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Abstract. A Euler diagrams are an accessible and effective visualisation of data
involving simple set-theoretic relationships. Efficient algorithms to quickly com-
pute the abstract regions of an Euler diagram upon curve addition and removal
have been developed, but a strict set of drawing conventions (called wellformed-
ness conditions) were enforced, meaning that some abstract diagrams are not
representable as concrete diagrams. We present a variation and extension of the
methodology which enables region computations for Euler diagrams under the
relaxation of several drawing conventions. We provide complexity analysis and
compare with the previous methodology. The algorithms are presented for generic
curves, allowing for specialisations such as utilising fixed geometric shapes for
curves that often occur in applications.

1 Introduction
Venn [21] and Euler diagrams are a well known representation of sets and their re-

lationships. Venn diagrams have had significant theoretical interest from the likes of
Grünbaum and Hamburger in recent times; a detailed survey of Venn diagrams can be
found in [16]. Euler diagrams are the modern incarnation of Euler circles [3], first in-
troduced for the purposes of syllogistic reasoning. Whilst Venn diagrams ensure that
every region determined by being inside some contours and outside the other contours
is nonempty, Euler diagrams generalise Venn diagrams by relaxing this condition. This
allows them to specify subset relations and disjointness relations amongst sets without
any extra cognitive load since these semantic relationships are well-matched the spatial
relationships of containment and disjointness [11, 17].

In a practical setting, Euler diagrams appear frequently in various application do-
mains. For example, they have been used in biological areas for representing complex
genetic set relations in [14], in computer-based resource management scenarios in [2],
and in the information retrieval/visualisation context to depict the numbers of results of
collections of library database query results in [20] and in network visualisation [15].
Euler diagrams, together with diagrammatic inference rules, form a diagrammatic logic,
and comparisons of the effect of the choice of inference rules on automated searches
for minimal proofs within Euler diagram-based reasoning systems [18] has been in-
vestigated. There are many variations of the basic system, and they have also been
incorporated into heterogeneous reasoning systems [19]. More complex diagrammatic
logics such as Spider [12] or Constraint diagrams [4, 13] build on the underlying Eu-
ler diagram logic, adding more syntax in order to increase the expressiveness of the
languages.
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Motivation. For any computer-based applications there is a natural disparity between
the concrete level information that the user perceives and manipulates (the drawn or
concrete diagrams) and the abstract information that the system requires or manipulates
(the abstract models or abstract diagrams). Many important computations of the system
tend to be defined at this abstract level. For instance, if one wished to present the se-
mantics of a user-constructed diagram then the system needs to perform computations
such as to identify the regions present in the diagram, to compute the set intersections
that they represent, and to combine these into some set-theoretic statement. In a more
general sense an efficient way to calculate the abstract diagram is also useful for the
comparison of concrete diagrams.

The efficient computation of the abstract model from a given concrete diagram,
together with the ability to update the abstract model upon concrete changes such as
curve addition, removal, translation and resizing represent an important challenge to be
addressed. The relaxation of the drawing constraints is a significant extension because
under these relaxed constraints, every abstract diagram has a concrete diagram repre-
senting it [5]. Furthermore, for dynamic diagrams (e.g. sequences of diagrams con-
structed during interactive user construction or the presentation of evolving data sets) it
permits the temporary relaxation of the chosen set of drawing conventions imposed for
a diagram in the sequence. This enables a natural construction or presentation, assisting
in preserving a user’s mental map.
Contribution and paper outline. In this paper we provide a solution to the on-line
abstraction problem: compute the abstraction of a concrete Euler diagram (i.e. a drawn
diagram), keep track of the concrete and abstract diagrams, and enable the automatic
update of the abstract diagram upon concrete level manipulations. The algorithms pre-
sented in [8] solved this problem for the wellformed diagrams of [5], but here we pro-
vide a solution for the more general case in which several well-formedness conditions
are relaxed, enabling much greater utility and flexibility. The algorithms have also been
extended to permit further relaxation of the wellformedness constraints, enabling the
processing of ‘generalised Euler diagrams’ (representing sets as unions of regions with
holes), ensuring that any abstract diagram has a concrete realisation. However, this fur-
ther extension is not presented in this paper due to space constraints.

