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Abstract 26 

In species-rich tropical forests, effective biodiversity management demands measures of 27 

progress, yet budgetary limitations typically constrain capacity of conservation decision-28 

makers to assess response of biological communities to habitat change. One approach is to 29 

identify ‘ecological-disturbance indicator species’ (EDIS) that are additionally cost-effective 30 

in monetary terms. EDIS can be identified by determining individual species responses across 31 

a disturbance gradient, however these may be confounded by additional factors; for example 32 

in mountain environments the effects of anthropogenic habitat alteration are commonly 33 

confounded by altitude. Previous studies have identified EDIS using the IndVal metric, but 34 

there are weaknesses in the application of this approach to complex montane systems. We 35 

surveyed birds, small mammals, bats, and leaf-litter lizards in differentially disturbed cloud-36 

forest of the Ecuadorian Andes. We then employed a novel statistical approach that 37 

incorporates altitude as a covariate using generalised linear mixed models GL(M)M, to 38 

screen for EDIS in the dataset. Finally, we used rarefaction of species accumulation data to 39 

compare relative monetary costs of the EDIS identified, at equal sampling effort, based on 40 

species richness. Our GL(M)Ms generated greater numbers of detector species, but fewer 41 

numbers of characteristic species relative to IndVal. In absolute terms birds were the most 42 

cost-effective of the four taxa surveyed, with a single, low-cost EDIS detected. However, in 43 

terms of the number of indicators generated as a proportion of species richness, EDIS of 44 

small mammals were the most cost-effective.. We discuss how our approach could be used as 45 

a tool for more sustainable management of Andean forest systems.  46 

 47 

Keywords: Ecological disturbance indicator species, disturbance gradients, altitude, survey 48 

costs, tropical montane forest, IndVal, Generalised linear modelling   49 

 50 

  51 
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Introduction 52 

Traditional conservation, habitat restoration and emerging Reduced Emissions from 53 

Deforestation and Degradation ( REDD+) projects all require monitoring protocols for 54 

assessing the effectiveness of conservation action and the impact of habitat degradation and 55 

restoration on biodiversity (Harrison et al. 2012). The challenge is understanding how flora 56 

and fauna respond to land-use change and management, particularly in  species-rich tropical 57 

forests where the costs of undertaking comprehensive multi-species field studies normally 58 

exceed typical budgetary limitations (Lawton et al. 1998). One approach is to determine the 59 

occurrence or abundance of a small set of species that are sensitive to habitat disturbance, 60 

previously described by Caro (2010) as ‘ecological-disturbance indicator species (EDIS)’ and 61 

defined as ‘a species or group of species that demonstrate(s) the effects of environmental 62 

change (such as habitat alteration and fragmentation and climate change) on biota or biotic 63 

systems’ (McGeoch 2007). In terrestrial systems EDIS can be identified by comparing 64 

presence/absence and abundance of multiple taxa across a gradient of disturbance to find 65 

those that best characterise each stage. This approach has been the subject of considerable 66 

research (Laurence & Peres 2006; Caro 2010;) with varying levels of success (Lawton et al. 67 

1998; Rodrigues & Brooks 2007; Trindade & Loyola 2011). These studies provide invaluable 68 

information to underpin effective management of biodiversity, but few quantify the costs 69 

associated with detecting EDIS. Determining the return-on-investment when selecting 70 

indicator species or taxonomic groups is important where careful allocation of funds is 71 

paramount (Favreau et al. 2006). Taxa that have been selected following consideration of 72 

cost-effectiveness rather than purely on their indicator value have previously been described 73 

as ‘high performance indicator taxa’ (Gardner et al. 2008). Once a robust site-specific dataset 74 

for a range of taxa exists the selection of these high performance indicator taxa generally 75 

follows a three-stage process (Gardner et al. 2008). The first stage involves clearly defining 76 
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the conservation objective(s); the second comprises identification of ecologically meaningful 77 

criteria for selection of EDIS; and the third stage requires measurement of the relative cost-78 

effectiveness of sampling different taxa under the various criteria to derive high performance 79 

EDIS.  80 

Our objective was to identify high performance EDIS for small vertebrates in tropical 81 

Andean forests exhibiting differential anthropogenic disturbance. A range of ecologically 82 

meaningful selection criteria have previously been used that are based on changes in species 83 

richness, community composition and population size. Of these, change in population size is 84 

considered the most sensitive as it can forewarn of localised extinction (Caro, 2010). A range 85 

of approaches exist for assessing species sensitivity to disturbance,  including k-dominance 86 

curves, rarefaction techniques, correspondence analysis and probability-based indicators of 87 

ecological disturbance (Magurran 2004; Howe et al. 2007; Halme et al. 2009; ). However, the 88 

most common selection method used to identify EDIS in previous studies in tropical forests 89 

has been the indicator value method (IndVal) (Gardner et al. 2008; Kessler et al. 2011). This 90 

screening method combines measurements of the degree of specificity of a species to an 91 

ecological state (such as habitat type), and its fidelity within that state (Dufrene & Legendre 92 

1997). Using IndVal, indicators (EDIS) can be identified from sets of sites under increasing 93 

disturbance (Dufrene & Legendre 1997; De Caceres & Legendre 2009; De Caceres et al. 94 

