (Maximum 300 words) 

In developed countries, existing buildings have the biggest share in the building stock. 

Given the age of construction, the property vs. land values, and their slow replacement 

rate, low-carbon refurbishments are arguably one of the most sensible ways to mitigate 

environmental impacts (EIs) in the construction sector and meet the greenhouse gas 

(GHG) reduction targets. In this respect, Double Skin Façade (DSF) has been defined 

as one of the most effective ways to efficiently manage interactions between outdoors 

and indoors, and its benefits span from passive heating and cooling to the enhancement 

of thermal comfort of the occupied spaces. A plethora of research does exist on the 

operational behaviour of the DSF. However, life cycle energy figures and EIs are yet to 

be established fully and comprehensively. This paper reports on findings of an on-

going research project aimed at filling such a gap. More specifically, life cycle 

assessment (LCA) and building energy modelling (BEM) have been combined to build a 

methodology to help assess life cycle energy figures in a more holistic manner. Primary 

data has been collected from manufacturers from across Europe about all the life cycle 

stages and processes related to a DSF refurbishment. Results show that if on the one 

hand the life cycle energy balance actually is negative, hence supporting a wider 

adoption of DSFs in refurbishments, on the other hand there exists ecological and EIs 

that the DSF bears; what cannot be easily overlooked if a more responsive approach to 

the EIs is to be undertaken. Not only do these findings inform a more energy-efficient 

deployment of DSFs, but they also highlight the need for a more holistic and impacts-

driven design approach to ensure that the environmental burdens are not just shifted 

from one impact category to another. 
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INTRODUCTION 

In countries like the UK, the existing buildings stock is where the greatest opportunities for 

improvement lie, and reducing energy demand through retrofitting deserves to become a 

priority (Stevenson, 2013). It is expected that by 2050, 75%-90% of the existing buildings 

will still be standing and their upkeep is one of the major challenges to achieve the carbon 

reduction targets (IEA, 2014).  

Given this context, improvements to buildings’ façades can arguably be amongst the most 

effective interventions from a sustainability point of view. More specifically, glazed Double 

Skin Façades (DSFs) are among the best façade technologies to reduce energy consumption 

and greenhouse gas (GHG) emissions, while helping provide comfortable conditions to the 

occupied spaces (Shameri et al., 2011). In refurbishments, a DSF consists of a second, glazed 

skin installed in front of the existing building façade, which creates an air space that acts 

either as a thermal buffer or a ventilation channel or a combination of both. Operational 

behaviour of the DSF has been widely studied and, in temperate climates, this technology 

promises significant reductions of 30%-60% in heating and cooling loads (e.g. Gratia and De 

Herde, 2007, Cetiner and Ozkan, 2005).  To the contrary, existing knowledge is extremely 

limited about DSF embodied energy (EE), embodied carbon (EC) and life cycle 

environmental impacts (LCEIs). 

This paper aims to address such a knowledge gap through a comparative assessment of DSFs 

and up-to-standards single skin (SS) refurbishments solutions. Specifically, the LCEIs of 

DSFs for office refurbishments are assessed through a cradle-to-grave LCA with a twofold 

aim. Firstly, Cumulative Energy Demand (CED) and Global Warming Potential (GWP) are 

used as impact assessment methods to answer the following research question: can DSFs be 

considered as a low-carbon refurbishment solution for the UK? Secondly, a more 

comprehensive impact assessment method, i.e. ReCiPe, is used to reveal what additional 

impacts the DSF bears despite its energy and carbon saving potential.  

