
Policy Enforcement and Verification with Timed
Modeling Spider Diagrams

Paolo Bottoni
Dipartimento di Informatica - Università di Roma Sapienza

Email: bottoni@di.uniroma1.it

Andrew Fish
School of Computing, Engineering and Mathematics,

University of Brighton, UK
Email: andrew.fish@brighton.ac.uk

Abstract—Timed Modelling Spider Diagrams (TMSDs) are a
visual language which supports the modeling of object-oriented
systems with time constraints. They are used to define policies
in which TMSDs specify admissible evolutions of the state of
some instance. We define a process for deriving a rewriting
system from a policy specification, so that the generated system
defines a language of sequences of basic TMSDs satisfying the
policy. Moreover, by identifying the different ways in which the
constraints set by the policy can be violated, we can produce
special rules whose application results in erroneous sequences.
The resulting transformation systems can be used both to simulate
possible behaviours when reasoning on the definition of policies
and to test policy verification algorithms.

I. INTRODUCTION

Temporal policies are a means of specifying constraints
on the evolution of systems, to which any model of the
dynamics of that system, or any operational realisation of the
system, must adhere, independently of the way in which this
dynamics is defined. The following types of problems ensue:
(1) if the dynamics is completely dictated by the progress of
time, suitable mechanisms must be devised to enforce system
evolution as time-outs are reached; (2) if the system can evolve
based on external events, checks must be dynamically executed
to ensure that system reactions are consistent with the temporal
constraints on the possibility of performing some transitions;
(3) if systems present hybrid characteristics, i.e. both reactivity
to external events and time-based evolutions, the consistency
of the resulting dynamics must be checked.

We approach the problem of checking the consistency of
dynamics, based on a recent extension of Spider Diagrams,
allowing the specification of temporal policies expressing
constraints on the intervals at which elements of some given
type can be in some given state [1]. Spider Diagrams (SDs)
are a well known notation for visual modeling and reasoning
based on Euler Diagrams (EDs). In an SD a spider is a
tree with nodes in zones determined by a set of curves; it
is used to indicate the presence of an element in one of the
corresponding subsets. In a series of papers [1], [2], [3], we
have extended SDs in two directions. First, we have introduced
the possibility of annotating SDs with temporal information, to
specify temporal constraints on the intervals at which a set or a
subset can exist or is allowed to be empty, or an element can be
in a given subset, or exist at all. These Temporal SDs (TSDs)
can also be used to describe actual configurations of a system,
i.e. which elements are in which subset at which interval of
time. The usual notion of derivation between two SDs can
then be extended to check that a configuration d1 derives from

a configuration d2, while satisfying the temporal constraints
established on d2. Second, we have provided an object-oriented
interpretation of a restricted form of SDs, defining Modeling
SDs (MSDs) at two levels. At a specification level, spiders
represent types and curves represent states. If a spider “is
in” a state, then the state is an admissible one for instances
of that type. At an instance level, a spider represents an
instance: if it inhabits a zone this means that the instance
is in the state represented by the zone. By putting together
the two extensions we obtain Timed Modeling SDs (TMSDs)
where we can express constraints on the intervals at which an
instance of a type can be in a given state, or take snapshots
of a configuration of instances and check their conformance
with the constraints expressed at the type level. We have used
TMSDs to define policies, expressing admissible evolutions of
the state of the instances, and introduced the notion of story, as
an actual evolution of some instance, conforming to the policy.

In this paper, we define a method to derive all the possible
stories conforming to the specification of a policy, by con-
structing visual rewriting rules whose firing is guarded by some
temporal constraint, derived from the temporal annotations
associated with the TMSD in the policy. In particular, we
assume the availability of a universal clock associated with
a policy and of timers set according to the intervals specified
in the policy, and generate a set of rules describing the possible
evolutions of the state of instances of that type, conditioned
on the time marked by the clock. For each evolution triggered
by some external event, the event must occur at a time within
the interval in which the antecedent of the rule is valid, while
for evolutions dictated by time-outs, the rule is assumed to be
applied exactly at the time separating the interval of validity of
the antecedent and the interval associated with the consequent.

The generated rules can be used for different purposes, such
as to simulate possible runs of the system, to assess temporal
properties of the system via model-checking, or to perform
static analysis to detect conflicts in the policy. Moreover, we
generate rules whose execution results in the violation of
some constraint, so that they can be used to test the correct
implementation of the constraint-checkers (if an execution is
simulated, the constraint checker should detect the violation).

One aim of developing the relatively simple form of
the visual language of TMSDs for policy specification is to
provide a means of representation acting both as a formal
specification due to the underlying theoretical machinery and
as an accessible front-end for use by all stakeholders, including
policy makers. The definition of the theoretical aspects is
propaedeutic to the production of interactive tools, to be tested,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/188254081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

together with the notation, on the stakeholders.