2012). IndVal identifies two types of EDIS: ‘characteristic species’, which  are only present 95 

in particular habitats (disturbance states), and ‘detector species’, found at different 96 

abundances across a range of habitats (levels of disturbance). Characteristic species are more  97 

likely to be  vulnerable to habitat degradation, but detector species are suggested to be a more 98 

sensitive measure for monitoring change over time than a single state variable, as they exhibit 99 

lower specificity and span a range of ecological states (McGeoch et al. 2002). Although an 100 

accessible and relatively simple method, the weakness of IndVal is that it cannot incorporate 101 
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potential covariates within habitat disturbance categories that might confound patterns of 102 

species presence and abundance. For example, small mammals are structured by multiple 103 

predictors such as altitude, microhabitat and temperature in mountain forests (Bateman et al. 104 

2010).  In this study we compare the efficacy of IndVal in identifying EDIS, as compared to a 105 

generalized linear modelling (GL(M)M) approach, to explore the potential need to employ 106 

greater statistical complexity to effectively identify indicators. With a focus on determining 107 

statistically significant differences in abundance between habitat disturbance categories, 108 

GL(M)M is expected to provide greater resolution than IndVal. 109 

The final stage requires use of a cost-effectiveness method for sampling different taxa and 110 

thereby detecting high performance EDIS. There is a rapidly growing body of work that has 111 

incorporated cost-effectiveness analysis in identifying conservation priorities (Tulloch et al 112 

2011; Somerville et al 2013; Halpern et al 2013). More specifically, a number of studies have 113 

combined cost analysis with species accumulation curves to identify levels of sampling 114 

required, and models (i.e. IndVal) to detect trends in species response to environmental 115 

covariates such as disturbance or change ( Gregory et al 2005; Gardner et al. 2008; Caro 116 

2010; Kessler et al. 2011). The current study is the first to combine all three approaches to 117 

provide real advice to those wishing to undertake monitoring of species in response to 118 

environmental change.  119 

We used standard field survey techniques to compare the cost-effectiveness of EDIS for 120 

birds, bats, small mammals, and leaf-litter lizards in Andean forest systems. Our approach is 121 

novel in that: a) we compare EDIS generated using IndVal with a more complex GL(M)M  122 

that incorporates additional environmental covariates; b) we then assess relative cost-123 

effectiveness of the EDIS identified using rarefaction to compare cost for each taxon at equal 124 

sampling of estimated species richness.  125 

 126 
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Methods 127 

Field sites 128 

We conducted field surveys within two tropical Andean montane reserves, the Santa Lucia 129 

Cloud Forest Reserve (SLR, 0°07′30″N, 78°40′30″W) and the Junin Community Reserve 130 

(JCR, 0°17′00′′N, 78°38′00′′W), situated on the Western (Pacific) slopes of the Andes in the 131 

provinces of Pichincha and Imbabura, North-western Ecuador. SLR spans an altitudinal range 132 

of 1400 – 2560 m and JCR 1200 to 1900 m. The forest in the study area is lower montane 133 

rain forest (Holdridge et al. 1971), commonly referred to as cloud forest. The area has a 134 

humid subtropical climate (Cañadas-Cruz 1983) and comprises fragmented forest reserves 135 

surrounded by a matrix of cultivation and pasture-lands. It lies within the Tropical Andes 136 

biodiversity hotspot (Myers et al. 2000) exhibiting high plant species endemism and 137 

diversity. Topography is defined by steep-sloping valley systems of varying aspect. Annual 138 

rainfall ranges from 1500 to 2800 mm  with average annual temperature of 16 °C (Rivas-139 

Martinez & Navarro 1995). 140 

  141 

Species survey methods  142 

We surveyed avifauna in primary, secondary and silvopasture sites (Comprising of pasture 143 

planted with nitrogen-fixing Andean Alder - Alnus acuminata) in SLR using point-count 144 

sampling. We established 52 permanent point survey locations a minimum of 100 m apart to 145 

avoid spatial pseudo-replication. Of the 52 points, 24 were in primary forest, 17 in secondary 146 

forest and 11 in silvopasture. We conducted fieldwork between June and August over four 147 

field seasons from 2008 to 2011 to minimise records from boreal migrants. Experienced 148 

ornithologists surveyed 8 points daily between 6 and 9am, identifying birds to within a 50 m 149 

radius to species level using both visual and auditory cues. Each point was surveyed for a 150 

standardised period of 10 minutes following an initial 2-minute acclimatization time.  151 



7 

 

We surveyed leaf-litter lizards during five field expeditions to SLR over a period of three 152 

years (2008 - 2010). We deployed a total of 21 pitfall trap-lines with drift-fence arrays 153 

equally across three habitat types; primary forest, secondary forest and silvopasture. Each 154 

trap-line measured 5 m by 5 m constructed in a ‘T’ formation comprising five 25 L plastic 155 

buckets buried at intervals of 2.5 m. We left trap-lines in situ for a ten-day sampling period 156 

checking them twice daily. 157 

We sampled small mammals from JCR during two field expeditions in 2010 using clusters of 158 

Sherman live-traps deployed along line transects. A total of six transects of average length 159 

175 m were distributed equally between primary and secondary forest at altitudes of between 160 