2 Preliminaries
We provide a definition of Euler diagrams, separating the abstract and concrete models
as usual, together with the set of wellformedness conditions considered. Specifically, we
incorporate some of the wellformedness conditions of [5] and [10] that are simplicity of
contours (no self-intersection) and uniqueness of contour labels, into the main definition
of concrete Euler diagram, which enables an omission of labels since the contours can
be uniquely identified.

Definition 1. A concrete Euler diagram is a pair d = ⟨C,Z⟩ where C is a set of simple
closed curves, called (concrete) contours, in the plane and Z is the collection of (con-
crete) zones z determined by being inside a set of contours Xz ⊆ C and outside the rest
of the contours. That is,

z =
∩

c∈Xz

int (c) ∩
∩

c∈C−Xz

ext (c) ,
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for each Xz ⊆ C, provided this region is non-empty. Here int(c) and ext(c) denote the
interior and the exterior of c, respectively, and the set Xz is called the zone descriptor
for z. A minimal region of d is a connected component of R2 −

∪
c∈C

c.

Fig. 1. Nonwellformed Euler diagrams, breaking WF1a, 1b, 2 and 3, resp., from left to right.

We say d is wellformed if the following wellformedness conditions (WFCs) hold (see
Fig. 1 ):

WF1 Transverse intersections: Contours that intersect do so transversely.
This can be subdivided into:
WF1a No tangential intersections.
WF1b No concurrency (distinct contours meet at a discrete set of points).

WF2 No multiple points: At most two contours can intersect at any given point.
WF3 Connected concrete zones: Each concrete zone is a minimal region.

An abstract Euler diagram (see Definition 2) is an abstraction (see Definition 3) of
a concrete diagram. We overload the term zone, using it for the concrete zones, which
are regions of the plane, as well as for abstract zones, which are the sets of containing
contours of that region (or the labels of those contours in the generalised case); the
context determines which is meant. Let PX denote the powerset of set X .

Definition 2. An abstract Euler diagram is a pair: d = ⟨C(d), Z(d)⟩ where: C(d) is a
finite set of labels, called (abstract) contours, drawn from some alphabet L. The set of
(abstract) zones of d is Z(d) ⊆ PC(d), where

∪
z∈Z(d)

z = C(d).

Definition 3. Let d be a concrete Euler diagram and d′ an abstract Euler diagram. If
there is a bijection between C(d) and C(d′) that induces a bijection between Z(d) and
Z(d′), then d is said to be a realisation of d′, and d′ is the abstraction of d. An abstract
Euler diagram d′ is drawable if there is a realisation of d′ as a concrete Euler diagram.

By convention, each concrete Euler diagram contains a zone o, called the outer
zone, which is exterior to all the contours (that is, Xo = ∅). The left of Fig. 2 shows
a concrete Euler diagram containing four contours (A,B,C,D). The zone descriptors
for the concrete zones are graphically depicted in the right hand side of the figure; these
sets can be viewed as the abstract zone set.

We need terminology relating to the important operations of the addition and re-
moval of the contours of an Euler diagram.

Definition 4. Let d = ⟨C,Z⟩ be a concrete Euler diagram with A /∈ C and B ∈ C. Let
d+A and d−B denote the concrete Euler diagrams obtained by the addition of a new
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Fig. 2. (a) A wellformed concrete Euler diagram, with contour identifiers (or labels); (b) a depic-
tion of the zone descriptors.

contour A to d and the removal of contour B from d, respectively. A region r of d is a
union of minimal regions; it is: (i) a covered region (or is covered by A) if r ⊂ int(A)
in d + A; (ii) split by A (a split region) if r ∩ int(A) ̸= ∅ and r ∩ ext(A) ̸= ∅ (i.e. r
is partially covered by A). Analogously, a zone z of d is a covered zone (respectively a
split zone) when it is covered (respectively partially covered) by A.

Fig. 3 shows an example of contour addition. We observe that the zone described
by {C} is split by the contour A but neither of its two minimal regions is split by A.
A point of intersection x between two curves c1 and c2 is called a crossing point. We
denote with Cross(d) the set of all the crossing points generated by contours in d.