Section II provides background on SDs and their timed and
modeling extensions, introducing a running example of policy
specification. Section III presents a notion of rewriting for
TMSDs, whilst Section IV illustrates the procedure to generate
rewriting systems defining the language of the stories for a
policy. In Section V we prove the correctness of this procedure
and discuss how to construct invalid sequences. We discuss
related work in Section VI and conclude in Section VII.

II. BACKGROUND ON TMSDS

An Euler diagram (ED) is a collection of labelled simple
closed curves in the plane, decomposing it into connected
minimal regions. A zone is a region inside one set of curves
and outside the remaining curves; zones may be shaded. All
diagrams have a “boundary contour”, drawn as a rectangle and
labelled by U ; all regions are inside U . The semantics of EDs
are given by asserting that the interior of the curves represent
sets; this extends naturally to the intersection, containment and
disjointness of sets; shading places an upper bound on the set
cardinality (a shaded zone denotes an empty set in an ED).

A unitary spider diagram1 (SD) is an ED augmented with
spiders, i.e. trees whose vertices (called feet) are placed in
zones; no two vertices of the same tree lie within the same
zone. An existential spider, depicted as a circular dot, denotes
some generic element; a constant spider, depicted as a squared
dot, denotes a specific individual. The habitat, i.e. the set of
zones inhabited by a spider, determines the set containing the
element represented by the spider: if a zone is shaded, the
only elements in the represented set are those represented by
the spiders in it. Definition 1 formalises these concepts.

Definition 1 (Spider Diagram): A unitary spider diagram
d is a tuple (C,Z, sh, S, h) such that:

• C = C(d) is a finite set of curve labels with boundary
curve label U ∈ C.

• Z = Z(d) ⊆ {(X,C \X) | X ⊆ C ∧ U ∈ X} is a finite
set of zones, with ({U}, C \ {U}) ∈ Z , and c ∈ C =⇒
∃X ⊆ C[c ∈ X ∧ z = (X,C \X) ∈ Z].

• sh : Z → B is a Boolean shading function on zones. A
zone z for which sh(z) =true is said to be shaded.

• S = S(d) is a finite set of spider labels, partitioned into
the subsets of existential, Se, and constant, Sc, spiders.

• h is the habitat function h : S → P(Z)\{∅} Each unique
pair (s, z) ∈ S × Z with z ∈ h(s) is called a foot of s.
Let F = F (d) denote the set of all feet in d.

We call diagram ed = (C,Z, sh) the underlying ED for d.

The notion of SDs was extended in [1], [2] to incorporate
temporal specifications by annotating elements of d with inter-
vals and interval specifications. The latter generalise intervals
to permit the use of variables (distinguished between time
variables ranging over timestamps, and arithmetic variables,
ranging on natural numbers), together with sets of constraint
over these variables. A valid assignment of values to variables
satisfies the conjunction of all the constraints over a set of

1In this paper, we deal only with unitary SDs for simplicity.

interval specifications. A timed-SD is an SD d together with
a function ω assigning interval specifications to every curve,
zone, shaded zone, spider, or spider foot in d. Given a timed-
SD d and an assignment A which is valid for all the interval
specifications in d, A is time-consistent if it respects the natural
constraints on the lifetime of diagram syntax (i.e. feet can only
exist within the time period that both the spider and zone live;
shading can only be present when its zone lives; zones must
live within the lifetime of the curves).

Fig. 1 shows an example of timed-SD, based on the law
about coming of age in Italy, passed on March 10, 1975 and
still valid on the day the diagram was drawn. The annotations
indicate that paolo (a specific person represented by a
constant spider) became of age on November 29, 1978 and
will remain so until some moment in the future (he is still
alive at the time of drawing, as indicated by the constraint
on the temporal variable Y). Any person, represented by an
existential spider, born after March 10, 1975 (the birth date
providing an assignment to the temporal variable Z) will (or
has) become of age on the day after his or her 18th birthday
(the exact number of days depending on the number of leap
years to that date, as calculated by a function leap) and will
remain (or has remained) of age for the rest of his or her
life, as indicated by the temporal variable Q. Note that even
if Y and X have equal constraints, they can receive different
assignments, one at the time paolo ceases to be represented,
and one when (and if) the law changes. All intervals and
interval specifications are given at the granularity of days,
as indicated by the subscript D. The operator ⊕ denotes that
the number of units (at the granularity level indicated by the
subscript) in the arithmetical expression on the right must be
added to the timestamp or temporal variable on the left.

Fig. 1. A timed-SD concerning coming of age in Italy.

A basic timed-SD associates an interval specification with
an entire diagram instead of individual elements (i.e. the same
interval is assigned to every diagrammatic element in d). A
sequence S of basic timed-SDs is contiguous, with respect
to an assignment A, if A produces contiguous intervals for
consecutive diagrams in S. The resulting sequence S ′, has the
same diagrams as S, but annotated with intervals evaluated
according to A. Then, S ′ represents the evolution of a system
over a time period, with each diagram d ′

i in S ′ specifying the
system configuration over the interval of existence for d ′

i.