1300 and 1900 m, with a total of 186 traps deployed, averaging 37 per transect. Silvopasture 161 

habitat was not present in JCR. Traps were deployed for 8 consecutive nights, resulting in a 162 

total of 1488 trap nights over an overall transect length of 1.48 km. We baited each trap daily 163 

with a mixture of peanut butter, oats, vanilla essence and tinned tuna and checked traps every 164 

morning. 165 

Mist-netting surveys of bats along line transects were conducted in JCR, concurrently with 166 

small mammal sampling. A total of four 200 m transects were deployed, each comprising 167 

four 6 m x 2.6 m mist nets spaced 50 m apart.  Nets were distributed equally between primary 168 

and secondary forest at altitudes of between 1300 and 1400 m and positioned in microhabitats 169 

considered to optimise capture. One to two transects were sampled per night, equating to four 170 

to eight nets in situ for three hours per night (from 6 to 9pm). Chiropterans were identified in 171 

the field using existing taxonomic keys (Albuja et al. 1980; Tirira 2007).  172 

 173 

Data analysis 174 

Identifying EDIS 175 
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For all taxa we determined the ability of the Indicator Value (IndVal) metric to identify EDIS 176 

against more complex generalized linear models that allow inclusion of potential 177 

environmental covariates. The IndVal metric generates a percentage indicator value for each 178 

species by multiplying measures of habitat specificity (based on abundance) and habitat 179 

fidelity (based on presence/absence). Significance is tested using the random reallocation of 180 

sites within site groups (Dufrene & Legendre 1997).  181 

For lizards, bats and small mammals, individual species abundances were then modelled by 182 

fitting generalized linear models (GLM) with Poisson error distributions, which included the 183 

fixed effects of Habitat and Altitude and the interaction between them. Because survey points 184 

were sampled repeatedly for birds, we determined the effect of habitat on abundance of bird 185 

species with 10 or more observations, by fitting generalized linear mixed effects models 186 

(GLMM) assuming a Poisson error distribution. Fixed effects included Habitat, Altitude (m) 187 

and interactions between Habitat, Altitude, and Year. We incorporated the repeated measures 188 

temporal sampling of survey points within the random component of the model. For the best-189 

fit model for each species, EDIS were identified as those that showed a significant difference 190 

in abundance between habitat types at the 5% level. All analyses were computed using R 191 

(Version 2.13: R Foundation for Statistical Computing, Vienna, Austria). 192 

 193 

Cost-effectiveness 194 

The resources for sampling biodiversity include monetary costs, time investment and 195 

availability of adequate technical expertise. Consistent with previous studies, we quantified 196 

monetary costs for taxa based on costs of field survey equipment and ‘time effort’ costs for 197 

the minimum number of staff required to undertake fieldwork, species identification and 198 

subsequent data management (Gardner et al. 2008; Kessler et al. 2011). Field scientists were 199 
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costed at 100 € per day, and field assistants at 20 € per day according to values used in a 200 

recent study in the Amazon region (Kessler et al. 2011).  201 

We compared the number of species showing significant differences in abundance between 202 

the habitat types (e.g. EDIS) for species groups (birds, lizards, bats, small mammals) against 203 

absolute survey costs and standardized survey costs as defined by Gardner et al. (2008). 204 

Standardized survey costs were determined by generating individual-based rarefaction curves 205 

for each vertebrate taxon with subsequent re-calibration of the y-axis to represent proportion 206 

of total number of species sampled, based on estimates of total species richness obtained 207 

using Chao2 (Chao 2005) in EstimateS (Gardner et al. 2008; Colwell 2009;). The x-axis was 208 

recalibrated to represent cumulative cost of sampling for each taxon. Finally, rarefaction of 209 

the data allows comparison of costs at equal levels of sampling effort based on species 210 

richness, using the least effectively sampled group as the reference level. However, as 211 

highlighted by Kessler et al. (2011), a weakness of standardized survey costs is that this 212 

rarefaction process does not take into consideration the loss of biological information 213 

associated with reduced effort. The reduced sampling effort should result in a loss of 214 

indicator species within a taxon as statistical power to differentiate between disturbance 215 

levels (i.e. primary, secondary forest, silvopasture) is reduced. Kessler et al. (2011) attempted 216 

to account for this by modelling the loss of information by introducing a measure of residual 217 

survey costs. They assumed a logarithmic relationship would represent the increase in 218 

numbers of indicator species with increasing effort/cost. This might hold within homogenous 219 

habitat (disturbance) categories. However, in more complex environments such as Andean 220 

forest systems with species structured by both habitat and altitude, the relationship may not 221 

be logarithmic, and might even include threshold-type responses. To investigate this we took 222 

a different approach. We assessed effective indicator numbers for each species group at 223 

standardised cost/effort by randomly resampling habitat indicator species datasets at 224 
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replication levels representing the least effectively-sampled group. We then re-ran the 225 

GL(M)M models to determine how many EDIS remained at this lower sampling effort (and 226 

cost) for each taxon. For taxa with more than one EDIS we randomly resampled the raw 227 

datasets at reduced levels of replication and ran GL(M)M models to determine the 228 

relationship between number of indicator species and effort/cost.  229 

Where there was satisfactory fit (which we defined as R2 > 0.75) we used the slope from 230 

linear regression of number of indicator species against log10 (costs) as an ‘ecological 231 

disturbance indicator species (EDIS) cost-effectiveness metric’ to compare species groups. 232 