Fig. 3. An example of contour addition: (a) A non wellformed diagram d =
⟨{B,C}, {∅, {B}, {C}, {B,C}}⟩. The crossing points of d are shown with filled-in dots; (b)
The crossing points of A with d (i.e. those in Cross(A)) are depicted as hollow dots. The set of
all hollow and filled-in dots depicts the set of crossing points of d+A.

3 Computing the abstraction of Euler Diagrams
The main problem that we address is the following, with variations according to the
choice of wellformedness conditions imposed.

Abstraction Update Problem
Let d = ⟨C,Z⟩ be a concrete Euler diagram and d′ = ⟨C ′, Z ′⟩ the abstraction of d.
Let A /∈ C and B ∈ C. Efficiently compute the abstractions of d+A and d−B.
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In [6, 8] the single marked point approach (SMPA) (described below) was pre-
sented, computing the abstraction for wellformed Euler diagrams, following an online
approach where diagrams are viewed as a sequence of contour additions and removals.
Other operations such as translation or resizing of a contour can be easily simulated by
the addition and removal operations, and so such algorithms are applicable in a wider
context.

In this paper, we present an evolution of these algorithms, adopting the multiple
marked point approach (MMPA) (described below), permitting the relaxation of condi-
tion WF3 so that Euler diagrams whose zones are disconnected can be processed.

First of all, we recall from [8] that the set of zones split by A, due to the addition
of a contour A to (or its removal from) a given wellformed Euler diagram d, can be
computed using the following observation.

Observation 1 Let d be a wellformed Euler diagram and let {x0, x1, . . . , xm−1} be
all of the crossing points that we meet as we traverse the contour A from an arbitrary
point on A. Then:
(i) For each i = 0, . . . ,m− 1 each arc (xi, xi+1 mod m) splits one zone (note that two
arcs can split the same zone but one arc cannot split more than one zone) of d.
(ii) Two consecutive arcs (xi, xi+1 mod m) and (xi+1 mod m, xi+2 mod m) split two zones
such that their zone descriptors differ by exactly one contour (the contour which inter-
sects with A generating the crossing point xi+1 mod m).

Fig. 4. A schematic diagram which illustrates Observation 1. The addition of A generates six new
crossing points shown with small blobs. The point x01 is an arbitrary point of the arc (x0, x1)
used to compute an initial zone descriptor for the zone split by arc (x0, x1), whilst subsequent
zone descriptors are computed using Observation 1.

For the wellformed diagram case of [8], we adopted the SMPA where each zone z
of d has a single point mp(z) ∈ R2 associated to it, where mp(z) lay in the boundary of
the closure of the zone z (with the possible exception of the marker for the outside zone).
These points keep track of the zone sets, and were used to update these sets according
to their relationships with contours that are added or removed from a diagram. Then,
the zones that are not split by A are covered by A if and only if mp(z) belongs to the
interior of A. The SMPA is illustrated in Figure 5: each minimal region is marked by a
single marked point (an arrowed dot indicates a marked point, the arrow indicating the
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minimal region which is marked); additional marked points, or pseudo-crossing points,
are used to mark the outside zone and any contour which has no crossing points, either
in d or at some stage during its incremental construction (e.g. see the marked point for
zone {B,D,E} in Figure 5). However, the SMPA is not sufficient to deal with the Euler
diagrams with disconnected zones. In this case, there are two ways of splitting a zone:
(i) a zone is split when one of its minimal regions is split by A; (ii) a zone is split when
some of its constituent minimal regions are covered by A and some are not. To address
case (ii) one can consider associating one marked point to each minimal region of the
diagram. Figures 5 (c) illustrates a generalization of the case of [8] where each minimal
region is associated with one marked point. Then, if a zone z has no minimal regions
which are split by A (i.e. case (i) does not hold) we can analyse the relationships of the
marked points with A to classify z as split by A, covered by A, or neither. In particular,
if all of the marked points of z belong to int(A) then z is a covered zone, whilst if some
of the marked points of z belong to int(A) while others do not, then z is a split zone,
according to (ii) above.