A second extension to SDs, permits the expression of type
vs. instance information, providing a closer link to the object-
oriented modelling paradigm than standard SDs [3], [1]. In a
type-SD d, all spiders are constant spiders named by types and
all curves are named by states. In an instance-SD d ′ all spiders

are constant and represent instance identifiers, all curves are
named by states, no zone is shaded and every spider has
exactly one foot. Then d′, together with a surjective function
Θ associating each spider in d′ with a spider in a type-SD d,
is an instance-SD for d. Type-SDs place constraints over the
admissible states for a set of types, while instance-SDs present
configurations of instances in some states, to be checked for
conformance to the constraints on their respective types.

The two extensions of SDs were brought together in [1] to
define timed-SD policy specifications (or policy for short); we
paraphrase the definition from there.

Definition 2 (Policy): A policy is a construct Π =
(validity, trigger, condition) where:

1) validity is an interval specification [P,Q], where each of
P and Q is either a fixed timestamp or a temporal variable
associated with an event.

2) trigger is a type-SD d annotated with W , W being either
the special temporal variable WHEN, or a fixed timestamp
such that: a) if P is also a timestamp, P ≤ W ; b) if Q
is also a timestamp, W ≤ Q.

3) condition is a set of sequences of basic timed type-SDs,
where each sequence is bound to be contiguous, and
the only admitted time variable is WHEN, and only if
it appears in the trigger. For simplicity, we will assume
an identity between the time at which the trigger occurs
and the starting time of each sequence.

Fig. 2 shows an example of a policy for a parking system,
where: (a) the policy is valid from the time that the meter is in
place until a policy change; (b) the trigger is the event that a
car starts enjoying free parking; (c) the car parking state may
evolve as follows: after a car enters the free parking state it can
remain there for any length of time X up to 60 minutes, after
which it must either be running or be toll-parking for at least
120 minutes (indicated by the constraint at the bottom) before
it can return to free parking. We adopt a slight modification
with respect to the analogous policy presented in [1], by
explicitly representing within the policy the constraint on the
next possible occurrence of the trigger, in order to simplify
the generation of rules, which would otherwise require the
management of a special case. This, however, does not dictate
that the car return to free parking, as Y has only a lower limit.

Fig. 2. A simple example of a policy for a parking system.

In this simple case, the condition presents only one se-
quence and the interval specifications make use of the arith-
metic variables X, Y and Z, and of the variable WHEN, also
used to annotate the type-SD in the trigger. The sequence
at the top of Fig. 3 is an example of a valid story for the
policy (i.e. a contiguous sequence of instance-SDs satisfying
the corresponding type-SDs), whilst the sequence at the bottom
is not a valid story, since the instance ZX12 of type Car
returns to the FreeParking state before it is permitted to do so.

III. REWRITING SYSTEMS FOR SDS

In order to provide a mechanism to test policies, we
need to introduce a notion of transformation of instance-
SDs through which to model their dynamic behaviour and
check their consistency with policies. In particular, due to the
characteristics of policies, we only need to consider instance-
SDs, which present only curves, zones (without considering
the shading function) and spiders, where a spider is composed
of a single foot living inside some zone. We adopt a simple
model for spider diagram rewriting, based on the following
rule schemes for atomic operations:

• Spider creation. A foot of a new spider is added to a
zone.

• Spider deletion. The single foot of an existing spider is
removed from the diagram.

• Spider movement. The single foot of a spider is moved
from one zone to another zone.

Fig. 4 gives a visual representation of the three rule
schemes for spider creation, deletion and movement in the
form of partial morphisms between typed graphs, where the
types represent the different sorts of elements. Since spiders are
composed of single feet, we can simply present the modifica-
tions of the relation of a spider with the single zone it inhabits.
Each scheme is associated with a rule signature. In particular,
we define three signatures, shown in Table I, and describe
their effect when applied to a diagram d1 = (C1, Z1, S1, h1)
by presenting the variations from d1 in the resulting diagram
d2 = (C2, Z2, S2, h2). Which diagram plays the role of d1 or
d2 is derivable from the orientation of the arrows in Fig. 4.

Fig. 4. The visual rule schemes for spider creation, deletion or movement.

The presence of the same identifier in the left- and right-
hand sides of a scheme indicates that the element is preserved
in the transformation. An element not identified across the two
sides indicates that the element is created, if it appears only
on the right-hand side, or deleted, if it appears only in the
lefthand sides. All elements not mentioned in a rule scheme are
left unchanged by the application of a concrete rule following

Fig. 3. Examples of valid (top) and invalid (bottom) stories for the policy in Fig. 2.

that scheme. All the curves and zones are always preserved,
as these represent the states on which the policy is defined.