LCA IN THE ARCHITECTURE ENGINEERING AND 

CONSTRUCTION (AEC) INDUSTRY 

Sustainability assessment of buildings throughout their life cycle is currently not regulated by 

policy in Europe (Moncaster and Song, 2012). LCA scenarios are inconsistent and varying 

with regard to settings, approaches and findings, and there are major impediments in the way 

of consolidation and comparison of results. Different lifetime figures, lack of parametric 

approaches, little clarity in the functional unit (FU) considered, diverse methodologies and 

methods for conducting the studies, and the focus mainly on real buildings are the most 

important reasons (Cabeza et al., 2014). Such diversity is justified by and originates from the 

inherent complexity of the construction sector where each of the materials used has its own 

specific life cycle and all interact dynamically in both temporal and spatial dimensions. 

Additionally, the long lifespan of buildings combined with the change of use during their 

service life imply lower predictability and higher uncertainty of variables, parameters, and 

future scenarios. Such difficulties eventually lead to taking a ‘reductionist’ approach in many 
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recent LCAs, where the term ‘simplified’ often recurs (Bala et al., 2010, De Benedetti et al., 

2010, Malmqvist et al., 2011, Wadel et al., 2013, Zabalza Bribián et al., 2009).  

To address and facilitate some of these issues, the European Technical Committee CEN/TC 

350 has developed standards that look at the sustainability of construction works with the aim 

of quantifying, calculating and assessing the life cycle performances of buildings (BSI, 

2010). Those standards have recently been used to develop tools to evaluate the embodied 

carbon and energy of buildings (Moncaster and Symons, 2013). These tools echo the focus on 

GWP as the assessment method when analysing impacts of buildings and their components 

from a life cycle perspective (Ardente et al., 2011, Hammond and Jones, 2008, Pauliuk et al., 

2013). The emphasis on the use of GWP as a method to assess GHG emissions has been 

described as a crude approach but also beneficial to ease understanding and enhance 

transparency (Weidema et al., 2008). Nevertheless, GWP fails to account for important 

impacts (Asdrubali et al., 2015) such as eco- and human-toxicity, or water and land use, and 

may lead to erroneous judgments about environmental consequences (Turconi et al., 2013). 

In the specific case of buildings, they are large, complex, unique, and involve a broad range 

of materials and components which, in turn, hold various environmental impacts (EIs) that 

are not only difficult to track but also challenging to assess and interpret (Dixit et al., 2012). 

Therefore, when considering LCA as a facilitator to help determine the least damaging 

alternative, the adoption of more comprehensive impact assessment methods combined with 

life cycle energy and carbon assessments is arguably a sensible way forward. 

LCAs of DSFs 

Only two studies exist where DSFs have been examined in detail from a life cycle 

perspective (de Gracia et al., 2013, Wadel et al., 2013). This alone represents a gap in 

knowledge with reference to a technology widely used in the AEC industry with a strong 

belief that it delivers “green” buildings, and is thus able to reduce EIs. Furthermore, both 

studies refer to specific façade typologies, located in well-defined and particular contexts, 

thus increasing the difficulty in comparing and replicating results and methodologies. 

Additionally, both the DSFs considered in the studies are innovative products which do not 

represent the current practice in the AEC industry.  

Wadel et al. (2013) adopt a simplified LCA for an innovative type of DSF with vertical 

shading devices placed at specific intervals. The use phase is not incorporated in the LCA and 

impacts assessed throughout the study are limited to embodied energy and CO2 emissions, the 

FU being 1 m² of the façade with a lifespan of 50 years. With reference to those two impact 

categories the DSF, in its best configuration, is capable of a 50% reduction in energy 

consumption and CO2 emissions, compared to conventional façades (Wadel et al., 2013). 

At an even more specific level, de Gracia et al. (2013) conduct a cradle-to-grave LCA of a 

DSF with phase change materials (PCM) in its cavity. They utilise the Eco-Indicator 99 

(EI99), an impact assessment method based on endpoints. This means that results from 

different impact categories are normalised and brought together to contribute to a final, 

single, cumulative score (known as the ‘endpoint’) for the product/process under 
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examination. The FUs used are two cubicles constructed in Spain, one with the DSF, the 

other without, with a lifespan of 50 years; the former reduces the EI by 7.5% compared to the 

reference case (de Gracia et al., 2013).  