Fig. 5. Single marked point approach (SMPA): in (a) each zone of a wellformed Euler diagram is
marked by a single point; (b) shows in grey the zone {B,C} and its marked point; in (c) a non
wellformed Euler diagram (WF3 relaxed) with a zone {B}, shown in grey, which consists of two
minimal regions, therefore requiring at least two marked points.

However, the management of marked points (taking one for each minimal region)
for non-wellformed diagrams (relaxing WF3) raises some tricky problems such as: if
a zone z becomes split upon contour addition or deletion, how can one efficiently find
a marked point for each of the minimal regions that comprise z? For example, Figure
6 shows two parallel examples which adopt the SMPA (using the algorithm of [8]) in
which only the order of contour addiction has been varied. Whilst one of these gives a
valid solution, the other does not. In detail, the first two steps (a) and (b) in the figure
represent the addition of the first two contours (E and C) to the diagram. Then the two
cases are depicted: on the left we add first contour D and then contour B, whilst on the
right we first add B and then D. In the first case (on the left) the association between
the marked points and minimal regions is correct, with the two minimal regions of
zone {B} marked by points z0 and z2. However, in the second case (on the right) the
association is incorrect: there are two marked points associated to the same minimal
region (top, shaded) and no marked point associated the other minimal region (bottom,
shaded). The problem is that, in general, there is no easy way of discriminating between
the case on the left from the case on the right; by just analyzing the relation between
a marked point and the contours it is possible to discriminate between zones and not
minimal regions.
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Fig. 6. The influence of the order of contour addition on the marked points/minimal region asso-
ciation, by using the algorithms of [8]. The dotted contour is the one that is going to be added to
the current diagram.

We avoid such problems by adopting the MMPA in which each zone is associated
with a set of marked points (which comprises the set of crossing points laying on its
boundary). This approach requires the tracking of a larger number of marked points
but we accept this trade-off against a simpler marked point management (also making
implementation easier), since when a zone is split, we just need to correctly partition
the set of its marked points.

The MMPA is illustrated in Figure 7: a set of points marks each minimal region r,
including all of the crossing points on the boundary of r. Thus, each zone has marked
point set including all of the crossing points laying on its boundary (i.e the boundaries
of its constituent minimal regions). In the specific case in Figure 7, each marked point
marks one, two or four zones.

In the following we define a procedure for contour addition (with contour removal
omitted for space reasons), which satisfies:

Theorem 1. Let d = ⟨C,Z⟩ be an Euler diagram, satisfying WF1 and WF2 (i.e. with
WF3 relaxed). Then
i) If A /∈ C, then the procedure NewContour(d,A) computes the new collection of zone

descriptors for the zones Z ′ of d′ = ⟨C ∪A,Z ′⟩.
ii) If B ∈ C, then the procedure DeleteContour(d,B) computes the new collection of

zone descriptors for the zones Z ′ of d′ = ⟨C −B,Z ′⟩.
Moreover, both procedures:

1. compute, for each zone z ∈ Z ′ − {z0}, where z0 is the zone in the exterior of all
contours in d′, the set of marked points of the zone, MP (z), that is comprised of the
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Fig. 7. Multiple marked point approach (MMPA): in (a) each zone is marked by points including
all of the crossing points belonging to its boundary; (b) shows in grey the zone {B,C} and its
marked points; (c) a non wellformed Euler diagram (WF3 relaxed) with a zone {B}, shown in
grey, comprised of two minimal regions, utilising eight marked points.

set of all crossing points (or pseudo-crossing points) of d′ belonging to the closure
of z. There is a single marked point mp(z0) in the exterior of all of the curves of d′.

2. have running time O(|Z|+ |Cross(d)| log(|Cross(d)|)).

3.1 The algorithms

Initially, we consider the key case of Euler diagrams with WF3 relaxed (but WF2
and WF1 enforced). Subsequently, we will provide the ideas enabling the relaxation
of WF2 and WF1. For space reasons we present only the algorithm for contour addition
(omitting the algorithm for contour removal). Both algorithms are based on two auxil-
iary algorithms, ComputeContourRelationships (which computes the relationship of
a contour with the other contours in a diagram, and updates the marked point sets) and
ComputeSplitRegions (which computes the zone descriptors of the split zones using
Observation 1).