This metric provides an indication of the number of EDIS generated for a 10-fold increase in 233 

investment; a useful characteristic of a taxon as multiple indicators provide greater 234 

confidence in correctly assessing forest status (De Caceres et al., 2012). 235 

 236 

Results 237 

We recorded a total of 172 small vertebrate species. The number of species per taxon ranged 238 

from 7 for leaf-litter lizards, through to 9 for small mammals, 11 for bats (Table A1) and 145 239 

for birds. For the latter, 45 species were represented by ten or more individual observations 240 

and were subsequently used in all analyses (Table A1). Using Chao2 to estimate total 241 

richness, our field survey captured 78% of bird species, 100% of leaf-litter lizards, 66% of 242 

small mammals and 85% of bats. 243 

 244 

Small vertebrate EDIS 245 

For birds, a total of 10 significant indicator species were identified using IndVal with a single 246 

indicator for primary forest, one for secondary and 8 for silvopasture (Table A2). For both 247 

primary and secondary indicators, specificity (Bij, proportion of habitat category sites in 248 

which indicator is present) was low - at 46% for primary and 23% for secondary forest 249 



11 

 

indicators. Most of the silvopasture indicators had higher specificity but generally lower 250 

fidelity (Aij, proportion of individuals in habitat category). No significant indicators were 251 

identified for the other taxa using IndVal.   252 

Indicators identified using the GL(M)M approach for each taxon are shown in tables 1 to 3. 253 

Complete surveys of birds provide a total of 20 indicator species (14% of total recorded 254 

richness), with both leaf litter-lizards and small mammals providing 2 indicator species each 255 

(28% and 22% of total recorded richness respectively). Bats fail to provide a significant 256 

indicator species for primary or secondary habitat (Table 3).   257 

Seven bird species (15% of the total) were more abundant in primary forest sites than 258 

secondary or silvopasture; three (7%) were more abundant in secondary than all other habitat 259 

types; and ten (22%) were observed at highest densities in silvopasture (Table 1, Table A2). 260 

The IndVal method did not identify any indicator species in common with the GL(M)M 261 

approach for primary and secondary forest, although six indicator species were identified in 262 

common by both approaches for the silvopasture habitats (Table A2). 263 

At standardised sampling effort (67% of total richness) birds generated 17 indicators (9% of 264 

estimated total richness) and small mammals two (15% of total richness). Leaf-litter lizards 265 

and bats failed to generate any indicators at the lower standardized level of replication. 266 

Cost effectiveness of selected taxa as EDIs 267 

Total costs of surveys varied between taxa, ranging from 1490 € for bats to 6230 € for leaf-268 

litter lizards (Table A3). The proportion of salary costs ranged from 59% for bats to 97% for 269 

birds, with 74% for small mammals and 92% for leaf-litter lizards. For all taxa the surveys 270 

capture a significant proportion of estimated total species richness, with rarefaction curves 271 

showing small mammals as the least-surveyed taxon with 67% of estimated total species 272 

richness represented (Fig. 1). Comparing taxa at standardized sampling effort for richness, we 273 

found that survey costs of taxa ranged from 857 € for bats to 3444 € for birds (Table 3A).  274 
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Birds generate the cheapest single EDIS, with the Andean Solitare (Myadestes ralloides) 275 

identified as a detector species of primary forest at a survey cost of 204 €. EDIS for small 276 

mammals represent 22% of total species richness of this group at absolute survey cost (Figure 277 

2A). For standardised costs, where survey costs represent equal coverage of species richness 278 

across taxa, EDIS for lizards represent 28% of the total richness of this group (Figure 2(b)). 279 

However this, provides a biased view of numbers of indicators generated as  when lower 280 

numbers of indicator species at reduced survey effort are accounted for small mammal EDIS 281 

again represent the greatest percentage of richness for least cost (Figure 2(c)).  282 

No significant correlations were detected between percentage of indicator species and either 283 

absolute (Fig. 2(a); Spearman’s rank correlation, rs = 0.2, P > 0.05) or standardised (Fig. 2(b);    284 

Spearman’s rank correlation, rs = 0.3, P > 0.05) survey costs. However, plots of standardised 285 

indicators against standardised costs (Fig. 2(c) and (d)) show a positive trend that approaches 286 

significance (Spearman’s rank correlation, rs = 0.95, P = 0.051). 287 

A positive correlation was detected between number of indicators, and total species richness 288 

(Pearson’s Correlation, rp=0.99, P < 0.01), and number of indicators and total abundance 289 

(Pearson’s Correlation, rp=0.99, P < 0.01). However, the relationship between proportion of 290 

estimated species richness actually detected per taxon and number of indicator species was 291 

non-significant (Spearman’s rank correlation, rs = -0.2, P > 0.05) partly reflecting adequate 292 

sampling coverage of the majority of taxa, at over 67% of taxon richness sampled. 293 

Fitting a logarithmic curve to the number of indicators against costs is optimal for birds (best 294 

fit: Number of indicator species = 4.9 ln [Cost of survey] – 23.6, R2=0.964) but sub-optimal 295 

for small mammals (best fit: Number of indicator species = 0.4 ln [Cost of survey] – 1.9, 296 