The effect on the habitat function is described with refer-
ence to its representation as a collection of pairs (spider, zone).
Each scheme is instantiated with elements of the sorts indicated
in its arguments. Concrete rules are defined by instantiating the
parameters in the rule schemes, as indicated in Table I. In the
signature, Label indicates an element which is a label, either
already present in d1 or to be introduced in it, SoL indicates
a set of labels and Pair constructs pairs of elements.

TABLE I. SIGNATURES AND EFFECT FOR RULE SCHEMES.

1) createSpider(Label,Pair(SoL, SoL))
createSpider(l, (X1, Y1))=d2), where l �∈ S1, S2 = S1 ∪
{l} and h2 = h1 ∪ {(l, (X1, Y1))}

2) deleteSpider(Label)
deleteSpider(l)=d2, where l ∈ S1 and S2 = S1 \ {l} and
h2 = h1 \ {(l, h1(l))}

3) moveSpider(Label, Pair(SoL, SoL), Pair(SoL,
SoL))
moveSpider(l, (X1, Y1), (X2, Y2))=d2, where l ∈ S1 and
h(l) = (X1, Y1) and h2 = h1 \ {(l, (X1, Y1))} ∪
{(l, (X2, Y2))}.

The rewriting rules presented here differ from reasoning
rules2 for SDs, see e.g. [4], in that reasoning rules are sound,
(i.e. the syntax changes indicated by the rule imply logical
inference) and are used to derive correct implications out
of a state of affairs represented by an SD. On the contrary,
rewriting rules are not required to be sound, as they are
transformation rules modeling possible evolutions of a state of
affairs. In principle, the integration of rewriting and reasoning
rules can be used to derive updated information out of each
new configuration. A Delete Spider rule is also included in the
reasoning system of [4], where it deletes all feet of a spider, if
none of them is included in a shaded zone. This is equivalent
to rewriting according to deleteSpider in the context of
instance-SDs (no zone is shaded, all spiders have a single foot).

2Which also actually define rule schemes.

In the context of policy modeling, we assume that all
rewriting processes are conducted with reference to an ED
which remains stable during the whole process and which is
derived from merging all of the underlying EDs of the SDs in
the policy, as described in Section IV.

IV. GENERATING REWRITING SYSTEMS FROM POLICIES

In order to generate a rewriting system for the production
of stories conformant to a policy, we enhance timed modeling
SDs (i.e. instance-SDs and type-SDs) with two new types
of element: Timer, with an attribute end, and Clock,
providing a method now() which performs time observations
and returns the corresponding timestamp. In particular, we
associate timers with interval specifications in a policy. An
assignment α, defined for the variables in a specification s,
induces a valuation Vα of s, from which an interval is = Vα(s)
is derived. A corresponding instance of Timer will have the
value of end set to the latest timestamp admissible for is, or
UNDEFINED if there is no such timestamp, i.e. the end of
the interval is unconstrained. A special interval timer τval is
defined to store information on the validity interval [P,Q] for
the policy. If Q is a variable associated with an event, then
τval.end=UNDEFINED. A single instance of Clock, χ, is
present in each diagram, marking a universal time. A rewriting
process starts with an axiom, which is a basic timed instance-
SD composed of the diagram in the policy trigger together with
a timer defined according to an observation on χ. Namely, if
the trigger is associated with the temporal variable WHEN ,
then this variable is assigned the value returned by performing
now within χ, possibly determining the value of end for the
timer. The timer will then be replaced with new ones, as the
transitions progress through the diagrams in a sequence.

Rule application is conditioned on satisfying the tempo-
ral constraints set by the policy. A condition is uniformly
imposed: each rule is allowed to fire only if the timestamp
returned by χ.now() is within the validity interval for the
policy, as recorded in τval. We do not present conditions of
this latter type, nor do we explicitly represent τval, in the
concrete representation of rules. Transitions are considered to
be instantaneous, but each application of a rule is preceded

by a time observation, i.e. an invocation of now() on χ.
A condition of time progression holds: for a sufficient long
iteration of rules, χ.now() will return increasing values.

We present the procedure for generating rules from a policy
with reference to the pseudocode in Table II. The procedure
starts by initialising the ED variable to the ED underlying the
trigger type-SD, as evaluated by the createED() function,
omitting the spiders and the shading in it. After that, the
procedure iterates through all of the sequences in the condition
to merge all of the underlying EDs in the policy. To this
end, for each basic diagram in a sequence the function
EDmerge() is applied, having as arguments the current
diagram in ED and the ED underlying the basic diagram
under consideration, stripped of shading, as resulting from
the application of extractED(). The overall effect is to
construct an ED comprising the set of all the curves appearing
at least once in the policy and a minimal set of zones which
cover the zones of the underlying EDs3 in the policy (i.e. all
of the zones appearing in any underlying ED in the policy can
be obtained by removing some of the curves of the constructed
ED, and no zone appears in the constructed ED which is not in
the underlying ED for some diagram in the policy). Through
this merging proccess, all the generated rules are defined on
the same underlying ED. As an example, Fig. 5 shows the
underlying ED on which the car parking policy is defined.