Definition 5. Let d = ⟨C,Z⟩ be a concrete Euler diagram and A a contour which is
not in C. Let

Over(A) denote the collection of all of the contours in C that properly overlap A; that
is Over(A) = {c ∈ C | int(A) ∩ int(c) ̸= ∅};

Cont(A) denote the collection of all of the contours in C that properly contain A; that
is Cont(A) = {c ∈ C | c /∈ Over(A) and int(c) ∩ int(A) = int(A)}.

For example, Figure 3 (a) shows diagram d and Figure 3(b) shows the addition of
contour A to d. We have Over(A) = {B,C}, Cont(A) = ∅ and Cross(A) contains
the four crossing points between A and the contours in C.

The methodology adopted makes use of the following low level computations, and
we assume that, given two contours A and B of an Euler diagram with WF3 relaxed,
we can quickly find:
1. the relationships between A and B; that is if A and B properly overlap, or if one

contains the other;
2. their crossing points (if A and B properly overlap);
3. the relationship between any given point x ∈ R2 and A; that is whether x belongs

to A, int(A) or ext(A).
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Fig. 8. The addition of contour A splits eight minimal regions determined by the eight arcs that
comprise A. However, it splits nine zones, eight of which are the distinct zones containing the
eight minimal regions that are split. The ninth zone {B} is split, without splitting any of its
constituent minimal regions, since one of its minimal regions is covered by A but the other is not.

Placing restrictions on the geometric shapes used for contours (which is common
in some applications) can enable particularly fast computations. For example, if each
contour is a simple geometric shape, such as a circle or an ellipse, these computations
reduce to solving a system of two quadratic equations (1 and 2) and a quadratic equa-
tion (3), which can be computed very quickly (with different methods having different
time/precision tradeoffs).

Algorithm ComputeContourRelationships: (i) computes the relationship between the
contours present in a diagram d (with WF3 relaxed) and a contour A; (ii) updates the
set of crossing points of d.

We will refer to Fig. 8 to assist with the explanation of the algorithms. Consider the
addition of the dashed contour A to the diagram in Fig. 8 without A. After the execution
of Algorithm ComputeContourRelationships we have Cont(A) = ∅, Over(A) =
{B,C,D,E} whilst Cross(A) is the set of eight crossing points created by the addition
of A.

Algorithm ComputeSplitRegions uses the sets output by Algorithm ComputeCon-
tourRelationships and calculates the collection of zone descriptors for the zones that
contain a minimal region of d − A split by A. The crossing points of A can be used to
decompose A into a set of arcs. This algorithm computes the zone descriptors of all of
the zones of d−A that have at least one of their minimal regions split by A.

In detail, the arcs are analysed in the sequence that they are met as one traverses the
contour; see Fig. 4 for an example. The region that is split by the first arc (x0, x1) is
determined the set of contours that properly contain A and then by checking which of
the contours that properly overlap with A contains the arc. Each successive region that
is split is calculated by computing the difference with the previously computed region;
this idea was present in Observation 1.

Contour addition. Algorithm 1 updates the collection of zone descriptors upon the
addition of a new contour A to a diagram d. There are two cases to consider. Firstly, if
Over(A) = ∅ then no new crossing points are created by the addition of A, and so A
forms a new connected component. Thus, A splits only the zone described by contours
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Algorithm 1: NewContour(d,A)

Input: An Euler diagram d = ⟨C,Z⟩ and a contour A such that A /∈ C.
Output: Z ′, the collection of zone descriptors of d′ = ⟨C ∪ {A},Z ′⟩.