R2=0.56) and leaf-litter lizards (best fit: Number of indicator species = 0.6 ln [Cost of survey] 297 

– 4.5, R2=0.34).  Satisfactory fits for the EDIS cost-effectiveness metric was seen for small 298 

mammals (R2 = 0.79) and birds (R2 = 0.93), generating values of 0.94 and 6.13 respectively.  299 
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Fewer bird EDIS were associated with secondary forest than either primary forest or 300 

silvopasture (Fig. 4).  301 

 302 

Discussion 303 

For decision makers engaged in habitat restoration, management or sustainable forestry, 304 

‘ecological-disturbance indicator species (EDIS)’ that reflect the effects of environmental 305 

change on biota or biotic systems (McGeoch 2007) are a useful tool for assessing success or 306 

failure of conservation management (Pearce & Venier 2005; Jones et al. 2009). The current 307 

study represents the first assessment for small vertebrates in tropical mountain forests where 308 

biodiversity is often structured by altitude in addition to habitat (Sanchez-Cordero 2001; 309 

McCain 2005). Identifying cost-effective EDIS, or ‘high performance indicator species’ is a 310 

three-stage process involving: defining clear conservation objectives; use of a method to 311 

screen for suitable indicator species; and assessment of cost-effectiveness.  312 

Screening for indicator taxa 313 

Previous studies have used the indicator value (IndVal) metric (Dufrene & Legendre 1997) to 314 

screen for EDIS in tropical forests (Gardner et al. 2008; Kessler et al. 2011), however this 315 

method has a weakness in failing to explicitly incorporate covariates that can also structure 316 

species presence and abundance (Ferrier 2002). By comparing IndVal to a more statistically 317 

rigorous generalised linear modelling approach, we found that IndVal shows some merit in 318 

screening for EDIS; for example it identified 75% of bird EDIS in common with GL(M)M. 319 

The IndVal method also identified characteristic indicator species (species seen with high 320 

fidelity and specificity within a particular disturbance state) for primary and secondary forests 321 

that were not identified by GL(M)M . Three bird species are defined as characteristic EDIS 322 

(McGeoch et al. 2002; Alves da Mata et al. 2008) of silvopasture, with all others considered 323 

detector species (Table A2). The GL(M)M approach, with a focus on detecting statistically 324 
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significant differences in abundances between disturbance states, aids in identifying a greater 325 

number of detector EDIS than IndVal in forest disturbance gradients co-structured by other 326 

factors, such as altitude hence caution must be taken when solely applying the IndVal metrics 327 

to such systems.  328 

Cost effectiveness of indicator species  329 

Selection of the most cost-effective EDIS is highly dependent on the conservation objective, 330 

which may vary from the need to i) determine  the single most cost-effective indicator 331 

species, ii) identify taxa that generate the greatest number of indicators for investment (De 332 

Caceres et al. 2012), or iii) screen for indicators that are most representative of their own and 333 

other taxa e.g. surrogates (Caro 2010).  334 

Our study shows that birds not only generate the cheapest EDIS but also generate the most 335 

EDIS  per given level of investment. This is important as recent work reports that the use of 336 

multiple EDIS increases confidence in correctly assigning disturbance status (De Caceres et 337 

al. 2012). As the number of EDIS generated in our study was positively correlated with both 338 

total species richness and abundance of each taxon, we recommend that screening for new 339 

EDIS in other environments should first target species-rich groups.  Where the goal is to find 340 

EDIS that best represent the greatest percentage of within- taxon species richness, we found 341 

small mammals to be the most parsimonious group. However, this may simply reflect low 342 

overall richness for this group.  343 

The logarithmic relationship we report between bird EDIS  and costs using GL(M) M  344 

reflects diminishing return on investments and is consistent with the  ‘residual survey costs’ 345 

method employed by Kessler et al. (2011). As such it lends support for the use of the IndVal 346 

indicator screening method in combination with logarithmic regression to estimate numbers 347 

of indicators against cost. This result also suggests that our ‘cost-effective EDIS’ metric is an 348 

appropriate measure for comparing indicators generated with cost, across taxa. 349 
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Covariates of altitude 350 

Spatial autocorrelation associated with measuring change across gradients complicates 351 

development of indicators, with species-altitude relationships playing a strong role in 352 

structuring species distribution in montane environments (Herzog et al. 2011;Sanders & 353 

Rahbek 2012). However, spatial autocorrelation is not unique to mountains; gradients in the 354 

depth of the sea bed, and dynamic salinity in estuaries may be similarly confounded (Menezes 355 

et al., 2006). The majority (79%) of indicator species predicted by our GL(M)M models 356 

include altitude as a significant covariate of abundance, highlighting the difficulties of 357 

identifying generic habitat indicators for mountainous areas. Sensitivity to altitude also 358 

highlights the potential impact of climate change, with scenarios predicting altitudinal shifts 359 

in species distributions in mountain environments (Sekercioglu et al., 2012). As a result, 360 

elevational connectivity of protected areas is likely to play a major role in determining 361 

survival and extinction for many species (Herzog et al. 2011).  362 

Outline method to identify indicator species 363 

A stepwise approach to identifying EDIS is outlined in figure 5. The first step requires clear 364 

articulation of the monitoring requirements. A review of any existing site-specific species 365 