Fig. 5. The merged ED for the parking policy of Fig. 2.

The rest of the procedure creates a collection of rules whose
application produces the admissible changes in habitats of spi-
ders according to the sequences in the policy conditions. Each
rule is defined on the underlying ED produced by the previous
steps. We assume that each sequence in condition starts with
the trigger and we add a rule to RSPS[i][k][s] for each
change of habitat of the spider s derived from a comparison
of the two SDs, named L and R, obtained with extractSD
from the k-th pair of the i-th sequence of condition 4. To enable
this comparison the procedure computes the habitat of s
in the two diagrams L and R. Each rule is an instantiation of
one of the schemes of Table I and creates, moves or deletes a
spider, according to its presence/absence or change of habitat
in the two diagrams. Note that we are deriving rules at the
instance level, i.e. relations between pairs of instance-SDs,
from the comparison of pairs of type-SDs. Since in a type-SD
a spider can have feet in different zones, we have to produce
a rule for each possible variation in the habitat of the instance
spider compatible with the habitat of the corresponding type
spider. For example, the second diagram in the sequence in
the condition of Fig. 2 presents two zones in the habitat of
the Car spider, while in the other two diagrams the spider

3We only require a covering set of the set of zones in which spiders appear,
but this construction is more natural.

4A policy might refer to several type spiders and define possible combina-
tions of their habitats.

can inhabit only one zone. As a consequence, the procedure
produces two movement rules for both the first and the second
pair, one for each zone in the habitat. For many-footed spiders,
this creates also identical rules, used for subsequent merging,
but then removed from the final collection.

Besides rules derived from consecutive pairs of SDs, we
need to derive rules for each diagram in the sequence which
presents more than one zone in the habitat of a type spider,
as this indicates that instances can be in any of those zones
during a certain interval. Hence, the procedure creates a rule
for each possible movement between these zones. We store
such rules in the RSPS[i][k][s] position, where k denotes
the pair where the diagram with multiple habitats first occurs.
For example, from the second diagram in the condition of
Fig. 2 we derive rules which allow a car to move between the
states TollParking and Running.

Since the creation, deletion or movement of several spiders
is possible, but the rules so far consider only single spiders, the
function mergeRules() is used to produce rules resulting
from the overlapping of all the rules in RSPS[i][k] (i.e.
those created for different spiders in the same pair). In partic-
ular, each merged rule presents in its L (resp. R) component
a foot for each spider, which appeared in one of the zones
in the L (resp. R) component for at least one of the original
rules in the set. The merging process considers only rules
created for different spiders, i.e. it does not merge rules for
the same spider derived from a diagram with multiple zones
in its habitat. Since all the rules operate on the same underlying
ED and each rule concerns a different a single-footed spider,
the overlapping results from placing each spider foot in the
corresponding zone, after renaming identifiers to avoid naming
coflicts. The set of merged rules for the k-th pair is then placed
in RSP[i][k]. Finally, makeSet() flattens all the rule sets
in RSP[i][1],. . . ,RSP[i][l] for all the pairs in the i-th
sequence of length l + 1 into a single set, placed in RS[i].

To avoid cluttering the presentation, we have considered
only the construction of rules, but actually all the generated
rules are augmented with suitable time conditions. Indeed,
if cnt is the position of the first diagram in a pair in
a sequence, we have a corresponding interval specification
in intervals[sequence][cnt]. A partial valuation of
these intervals is obtained by performing a time observation
(i.e. an invocation of now()) at the occurrence of the trigger,
and assigning the resulting timestamp to the WHEN variable,
if it exists. In particular, this observation fixes the start time
of the interval at intervals[sequence][1]. If W for
the trigger is a timestamp, then the sequence is assumed to
start when W equals now(). For all rules where the left-hand
side is generated from a diagram annotated with an interval
ending with a variable subject to a constraint, we condition the
application of the rule to a check that the time of application is
within that constraint. If the two diagrams are such that the first
is annotated with an interval ending at a specific value (under
the valuation established by the time observation associated
with the trigger), then the rule is associated with a condition
that enables its application exactly at the time marking the start
of the interval associated with the second diagram.

As to complexity, the rule space grows with the sum of
the products of the habitat sizes between consecutive diagrams
for each spider, and with the product of the number of spiders.