Notwithstanding the importance of regional and local foci in LCAs, neither study allows for 

the generalisations needed for better informed applications of DSFs. More generic 

perspectives could allow for a broader use of the methods and could also ease comparison of 

results within different contexts. A less context-specific EI assessment of office façades has 

been done by Kolokotroni et al. (2004). A specific DSF configuration is just one among 

many more options they assessed for both naturally-ventilated and air-conditioned offices, 

and therefore the authors had to sacrifice the depth for the breadth of their investigation. 

Embodied energy and EI99 have been used as methods and the DSF has the highest 

embodied energy but the lowest EI99 score.  

Apart from these three studies, DSFs have not been investigated from a life cycle perspective, 

nor have they been studied in a refurbishment context in comparison with SS solutions. 

Consequently, primary data related to DSFs are still largely missing in the literature. In other 

words, the LCEIs of DSFs are yet to be established comprehensively. This is mainly due to a 

lack of data for glass processes, and echoes a known issue in the LCA community: the lack of 

reliable and complete data about buildings materials and assemblies which, if they existed, 

would allow for greater environmental benefits (Crawford, 2009, Reap et al., 2008). 

RESEARCH METHODOLOGY AND METHODS 

For this research, a cradle-to-grave LCA has been conducted based on the aforementioned 

TC350 standards. Specifically, a clear distinction is considered between the thermal 

behaviour of the building, i.e. the energy analysis of the DSF models, and the embodied 

impacts in pre- and post-occupancy phases, and end of life stages. These will be addressed in 

the next two subsections, followed by details for the EIs assessment.  

Operational phase 

Yearly operational energy consumption for space heating in both single- and double-skin 

models has been simulated through IES VE, a building energy simulation (BES) software 

used by academics and practitioners alike, and successfully deployed in DSF studies (e.g. 

Kim et al., 2013).  

Table 1 - Full details of dynamic thermal simulations 

Element of the 

building fabric 

Corresponding 

U-value 

Heating & occupancy profile ASHRAE 8am-6pm M-F 

Heating set point/system 19.5 °C /radiators 

Internal gains 21.5 W/m²  

Roof 0.18 W/m² K Max sensible people gain 73.2 W/person 

Ground floor 0.22 W/m² K Occupancy density 13.93 m²/person 

External walls 0.26 W/m² K Infiltration max flowrate 0.167 ach 

External windows 1.60 W/m² K External windows open at 22 °C 

DSF glazing 4.62 W/m² K Cavity opens at 15 °C or 20 °C out. temp 
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IES includes a natural ventilation analysis module which addresses phenomena such as 

single-sided and cross-ventilation, and flow in cavities due to wind and buoyancy effects. 

Additionally, elements such as infiltration and thermal mass are also suitably dealt with (IES, 

2009). The DSF structure obstructs to some extent the flow in the cavity, and the software 

vendor recommends correction in such cases, which have then been applied (IES, 2014). Full 

details for the replicability of the study are given in Table 1. Reviewed LCA literature has 

shown that studies are often based on specific buildings, thus hindering generalisation of the 

conclusions and comparability of the results. Therefore, a generic yet representative office 

(Figure 1 left) with a very slender built form has been selected; which is the most common 

office building type in England (Shahrestani et al., 2013, Steadman et al., 2000).  

 

Figure 1 - Office building model (left) and exploded view of the FU (right) 

It is assumed an open plan layout of the internal spaces after the refurbishment. The building 

is located in London (weather file: Heathrow EWY). It consists of 9 floors of 66.6 m x 16 m, 

totalling 9590 m
2
 of treated floor area (TFA). Window to wall ratio (WWR) equals to 0.25 

which is a typical and highly correlated value to offices of this type (Gakovic, 2000). The 

building is naturally ventilated, as are the majority of existing offices in the UK (CIBSE, 

2013). The façade service life is assumed at 25 years in line with studies specifically focused 

on building façades in the UK (Jin and Overend, 2013). The DSF is equipped with a basic 

form of Building Management System (BMS) that opens the bottom and the top of the cavity 

when either outside air temperature exceeds 20 °C or cavity temperature exceeds 15 °C. 