1: (Cont(A), Over(A), Cross(A)) := ComputeContourRelationships(d,A)
2: if Over(A) = ∅ then // A does not properly overlap any contour present in C
3: s := Cont(A) // s is the zone split by A
4: Zs := {s} // Zs is the set of zones having a minimal region split
5: s.points := any point in A // the marked point for s
6: else
7: Zs := ComputeSplitRegions(d,A,Cont(A), Over(A), Cross(A))

8: Z ′ := Z
9: forall z ∈ Zs do

10: s := z // s is the old zone
11: n := z ∪ {A} // n is the new zone
12: Ms := Mn := MA := ∅
13: forall x ∈ s.points do
14: switch do
15: case x ∈ int(A) // the point x marks n
16: Mn := Mn ∪ {x}
17: case x ∈ ext(A) // the point x marks s
18: Ms := Ms ∪ {x}
19: case x ∈ A // the point x marks both s and n
20: MA := MA ∪ {x}

21: s.points := Ms ∪MA

22: n.points := Mn ∪MA

23: Z ′ := Z ′ ∪ {n} // The new zone n is added to the collection of zones of the diagram

24: forall z ∈ Z − Zs do
25: Mint := Mext := ∅ // Mint and Mext record the marked points of z that are in the

interior and the exterior of A, respectively
26: forall x ∈ z.points do
27: if x ∈ int(A) then
28: Mint := Mint ∪ {x}
29: else
30: Mext := Mext ∪ {x}

31: if Mext = ∅ then // if z is covered by A then z should be removed
32: Z ′ := Z ′ − {z}
33: else
34: z.points := Mext

35: if Mint ̸= ∅ then // if z is split or covered by A then a new region should be added
36: n := z ∪ {A}
37: n.points := Mint

38: Z ′ := Z ′ ∪ {n}

39: return Z ′
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in Cont(A) (in Fig. 2 (a), contour D splits only the outer zone, exterior to all other
contours, for example). Secondly, if Over(A) is not empty, then A splits several zones
(contour A in Fig. 8 splits several zones, for example). Algorithm 1 computes the split
zones in two steps: (i) the split zones which contain a split minimal region are computed
by Algorithm ComputeSplitRegions; (ii) the split zones which do not have any split
minimal regions are computed, together with the set of covered zones, by analysing the
relationship between the collection of marked points of the zones and the contour A.

For instance, in Fig. 8, the zones having a minimal region split by A are {∅, {C},
{B,C}, {B,C,E}, {B,E}, {B,D,E}, {B,D}, {D}} while the zone {B} is split by
A even though neither of its two minimal regions are split by A since one of them is
covered by A and the other is not.

In detail, when Over(A) is empty, A does not properly overlap any of the contours
in d and it does not generate any new crossing points. In this case there is exactly one
zone of d split, defined by Cont(A), and any point on A can be chosen as the marked
point for both of the zones of d+A that are described by Cont(A) and Cont(A)∪{A},
referred to as the old zone and the new zone respectively (lines 3− 5).

Thereafter the algorithm considers the marked points of each zone of d which has
a minimal region that is split by A (line 7). The variable s refers to the zone in d that
is split as well as the old zone that this becomes upon the addition of A in d′, the
variable n refers to the new zone that is created in d′ from s which is also inside A.
For each such marked point x, the algorithm checks if x is a marked point for just the
old zone, just the new zone or both (lines 13 − 20) in d′ (recorded using Ms, Mn and
MA respectively). The new zone n is added to the collection of zones of the diagram
(line 23). Subsequently (line 24) the algorithm checks the remaining zones (i.e. those
that do not contain any split minimal regions) looking for covered or split zones of
d. This is performed by verifying the relationship between the marked points of the
zone z ∈ Z − Zs and A (lines 26 − 30). In particular, if all of the marked points
belong to int(A) (i.e., Mext = ∅) then the zone z is covered by A and so the old
zone z is removed from the diagram (lines 31 − 32). Moreover, if at least one marked
point belongs to int(A) then the zone z is either split or covered and so a new zone is
generated and added to the diagram (lines 35− 38).