TABLE II. THE PSEUDOCODE OF THE PROCEDURE FOR RULE GENERATION.

procedure g e n e r a t e R u l e s (P o l i c y (v a l i d i t y , t r i g g e r , c o n d i t i o n)) : Ru l eSe t [] : : =
ED=ex t r a c tED (t r i g g e r) ;
foreach sequence in c o n d i t i o n { foreach b a s i c in sequence { ED=EDmerge (ED, ex t r a c tED (b a s i c)) ; } }
foreach sequence in c o n d i t i o n {

RS[sequence] = new Ru l eSe t [s i z e (sequence)] ; c n t = 1 ;
whi le cn t < s i z e (sequence) {

L := ex t r a c t SD (sequence [cn t]) ; R = ex t r a c t SD (sequence [cn t + 1]) ;
RSP [sequence] [c n t] = new Ru l eSe t [numberOfSp ide r s (L)] ;
foreach s p i d e r in L {

RSPS [sequence] [c n t] [s p i d e r] = new Ru l eSe t () ;
foreach oldZone in h a b i t a t (L , s p i d e r) {

foreach newZone in h a b i t a t (R , s p i d e r) { RSPS [sequence] [c n t] [s p i d e r] . add (new Rule (ED, moveSpider , o ldZone , newZone)) ; }
}
i f (h a b i t a t (R , s p i d e r)== n u l l) { RSPS [sequence] [c n t] [s p i d e r] . add (new Rule (ED, d e l e t e S p i d e r , s p i d e r)) ; }
foreach (zone1 , zone2) in h a b i t a t (L , s p i d e r) { RSPS [sequence] [c n t] [s p i d e r] . add (new Rule (ED, moveSpider , zone1 , zone2)) ; }

}
foreach s p i d e r in R \ L {

foreach newZone in h a b i t a t (R , s p i d e r) { RSPS [sequence] [c n t] [s p i d e r] . add (new Rule (ED, createSp ider , s p i d e r , newZone)) ; }
}

RSP [sequence] [c n t] = mergeRules (RSPS [sequence] [c n t]) ; L = R; cn t = cn t +1 ;
}
RS[sequence]= makeSet (RSP [sequence]) ;

} re turn RS ;

The procedure for rule construction is guaranteed to terminate,
since it only depends on the diagrams in the policy condition.
While loops can start during rule application, time progression
will make them terminate if the policy validity limit is reached.

A. Applying the procedure to the running example

We present the generated rules for the policy of Fig. 2,
based on the underlying ED of Fig. 5. Figs. 6 and 7 each
show one rule for each pair of rules obtained by instan-
tiating the moveSpider rule scheme via the procedure
generateRules() on the example policy. We use a con-
crete presentation for rules, where the universal clock is
represented by the icon of an analogical clock, and timers
are represented by an agenda icon. All time information is
expressed in terms of minutes. The rule in Fig. 6 models a
situation where a car leaves the free parking state to enter the
running state (the other rule in the pair models transition to the
toll parking state). Conforming to the first two diagrams in the
policy condition, this can occur at any time before the end of
the parking permit period (i.e. for any T≤E1=WHEN⊕60). The
existing timer is removed and a new one is started, recording
the fact that for 120 minutes, after the time T when the rule
is fired, the car cannot enjoy free parking.

Fig. 6. A rule for leaving the free parking state.

The rule in Fig. 7 models the return of a car to the free
parking state from toll parking, the other rule in the pair
modeling return from the running state. This can only occur
if the current time is more than 120 minutes after the time
that the car was last observed in that state, as required by the
interval specification associated with the second diagram in the
condition. Again, the current timer is deleted and a new one

is created which will be used to check that the car does not
stay longer than 60 minutes in that state.

Fig. 8 shows one of the two rules derived from the presence
of a two-footed spider in the second diagram of the sequence,
the other rule being symmetrical. In this case, the timer is
preserved and no check is performed on the current time.

Fig. 7. A rule for returning to the free parking state.

Fig. 8. One rule for alternating between states other than free parking.

Since there is only one sequence in the condition, and
only one spider, all the produced rules derive from the rule
sets at rules[seq1][cnt][Car], for cnt=1,2. In all the
considered cases, rules appear in pairs due to the existence of
spiders with two feet in the second diagram in a sequence. As
only one spider appears in the policy, no rule merging occurs.

Fig. 9 presents a more complex parking policy, for cars
with trailers. Both the car and the trailer can park freely for at
most 60 minutes. According to the first sequence, the car has
then to leave, while the trailer can remain in free parking for
other 5 hours at most5. They can then be both running, and are
not allowed to use free parking again until one day has passed
from the first entrance. For the second and third sequences, if
car and trailer leave free parking together, to be either running

5All interval specifications are meant to refer to minutes.

or toll-parking, they can re-enter the free parking state after
12 hours from the first entrance.

Fig. 9. A policy for parking of car and trailers.

The execution of generateRules on this policy pro-
duces three sets of rules, one for each sequence, all of them
defined on the underlying ED extracted from the second SD in
the first sequence. Each rule describes the movement of at least
one spider, but all the rules generated for the second and third
sequence model the simultaneous movement of both spiders.
Since the car type spider has two zones in its habitat in the
second SD of the first sequence, the first two pairs of diagrams
in the first sequence generate two rules each, and another two
rules are generated for the second diagram. In the first pair of
rules, the trailer remains fixed, while the car moves to one of
the running or toll parking states. For the rules generated from
comparison of the second and third diagram, the trailer moves
to the running state in any case, whilst the car remains in the
running state, or moves to it. Finally, in the rules generated
from the second diagram the car can alternate between the
running and toll parking states.