lists will then help provide guidance in choosing taxa that fulfil the goals. Species-rich 366 

groups, with known taxonomy, are likely to generate higher numbers of EDIS if used in 367 

conjunction with field survey methods that maximise capture of individuals from the full 368 

range of forest microhabitats. The actual method used to screen for EDIS depends on both 369 

forest type and survey design. Studies in complex environments, structured by multiple 370 

gradients and/or using survey designs that include unbalanced and repeated measures, are all 371 

likely to benefit from the greater statistical power offered by the GL(M)M approaches to 372 

identify detector EDIS. It should be noted that potential EDIS will still need to be verified by 373 
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resampling under different temporal or spatial conditions to ensure they act as robust habitat 374 

management tools (McGeoch et al. 2002). 375 

Long-term, local-based biodiversity monitoring programmes are vital for measuring and 376 

arresting loss of biodiversity in the tropics and guidance is required to provide a cost effective 377 

approach. The use of ecological disturbance indicator species provides a useful and relatively 378 

simple measure of the effect of land-use change and management on biodiversity (Caro 379 

2010). However, indicators need to be identified according to conservation objectives and on 380 

a site-specific basis, particularly in regions with high beta diversity. Screening of indicators 381 

requires more robust statistical analytical approaches where strong natural gradients are 382 

thought to co-structure species presence and abundance and survey designs are unbalanced 383 

and include repeated measures. These factors often coincide in long-term monitoring 384 

programmes where repeated measures are inevitable and balanced designs are often 385 

impossible. Such programmes, including ours, often depend on ‘citizen science’ to provide 386 

the funds and manpower to generate datasets that extend beyond the timeframes of typical 387 

research-funding cycles. In challenging environments, e.g. tropical mountain forests, 388 

volunteers often find it difficult to survey more distant sample points. This leads to 389 

unbalanced datasets, which require the additional statistical power of more complex 390 

analytical methods, such as those used in this study. The design of scientifically robust, cost-391 

effective monitoring programs aimed at assessing the impacts of environmental and climatic 392 

change gives the potential to integrate conservation, ecological research, environmental 393 

education, capacity-building and income generation through scientific ecotourism. Such 394 

programmes should be encouraged, established and supported (Sekercioglu 2012; 395 

Sekercioglu et al. 2012).  396 
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 533 

 534 

Table 1 Bird species observed at significantly higher (p<0.05) counts in primary forest habitat, showing counts and relative counts in 535 

silvopasture and secondary habitats and minimum sampling of species richness needed for species to act as indicators (p<0.05). 536 

Primary Forest indicators 

Mean count per point 

sample 
% of Primary forest count 

Secondary Silvopasture 

Gorgeted Sunangel (Heliangelus strophianus) 0.13 3% - 

Three-striped Warbler (Basileuterus tristriatus) 0.1 3% - 

Plate-billed Mountain Toucan (Andigena laminirostris) 0.09 52% - 

Gray-breasted Wood-Wren (Henicorhina leucophrys) 0.83 86% 31% 

Orange-bellied euphonia (Euphonia xanthogaster) 0.47 48% 48% 

Andean Solitaire (Myadestes ralloides) 0.42 51% 29% 

Buff-tailed Coronet (Boissonneaua flavescens) 0.34 3% 9% 

Secondary Forest indicators   % of Secondary forest count 

Primary Silvopasture 

Violet-tailed Sylph (Aglaiocercus coelestis) 0.32 75% 71% 

Russet-crowned warbler (Basileuterus coronatus) 0.36 62% 24% 

Brown inca (Coeligena wilsoni) 0.11 93% 77% 

Silvopasture Forest indicators   % of Silvopasture count 

Primary Secondary 

Beryl-spangled Tanager (Tangara nigroviridis) 0.73 45% 48% 

Booted Racket-tail (Ocreatus underwoodii) 0.66 86% 96% 

Sparkling Violetear (Colibri coruscans) 0.47 36% 65% 

Red-billed Parrot (Pionus sordidus) 0.43 14% 52% 

Smoke-colored Pewee (Contopus fumigatus) 0.23 3% 20% 

Flame-faced Tanager (Tangara parzudakii) 0.21 14% 43% 

Brown-capped Vireo (Vireo leucophrys) 0.19 24% 35% 

Azara's spinetail (Synallaxis moesta) 0.19 - 5% 

White-sided Flowerpiercer (Diglossa albilatera) 0.13 12% 22% 

Club-winged Manakin (Machaeropterus deliciosus) 0.11 13% 32% 
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 ‘Indicator’ species Habitat Mean count per 

trap cluster 

(in corresponding 

indicator habitat) 

% Primary 

count 

% Secondary 

count 

Best fit GLM Model Indicator at 

standardised richness 

(% richness as 

significant indicator) 

 

  

Long-whiskered Rice Rat 

(Transandinomys bolivaris) 

 

 

Secondary 

 

0.36 

 

39% 

 

n/a 

 

Count ~ Habitat + Altitude 

 

 

Yes ** (40%) 

Alfaro's Rice Rat 

(Handleyomys alfaroi) 

 

Primary 0.38 n/a 37% Count  ~Habitat + Altitude 

 

No 

 537 

Table 2 Small mammal species recorded at significantly different (p<0.05) abundances between primary, secondary and silvopasture habitats, 538 

and their best-fit generalized linear model (GLM), final column shows whether species is still a significant indicator at standardised survey costs 539 

(*p<0.05, **p<0.01) and minimum sampling of species richness needed for species to act as indicators (p<0.05). 540 

 541 
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 542 

‘Indicator’ species Habitat Mean count per trap-

line (in corresponding 

indicator habitat) 

% Secondary 

count 

% 

Silvopasture 

count 

Best fit GLM Model Indicator at 

standardised richness 

(% richness as 

significant indicator) 

 

Scaly-eyed Gecko 

(Lepidoblepharis sp.) 