3.2 Relaxing the wellformedness condition WF2 and WF1

WF2. We extend the algorithms to also handle crossing points with multiplicity greater
than 2 (i.e., more than two contours crossing transversely at a given point). For Euler
diagrams with WF3 relaxed, we used Observation 1 in Section 3 to compute the set of
zones split by the addition (or removal) of a contour A. Although Observation 1 (i) holds
for Euler diagrams with WF2 also relaxed, part (ii) does not hold if the crossing point
xi+1 mod m has multiplicity greater than 2. Fig. 9 (left) presents a schematic diagram,
similar to that in Fig. 4, in which there is a crossing point, x2, with multiplicity 3.
Observation 2 provides the modification of the strategy to deal with diagrams that relax
WF2 (as well as WF3).
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Fig. 9. (left) A schematic diagram illustrating the need for Observation 2 when WF2 is relaxed
(c.f. Fig. 4). (right) The addition of A, yielding a diagram with WF1a relaxed. We have four
transverse crossing points (shown as filled dots) and one tangential intersection point (shown as
a hollow dot).

Observation 2 Let d be an Euler diagram with WF3 and WF2 relaxed. Let {x0, x1, . . . ,
xm−1} be all of the crossing points that we meet as we traverse the contour A from an
arbitrary point on A. If there are exactly ℓ ≥ 1 contours crossing A transversely at
a point xi+1 mod m then the zone descriptors of the zones that are split by the arcs
(xi, xi+1 mod m) and (xi+1 mod m, xi+2 mod m) differ by exactly ℓ contours, and these
are the contours that intersect with A comprising the crossing point xi+1 mod m.

The algorithms in Section 3.1 can now be altered to deal with the relaxation of WF2.
WF1. Firstly, we relax WF1a. Since tangential intersection points do not affect the
zones which are split by the corresponding arc (see Fig. 9 (right)), we adapt the algo-
rithm to deal with tangential intersections by simply ignoring them. Hence even the
relaxion of WF1a is straightforward.

Secondly, we relax WF1b, allowing concurrency. For this case, we assume that,
given two contours A and B of an Euler diagram, we can quickly: (i) check whether
they meet in a concurrent arc (i.e. a maximal non-discrete set of points of intersection).
(ii) check whether a concurrent arc is tangential (i.e. if a homotopy of the concurrent arc
to a point would leave a tangential intersection point; see Figure 10 left) or transversal
(i.e. if a homotopy of the concurrent arc to a point would leave a transverse crossing;
see Figure 10 right) and (iii) find the split points (the points where two contours that
meet in a concurrent arc separate).

The split points will play essentially the same role as the crossing points within the
extended algorithms: they will be used as marking points for zones and to compute the
set of zones which are split by the addition of a new contour A (noting that the crossing
points are also still used, as before). There are two cases to consider: (i) tangential
concurrent arcs and (ii) transversal concurrent arcs. For a tangential concurrent arc,
both of the split points of that arc do not affect the zones which are split (see Figure
10 left), and so we treat such points in the same manner as tangential intersections;
For a transversal concurrent arc, the first split point that we encounter as we traverse
the contour A does not affect the zone which is split, whilst the corresponding second
split point does affect the zone which is split (see Figure 10 right). Therefore, the first
point will be treated as a tangential intersection while the second one will be treated as
a transverse crossing.
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Fig. 10. The addition of A, yielding diagrams with WF1b relaxed. (left) The contour A creates
two transverse crossing points, x0 and x2, and one tangential concurrent arc between points x1

and x3 (shown as hollow dots). (right) The addition of contour A create three transverse crossing
points, x0, x2 and x4, and one transverse concurrent arc between points x1 and x3 (shown as
hollow dots).

3.3 Timing
We provide complexity analysis for the MMPA for Euler diagrams.

The invocation of procedure ComputeContourRelationships analyses the relation-
ship between A and each contour in C and updates the set of crossing points, taking time
O(|C|+ |Cross(d)| log(|Cross(d)|)).

Then, if there are intersection points, the procedure ComputeSplitRegions com-
putes the set Zs of zones having a split region and, for each such zone updates the
set of marked points. Hence the procedure ComputeSplitRegions requires O(|C| +
|Cross(d)| log(|Cross(d)|) steps.

Finally, for contour addition, lines 9−23 and 24−38 respectively compute the col-
lection of marked points for zones having, and not having, split minimal regions, respec-
tively. We can compute this two collections in O(|Z|+ |Cross(d)|) steps. Collectively,
algorithm NewContour operates within time O(|Z|+ |Cross(d)| log(|Cross(d)|)).