These values are the result of an optimisation process aimed at minimising overheating of the 

indoor spaces in summer.  

Embodied impacts 

DSFs are defined by several parameters, including the geometry of the cavity and its width. 

The configuration chosen here is multi-story, consisting of a cavity with no horizontal or 

vertical partitions. Regarding cavity width, narrow and wide categories are widely 

acknowledged and both are considered. Geometry of the building, data collected from visits 

to construction glass manufacturing facilities, interviews with a leading façade engineering 

and manufacturing company, and the construction specifications, all helped determine the FU 
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– which is 5.25 m² of façade (Figure 1 right) – and the choice of additional parameters, 

leading to the options in Table 2. The combination of the parameters in Table 2 leads to a 

total of 128 assessed options. Furthermore, eight additional SS scenarios (one for each 

orientation) were also realised and assessed in order to allow operational energy comparisons. 

Table 2 - Realised and assessed options 

Parameter Options assessed Code(s) No. Details 
Cavity Narrow CN 2 400 mm wide 

Wide CW 1000 mm wide 
Glass 
composition 

Monolithic M 2 12 mm thermally toughened (TT) – Heat 
Soak Tested (HST) Laminated L 8mm TT + 8mm TT + 1.52 mm PVB  

Glass 
coating 

Clear CL 2 Clear Float Glass 
Coated CO Solar Control Glass 

Structure 
Manufacture 

Central Europe Eu 2 Lorry Euro 4 (500 km) 
China Int Transoceanic ship (20070 km) - Train (140 

km) - Lorry Euro 4 (120 km) Orientation All combinations  E, NE, N, 
NW, W 

8  
 with 45° step  W, SW, S, 

SE  
 

Current regulations mandate that operations needed for a SS refurbishment (e.g. improvement 

of wall insulation) are necessary in a DSF refurbishment as well. Therefore, common 

elements shared between the two refurbishments are excluded, and we drew the system 

boundaries around additional elements, (sub)assemblies, processes, and stages that a DSF 

would bear. In doing so, this study accounts for the surplus of materials and processes 

involved when double-skin façade refurbishment is compared to single-façade. These are 

represented in Figure 2 which shows the flowchart for the FU and its system boundaries.  

 

Figure 2 - Flowchart for the FU and its system boundaries 
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Data collection has been conducted systematically starting from the macro-assemblies as 

shown in Figure 2 through a process-based analysis that refers to a mix of processes, 

products, and location-specific data to calculate and establish the EI of a product system. In 

LCAs of buildings and their components it appears to be the most reasonable and detailed 

choice (Hammond and Jones, 2008); it is also suggested by the TC350 standards. White 

boxes in Figure 2 indicate assemblies and stages for which EcoInvent data have been used. 

End of life treatments, i.e. recycling/waste figures, have been modelled according to the 

waste/recycling scenario available for England in EcoInvent. 

Environmental impacts assessment 

Attributional LCA (ALCA) and consequential LCA (CLCA) are known to be the main two 

methodological approaches commonly used by the LCA community. Due to the specific 

focus of this research on DSFs as a product, ALCA is the approach chosen for its focus on 

physical flows to and from a life cycle and its components. It is also recommended in the 

British Standard, PAS 2050:2011, to assess GHG emissions of goods and services (BSI, 

2011) in order to define the inputs and their associated emissions/impacts related to the 

delivery of the product FU. SimaPro, the most widely used LCA software, is the tool adopted 

for this study.  