 

Primary 

 

0.90 

 

32% 

 

16% 

 

Count ~ Habitat + 

Altitude 

 

 

No 

 

Tropical Lightbulb 

Lizard (Riama oculata) 

 

Primary 

 

1.4 

1 

0% 

 

61% 

 

Count ~ Habitat + 

Altitude 

 

 

No 

Table 3 Leaf-litter lizard species recorded at significantly different (p<0.05) abundances between primary, secondary and silvopasture habitats, 543 

and their best-fit generalized linear model (GLM), final column shows whether species is still a significant indicator at standardised survey costs 544 

(*p<0.05, **p<0.01) and minimum sampling of species richness needed for species to act as indicators (p<0.05). 545 

. 546 
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Group Number of 

individuals 

Recorded 

species 

Estimated 

species 

richness 

(Chao 2) 

Number of indicator species from full 

survey (%) 

Number of indicator species at 

standardized sampling effort (%) 

Primary Secondary Silvopasture Primary Secondary Silvopasture 

 

Birds 

 

2808 

 

145 

 

185 

 

7 (4.8%) 

 

3 (2.1%) 

 

10 (6.9%) 

 

7 (4.8%) 

 

3 (2.1%) 

 

7 (2.7%) 

Lizards 61 7 7 2 (28%) 0 0  0 0 0 

Small 

mammals 

48 9 13.5 1 (11%) 1 (11%) - 1 (11%) 1 (11%) - 

Bats 

 

37 11 13 0 0 - 0 0 - 

 548 

Table 4 Biodiversity datasets showing number of individuals sampled and species richness from full surveys for each taxon. Number and 549 

percentage of indicator species from each habitat are shown for full surveys and at standardised costs. 550 

  551 
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 552 

Fig1 Rarefaction curves for percentage of total estimated richness sampled against costs for each taxon. Horizontal dotted line represents the 553 

least effectively sampled group as the reference level with vertical bars providing an indication of costs for other taxa  at standardised estimate of 554 

total richness for each species group. 555 
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 556 

Fig 2 Percentage of indicator species against total cost of survey for each taxon (a), against standardised survey costs (b) and Percentage (c) and 557 

number (d) of standardised indicators against standardised costs. 558 
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 559 

 560 

Fig 3 Return-on-investment curves for birds, leaf-litter lizard, and small mammals, showing number of indicator species yielded at a given level 561 

of investment with a logarithmic trend-line fitted for small mammals and birds.  562 



30 

 

30 

 

 563 

Fig 4 Return-on-investment curve for bird indicator species, showing number of indicators yielded at a given level of investment, for each 564 

habitat type. 565 

 566 

 567 
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 574 
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 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

Fig. 5 Framework for identifying ecological disturbance indicator species. 593 

Cheapest single 

EDIS 

Most cost-

effective taxa for 

generating 

multiple EDIS 

EDIS most 

representative of 

taxonomic group 

EDIS most 

representative of 

all taxa 

Focus on specious taxonomic groups 

and screen for (or develop) field 

survey techniques that maximise 

individual recordings 

Survey range of taxa and determine 

representativeness using species 

accumulation curves 

Identify Ecological Disturbance indicator species 

Use IndVal to identify habitat 

characteristic species (and screen for 

detector species if habitat lacks 

covariates) 

For detector species use GL(M)M’s if 

habitat structured by one or more 

covariate or if unbalanced/repeated 

measures sampling design 

Verify EDIS by resampling under 

different temporal or spatial 

conditions (McGeoch et al. 2002) 
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Supplementary material  594 
 595 

Species lists 

  

Small Mammals 

 
 

 Alfaro's Rice Rat Handleyomys alfaroi 

Dusky Rice Rat Melanomys caliginosus 

Tomes's Rice Rat Nephelomys albigularis 

Bicolored Arboreal Rice Rat Oecomys bicolor 

unknown Reithrodontomys soderstromi 

Long-whiskered Rice Rat  Transandinomys bolivaris 

Talamancan Rice Rat Transandinomys talamancae 

unknown Microrizomys altissimus 

Tschudi's Slender Opossum Marmosops impavidus 

  

  Birds (10 or more individuals) 
 