4 Related work and conclusion
The relationship of the Euler diagram abstraction problem with arrangements of Jordan
curves in the plane [9] was discussed in [6]. We note that in our approach we do not need
to store or manipulate graphs, but we work directly with the diagrams utilising its in-
tersection points and the domain specific data structures, and we obtain a methodology
with a straightforward means of implementation.

In [22], an application is presented that interprets an Euler Diagram sketched with a
pen or a mouse, and calculates the abstract diagram. The authors claim complexity that
is asymptotically similar to ours, but this claim is not substantiated, with the paper not
providing details of how the Zone List Refinement Step is performed. The only apparent
method that would be effective with the generality that they describe is a pixel based
inspection of the drawing (commonly available in programming languages) but which
has the drawback of being dependent on the resolution of the image. Our methodology
has the added advantage of being more general in that it is not dependent on the image
of the contours, but only on their analytical representation.

In [23], a methodology is provided which takes a set of polygons (meaning regions
determined by sets of non-overlapping curves) and outputs a set of non-overlapping
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polygons, which is essentially the boundary of a zone of the diagram in our termi-
nology; this enables the computation of polygon operations such as union, intersection,
difference and clipping. A graph based representation is constructed which consists of a
binary tree structure, encapsulating the structure of non-overlapping contours, together
with a winged-edge data structure which captures sets of polygons as a graph (indi-
cating the intersection points) and provides a simple means of traversing faces of the
graph. Their algorithm “corrects” input containing degeneracies (e.g. zero area contours
or coincident edges, meaning concurrency), whereas we wish to develop a method that
explicitly considers them. For ‘diagrams’ that consist of more than one connected com-
ponent, they compare each output contour with the others to determine if one is inside
the area of another or if they co-exist within the same area, and they record these contour
relationships in the hierarchical tree structure of the contours. Our approach (utilising
marked points) provides removes the need to compute these graph structures and then
to operate on them, whilst providing a means to explicitly capture the ‘singularities’
that may occur within certain contexts or application domains.

In [1], they prove that the Grünbaum encoding uniquely identifies simple Venn dia-
grams (i.e. they are wellformed) which are monotone and polar symmetric, and develop
an algorithm utilising a matrix representation to enumerate the monotone simple sym-
metric 7-Venn diagrams. The codes considered in the paper rely upon numbering the
curves (adopting certain conventions based on the curve segment in other and inner
faces to fix the choices) and for a given curve recording the sequence of curve numbers
that are given as one traverses the curve. Our methodology applies to a much wider
class of diagrams, but investigating the computation of encodings from the data struc-
tures utilised in our algorithms is an interesting line of future investigation.

In this paper, we have developed a new methodology, called the multiple marked
point approach, which enabled us to develop algorithms to solve the Euler diagram ab-
straction problem for nonwellformed Euler diagrams relaxing the constraints imposed
on the previous state of the art in [8], which utilised the single marked point approach
and was limited to the wellformed diagram case. Furthermore, these algorithms extend
in a natural manner to enable the processing of generalised Euler diagrams (i.e. unions
of regions with holes).

This enables greater flexibility for users of software tools, enabling them to work
with nonwellformed diagrams where it is convenient, or necessary, to do so. For exam-
ple, during user construction of wellformed diagrams if the user is permitted to con-
struct intermediary non-wellformed diagrams then this aids them in adopting a natural
construction method, whilst it can be very complex, or even impossible, to do so without
allowing passage through non wellformed diagrams. Furthermore, the extension to gen-
eralised Euler diagrams ensures that every abstract diagram has a concrete realisation
(which is not the case for wellformed diagrams, as shown in [5]).

The algorithms presented in this paper are available in a Java library, although to
simplify implementation (and to improve the efficiency) it restricts the geometric shape
of contours to be arbitrarily rotated ellipses [7]. This enables the specification of each
contour in parametric form, enabling easy implementation of operations such as choos-
ing a point on an arc, or checking contour relationships of intersection or containment.

The applications of this work are widespread since the algorithms can be utilised in
any software system that utilise Euler diagrams or their extensions.
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