As aforementioned, two different impact assessment methods have been used to assess the 

low-carbon potential of the DSF: the CED (Frischknecht et al., 2003) and the GWP over a 

100-year horizon (IPCC, 2013). Additionally, ReCiPe hierarchic perspective midpoint v1.10 

(Goedkoop et al., 2013)—which is a multi-category method commonly used in LCAs—has 

been used to assess additional ecological and EIs other from climate change. Midpoint 

modelling allows for higher transparency and lower uncertainty, whereas endpoint modelling 

shows things with more relevance but can be less transparent and harder to compare 

(Blengini and Di Carlo, 2010). Due to the unavailability of data for DSFs, midpoint 

modelling with an aim at maximising transparency was chosen. 

RESULTS 

Figure 3 and Figure 4 show energy and carbon results respectively for the assessed scenarios. 

More specifically, 16 data series are presented that describe unique combinations of the DSF 

parameters considered. Each of them includes 8 data points that refer to the different 

orientation of the building with that specific DSF configuration, thus totalling 128 data 

points. Dashed lines are indifference curves: data points below those lines have a negative 

life cycle balance (positive outcome).  

As Figure 3 shows, life cycle energy results are very promising with 120 out of 128 options 

(93.75%) showing a negative life energy balance. The eight options with a pejorative life 

cycle energy balance are all characterised by a wide cavity and a SE orientation. Successful 

options drop to 72.65% (93 out of 128) when the focus switches to carbon (Figure 4).  

This is due to the actual source of energy that is being saved by the DSF (natural gas for 

space heating) vs. the source of energy needed for the augmented embodied impacts of the 
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DSF (mainly mid-voltage electricity for manufacturing activity). More specifically, gas and 

electricity have different GHG conversion factors (i.e. 1 kWh GAS = 0.20155 kgCO2e; 1 kWh 

ELEC = 0.59368 kgCO2e) thereby shifting options with a negative life cycle energy balance 

into options with a positive (pejorative effect) life cycle carbon balance. Among the options 

with a pejorative effect only two have a narrow cavity and both are SE oriented models. 
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Figure 3 – Life cycle energy results (for abbreviations please refer to Table 2) 
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Figure 4 - Life cycle carbon results (for abbreviations please refer to Table 2) 

Table 3 shows the EI assessment results from ReCiPe with a colour scale to indicate 

highest/lowest impact within different categories. Orientation of the building models is 

omitted since it does not influence the embodied environmental and ecological impacts.  
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In the results from ReCiPe, operational savings are no longer significant. By contrast, 

assemblies and stages of the DSF show their embodied impacts that suddenly become worthy 

of closer attention.  

Table 3 - ReCiPe results (green= lowest impact; red=highest impact) 

 

DISCUSSION OF FINDINGS 

With respect to the research question that this study aims answering, i.e. can DSFs be 

considered as a low-carbon refurbishment solution for the UK?, results have shown that for 

the vast majority of the options assessed DSFs perform extremely well when looked at from a 

life cycle perspective. More specifically, 93.75% and 72.65% of the options performed better 

than their SS counterparts in terms of life cycle energy and carbon, respectively. DSFs 

application to the refurbishment of existing non-domestic buildings therefore, can be 

recommended in the contexts similar to the one studied here, with the aim of mitigating GHG 

emissions. 

The parametric approach adopted in this study allows for some significant insights in terms of 

sensitivity analysis regarding the options that showed a positive life cycle balance (negative 

outcome). Cavity width and orientation are, in such order, the most significant parameters 

both energy- and carbon-wise. Wider cavities imply a higher amount of construction 

materials to be manufactured, transported, installed, and disposed of, thereby increasing 

significantly both embodied energy and carbon. Wider cavities also imply a higher mass of 

air that needs to be solar-heated prior to ‘activating’ the thermal buffer behaviour of the DSF. 

Such an aspect explains why narrow cavities show slightly better operational energy savings.  