  
Andean Solitaire Myadestes ralloides 

Azara's Spinetail Synallaxis azarae 

Band-tailed Pigeon Patagioenas fasciata 

Beryl-spangled Tanager Tangara nigroviridis 

Blue-grey Tanager Thraupis episcopus 

Blue-winged Mountain-Tanager Anisognathus somptuosus 

Booted Racket-tail Ocreatus underwoodii 

Brown Inca Coeligena wilsoni 

Brown Violetear Colibri delphinae 

Brown-capped Vireo Vireo leucophrys 

Buff-tailed Coronet Boissonneaua flavescens 

Club-winged Manakin Machaeropterus deliciosus 

Crimson-rumped Toucanet Aulacorhynchus haematopygus 

Dusky Bush-Tanager Chlorospingus semifuscus 

Flame-faced Tanager Tangara parzudakii 

Glossy-black Thrush Turdus serranus 

Golden Tanager Tangara arthus 

Golden-crowned Tanager Iridosornis rufivertex 

Golden-headed Quetzal Pharomachrus auriceps 

Golden-naped Tanager Tangara ruficervix 

Golden-winged Manakin Masius chrysopterus 

Gorgeted Sunangel Heliangelus strophianus 

Gray-breasted Wood-Wren Henicorhina leucophrys 

Green-and-black Fruiteater Pipreola riefferii 

Masked Flowerpiercer Diglossa cyanea 

Masked Trogon Trogon personatus 
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Metallic-green Tanager Tangara labradorides 

Nariño Tapaculo Scytalopus vicinior 

Orange-bellied Euphonia Euphonia xanthogaster 

Plate-billed Mountain-Toucan Andigena laminirostris 

Plumbeous Pigeon Patagioenas plumbea 

Red-billed Parrot Pionus sordidus 

Red-headed Barbet Eubucco bourcierii 

Ruddy Foliage-gleaner Automolus rubiginosus 

Rufous-breasted Antthrush Formicarius rufipectus 

Russet-crowned Warbler Basileuterus coronatus 

Smoke-colored Pewee Contopus fumigatus 

Sparkling Violetear Colibri coruscans 

Spillmann's Tapaculo Scytalopus spillmanni 

Tawny-bellied Hermit Phaethornis syrmatophorus 

Three-striped Warbler Basileuterus tristriatus 

Toucan Barbet Semnornis ramphastinus 

Violet-tailed Sylph Aglaiocercus coelestis 

White-sided Flowerpiercer Diglossa albilatera 

White-tailed Tyrannulet Mecocerculus poecilocercus 

  
Lizards 

 

  
Tropical lightbulb lizard Riama oculata 

Drab lightbulb lizard Riama unicolor 

Unknown Riama sp. 

Unknown Echinosaura brachycephala 

Brown Prionodactylus Cercosaura vertebralis 

Unknown Lepidoblepharis sp.  

Unknown Alopoglossus festae 

  Bats 

 
 

 Rosenberg's fruit-eating bat Artibeus rosenbergii 

Silky short-tailed bat Carollia brevicauda 

Chestnut Short-tailed Bat Carollia castanea 

Seba's short-tailed bat Carollia perspicillata 

Little Big-eared Bat Micronycteris megalotis 

Highland Yellow-shouldered Bat Stunira ludovici 

Spectral bat Vampyrum spectrum 

Little black serotine Eptesicus andinus 

Hairy-legged Myotis Myotis keaysi 

Black Myotis Myotis nigricans 

Riparian Myotis Myotis riparius 

 596 

Table A1 Species used in analysis.  597 

 598 
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 599 

Significant IndVal indicators 

     

 
IndVal Aij Bij p value Identified by GLMM 

Primary Forest indicators 

     Blue tanager (Tangara vassorii) 0.65 0.91 0.46 0.02 No 

      Secondary forest indicators 

     Scale-crested Pygmy Tyrant (Lophotriccus pileatus) 0.48 1 0.23 0.05 No 

      Silvapasture Forest Indicators 

     Smoke-colored Pewee (Contopus fumigatus) 0.87 0.89 0.86 0.001 Yes 

Flame-faced tanager (Tangara parzudakii) 0.79 0.73 0.86 0.002 Yes 

Club-winged manakin (Machaeropterus deliciosus) 0.76 0.81 0.71 0.002 Yes 

Azara’s spinetail (Synallaxis azarae) 0.7 0.86 0.57 0.002 Yes 

White-sided flowerpiercer (Diglossa albilatera) 0.62 0.68 0.57 0.015 Yes 

Montane woodcreeper (Lepidocolaptes lacrymiger) 0.6 0.84 0.43 0.01 No 

Brown-capped vireo (Vireo leucophrys) 0.6 0.62 0.57 0.016 Yes 

Tricolored brush-finch (Atlapetes tricolor) 0.51 0.61 0.43 0.043 No 

      

 600 

Table A2 Species identified as significant (p<0.05) using the Indicator value (IndVal) metric. Underlined species are considered characteristic 601 

indicator species and others as detector species (McGeoch et al. 2002) 602 

  603 
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 604 

Group Postdoc (days) Field assistant (days) Materials 

(euro) 

Total 

expend 

(euro) 

Standardized 

survey costs 

(euro) 

fieldwork processing in 

the field 

processing in 

the lab/ID 

data 

management 

/other 

fieldwork processing 

in the field 

processing 

in the 

lab/ID 

data 

management 

/other 

Birds 39 - -  9.5 39 -  -  -  150 5780 3444 

Leaf- litter lizards 25 5 10 5 55 5 0 2 490 6230 1445 

Small mammals 5 1  - 2 50 2 10 2 745 2825 2825 

Bats 2 2  - -  10 2 10 2 610 1490 857 

Table A3. Costs estimates for field surveys for the range of taxa surveyed. 605 