The first two rules from the top in Fig. 10 are generated for
individual spiders during the execution of generateRules
by comparing the second and third diagram in the first condi-
tion of the policy of Fig. 9. The rule at the bottom is produced
from the first two, which are then removed from the collection,
during the execution of mergeRules.

V. CORRECTNESS OF THE CONSTRUCTION

In order to ensure that the generated rules are sufficient
for the exploration of the entire state space, we consider the
structure of policies, under the assumption that the time of
the trigger establishes a common reference for all the time
constraints in the policy. We observe that each rule originates
either from the difference between two consecutive diagrams
in a sequence, or from the presence of more than one foot
for the same spider. Each type of rule can have some specific
form of effect on timers and of checks on the value read on the
universal clock, modeling a time observation. In the following,
we assume that the SDs in the policy have been normalised to

Fig. 10. Rules for individual spiders and merged rule for the car/trailer policy.

the same underlying ED, by the application of mergeED().
Theorem 1 systematises these observations.

Theorem 1: Given a policy Π containing only unitary
SDs6, the procedure generateRules generates a collection
of rules sets, which collectively allow the construction of all
and only the possible stories satisfying Π.

Proof: Let Π be a policy; then any story satisfying Π
must start with an instance-SD conforming to its trigger and be
constituted of a sequence Σ of timed instance-SDs, conforming
with one of the sequences C1, . . . , Cn of type-SDs in the
condition of Π. Let Tr denote the trigger of Π and C l be
the sequence (of length k) to which Σ conforms. Note that
Tr and the first timed-SD in Cl consist of the same SD,
but with distinct temporal annotations. We represent Σ as a
chain of transitions d1 ⇒ . . . ⇒ dn, where d1 is an instance-
SD conforming with Tr and di �= di+1 for i = 1, . . . , n,
with each transition occurring in correspondence with a time
observation ti, such that the associated intervals are of the
form I i = [ti−1, ti]u and I i+1 = [ti ⊕ 1, ti+1]u, with u the
minimum granularity for a time observation. Let us consider
that the trigger occurs at time t0 (i.e. either W is the timestamp
t0 or WHEN is assigned the value t0).

For stories with exactly one instance s of type θ (iden-
tifying an instance and its type with the spiders s and θ
in the corresponding instance- and type-SDs), each diagram
differs from the previous one only for the definition of the
habitat h(s), i.e. s moves from one zone (state) to another. Let
(X1, Y1) = hi(s) in di and (X2, Y2) = hi+1(s) in di+1. We
have then three cases: (1) (X1, Y1) and (X2, Y2) are both in
hj(θ) for a certain diagram of Cl, say dj , and the concatenation
[ti−1, ti+1] of the intervals I i and I i+1 is within a valuation for
the interval specification Ij for dj ; or (2) (X1, Y1) ∈ hj(θ) in
dj and (X2, Y2) ∈ hj+1(θ) in the contiguous diagram dj+1 of
Cl, with I i within a valuation of Ij and I i+1 within a valuation
of Ij+1; or (3) (X1, Y1) ∈ hj(θ), (X2, Y2) ∈ hj+1(θ) and
{X1, Y1), (X2, Y2)} ∩ (hj(θ) ∩ hj+1(θ)) �= ∅, (i.e. at least
one of the zones inhabited by s is in the habitat of θ for
two contiguous type-SDs in Cl) and [ti−1, ti+1] is within the
concatenation of the valuations for Ij and Ij+1. In all these

6By definition these are basic timed type-SDs.

cases, the valuations of Ij and Ij+1 must be consistent with
the constraints on them and the timestamp t0 for the trigger.

For each of these cases, generateRules will have
placed, in the rule set for sequence Cl, a rule for the corre-
sponding transition; hence all stories can be generated. If the
policy concerns more than one type, two consecutive diagrams
in the story differ for the habitat of at least one spider, and
the same argument can be used. If more than one spider
changes, each movement corresponds to the activation of some
generated rule, since they derive from all admissible configu-
rations of spiders. As no rule allows any temporal constraint
to be violated or transition to a diagram not conformant to a
condition, only admissible stories can be generated.

The analysis of the possible consecutive pairs of basic
timed instance-SDs in a valid story also dictates how to
generate rules which give rise to invalid stories. Based on the
discussion in Theorem 1, a transition di ⇒ di+1 cannot occur
in a valid story according to a sequence C l for one of the
following reasons: (1) the overlapping of the intervals for d i

and di+1 is within the interval Ij resulting from the valuation
of a single diagram dj in Cl, but one of hi(s) or hi+1(s) is
not consistent with hj(θ); or (2) di conforms to dj and di+1

conforms to dj+1, but no consistent valuation exists for the
interval specifications Ii and Ij ; or (3) there is no pair dj , dj+1

of contiguous diagrams in Cl such that di conforms to dj and
di+1 conforms to dj+1. Based on these observations we can
construct a set of erroneous rules by taking each left-hand side
L of a correct rule generated according to a given sequence and
associating as R each diagram with a position of the spider foot
different from the positions in any other diagram which is in
a correct R for L, regardless the constraint. Also, we generate
a copy of each valid rule for L, but with a condition which is
the negation of the constraint associated with the permanence
in the state indicated by L (so that it will stay in L for either
too short or too long a period). Theorem 2 ensues.