Regarding the orientation, SE is the common underlying characteristics of most of the 

unsuccessful options. A SE oriented building can benefit from a fair amount of solar gain 

and, in fact, the SE oriented SS model is the one with the least energy consumption amongst 



10 

 

the eight SS options. In the DSF model, the solar gain increases the temperature of air in the 

cavity that eventually reaches the threshold which activates openings at the bottom and the 

top through the BMS. Therefore, for the majority of the occupied time the cavity is open and 

its thermal buffer effect is almost counteracted, and so is its energy saving potential. 

Glass type and glass coating, in such order, follow in terms of significance, with monolithic 

glass to be preferred over laminated glass, and clear glass over coated glass. When looking at 

the two parameters combined, their significance implies that M-CO options are always better 

than L-CL options (glass type predominant over glass coating). Source of the materials is the 

least impacting parameter, with EU sourced materials showing lower impacts than those 

coming from China.  

In contextualising our results with the only LCA of DSFs that provides sufficient detail to 

attempt a comparison (Wadel et al., 2013), specific values are in line energy-wise whereas 

there exists a big difference for what concerns carbon. Specifically, the embodied energy of 

the 128 options we assessed ranges from 1793.11 MJ/m² to 2127.93 MJ/m², which are values 

significantly close to the 2273.08 MJ/m² of Wadel et al. (2013). To the contrary, their 

embodied carbon equals to 178.64 kg CO2e/m² whereas we found a range of 250.06 – 366.67 

kg CO2e/m² which is up to more than twice as much. A possible reason lies in the significant 

amount of primary data we collected from manufacturers that allowed us to assess embodied 

figures with less uncertainty and fewer assumptions. However, the DSF assessed by Wadel et 

al. (2013) represents an innovative system made out of recycled materials that does not 

constitute current and common practice in the AEC sector; therefore it cannot be used as a 

broad basis for comparison.   

Regarding the ReCiPe results (Table 3), the options with the highest and lowest impact 

categories, identified with reference to the GWP, i.e. climate change, are often also those 

which score the most and the least in most other categories. This, however, does not 

necessarily hold true when looking at options with the second/third etc. highest/lowest impact 

within different categories (colour scale in Table 3). Additionally, there is nonetheless little in 

common when the impacts are analysed in detail. In fact, had the decision about which the 

best/worst DSF options are had been made based merely on life cycle energy and carbon 

balances, the logical consequence would have been to focus on the most significant reduction 

in those. Still, it was shown that other impact categories suggest also significant impacts for 

other assemblies and stages of a DSF life cycle, such as the production of elements of the 

outer skin, their maintenance and disposal – which are worthy of further investigation. 

Therefore, our study echoes encouragement for a shift in the current practice of LCA within 

the construction industry. More specifically, the choice of impact categories needs to be 

revisited and customised to the specifics of each and every case, depending on the context, 

focus and purpose of the assessment. 

CONCLUSIONS 

This study has shown that the vast majority of the DSF options assessed perform better than 

their SS counterparts when used in office refurbishments in the UK. The combined use of life 
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cycle energy and carbon assessments not only showed how significant the energy reduction 

potential is but it also indicated which options are critical when the focus switches to carbon, 

thus taking into account the specific type of energy that is being saved. Additionally, the use 

of ReCiPe as a multi-category impact assessment method highlighted that energy and carbon 

analyses tend to miss out key information that may influence the interpretation of, and 

conclusions from, the assessment. In the case of DSFs, ReCiPe results indicate that more 

attention should be paid to the structure of the façade and its maintenance, and to more 

efficient disposal solutions, rather than focusing solely at optimising DSFs’ operational 

performance, which seems to be where research in the field is mostly heading. The focus on 

specific climate, i.e. London, and a specific structure, i.e. aluminium, in addition to the lack 

of uncertainty analysis of the data through, for instance, Monte Carlo simulation can all be 

seen as limitations of this study and surely represent important and interesting areas for 

further research.  
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