Theorem 2: A sequence of diagrams is an invalid story for
a policy iff it results from a sequence of transitions including
at least one application of an erroneous rule.

VI. RELATED WORK

Time-based specifications usually deal with intervals to
model uncertainty about the actual occurrence of an event. In
the clock-synchronous semantics of Statemate events can only
occur when a clock ticks [5]. This view was adopted also in [6]
to integrate time in graph transformations, by introducing a
specific attribute updated by clock messages. Temporal aspects
have been considered in the automatic generation of controller
systems for timed automata, where the admissible transitions
are restricted to satisfy some property (see e.g. [7]). In this
case, however, one has a specific automaton on which to derive
properties, rather than an abstract description of a collection
of admissible behaviours of instances of some specific type
as defined by a policy, which would combinatorially explode
if defined through a single automaton. In policies, what is
modeled is the possible persistence of an element in a state
over a period, rather than the occurrence of specific transitions
triggered by any type of events. In this line, the work in [8]
capitalises on [6] translating graph transformation systems
into transition systems to be input to a model checker, re-
stricting valid execution paths to time-ordered transformation

sequences. In general, several techniques have been developed
to derive inputs for model-checkers from the specification of
system behaviour in the form of graph transformations (see [9]
for a comparison of two general approaches to the development
of these techniques). The simple form of the spider diagram
transformation needed to simulate and test policies should
enable modelers to adapt such existing techniques. Xie [10]
showed that UML sequence diagrams allow a better under-
standing of the functional logic of a multi-threaded program
than UML state diagrams, which suggests that condition se-
quences in a policy can also facilitate understanding.

VII. CONCLUSIONS

We have described a process for generating rewriting
systems from policies specifying admissible behaviours of
instances of types. The resulting systems can be used for
simulating valid or invalid stories, to be used when reasoning
on the properties of policies. The development of such a formal
visual specification language for policies and stories would
enable stakeholders to access the information via the formal
notation itself, rather than via its translation into another form,
thereby potential reducing communication errors. User studies
will be needed to assess the value of the adopted notations.
The approach is based on the well-established basic notation
of Spider Diagrams, which are well suited to express relevant
relationships (e.g. set membership and containment), annotated
with calendar intervals to express temporal constraints. How-
ever, the approach could be applied also to other types of
notational system and temporal models. The opposite path,
of checking sets of rules against policies, or reconstructing
policies from rules is the subject of future work. We also
plan to extend the approach to compound diagrams, allowing
more compact policies, for example replacing the last two
sequences of Fig. 9 with one sequence having as second SD
the disjunction of the corresponding SDs in the two sequences.

REFERENCES

[1] P. Bottoni and A. Fish, “Extending Spider Diagrams for policy defini-
tion,” JVLC, vol. 24, no. 3, pp. 169–191, 2013.

[2] ——, “A visual language for temporal specifications based on spider
diagrams,” ECEASST, vol. 41, 2011.

[3] ——, “Policy specifications with timed spider diagrams,” in Proc.
VL/HCC’11. IEEE, 2011, pp. 95–98.

[4] J. Howse, F. Molina, J. Taylor, S. Kent, and J. Gil, “Spider diagrams:
A diagrammatic reasoning system,” JVLC, vol. 12, no. 3, pp. 299–324,
2001.

[5] R. Eshuis, D. N. Jansen, and R. Wieringa, “Requirements-level seman-
tics and model checking of object-oriented statecharts,” Requir. Eng.,
vol. 7, no. 4, pp. 243–263, 2002.

[6] S. Gyapay, D. Varro, and R. Heckel, “Graph transformation with time,”
Fundamenta Informaticae, vol. 1, pp. 1–22, 2003.

[7] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete con-
trollers for timed systems (an extended abstract),” in Proc. STACS’95,
1995, pp. 229–242.

[8] S. Gyapay, Á. Schmidt, and D. Varró, “Joint optimization and reacha-
bility analysis in graph transformation systems with time,” Electr. Notes
Theor. Comput. Sci., vol. 109, pp. 137–147, 2004.

[9] A. Rensink, A. Schmidt, and D. Varró, “Model checking graph trans-
formations: A comparison of two approaches,” in Proc. ICGT 2004, ser.
LNCS. Springer, 2004, vol. 3256, pp. 226–241.

[10] S. Xie, “Evaluating and refining diagrams that support the comprehen-
sion of concurrency and synchronization,” Ph.D. dissertation, University
of Georgia, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

