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P. Cacciola and A. Tombari

School of Environment and Technology, University of Brighton,
Brighton BN2 4GJ, UK

A novel device, called vibrating barrier (ViBa), that
aims to reduce the vibrations of adjacent structures
subjected to ground motion waves is proposed. The
ViBa is a structure buried in the soil and detached
from surrounding buildings that is able to absorb a
significant portion of the dynamic energy arising from
the ground motion. The working principle exploits
the dynamic interaction among vibrating structures
due to the propagation of waves through the soil,
namely the structure–soil–structure interaction. The
underlying theoretical aspects of the novel control
strategy are scrutinized along with its numerical
modelling. Closed-form solutions are also derived to
design the ViBa in the case of harmonic excitation.
Numerical and experimental analyses are performed
in order to investigate the efficiency of the device
in mitigating the effects of ground motion waves on
the structural response. A significant reduction in the
maximum structural acceleration of 87% has been
achieved experimentally.

1. Introduction
Control of building vibrations is crucial for structural
safety and avoids the unexpected behaviours that
lead to rapid deterioration or collapse of a structure.
Various sources of vibrations can affect the structure,
including human activities such as road traffic, high-
speed trains, large machinery, rock drilling and blasting
or natural disturbances such as wind gusts, ocean waves
and earthquakes. Strategies for vibration control are
based on the modification of the dynamic structural
characteristics by: (i) increasing the dissipative properties
of the structure, (ii) altering its rigidity for inducing the
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Figure 1. Schematic of the proposed strategy for the seismic protection of cluster of structures thought the novel ViBa.

shift of the structural frequencies, or (iii) adding resonant devices able to absorb part of the
structural vibrations. In civil engineering, devices for the passive control of ground motion
waves are widely used since they do not require an external power source to operate; a few
examples of passive control devices are viscous damper, tuned mass damper, tuned liquid
damper, base isolation and dissipative bracing systems. These vibration control systems are
successfully employed in the design of new structures; on the other hand, they are rarely used
for protecting existing buildings, as they generally require substantial alteration of the original
structure. In the case of heritage buildings and critical facilities or urban areas, especially in
developing countries, these traditional localized solutions might become impractical. Therefore,
alternative non-localized solutions represent a reliable strategy for this challenge.

In this regard, very few attempts have been made to investigate non-local strategies to ensure
the safety of existing buildings, infrastructures and critical facilities. Namely, trench barriers or
sheet-pile walls in the soil have been investigated for altering the displacement field based on the
reflection, scattering and diffraction of dynamic surface waves (e.g. [1–5]). These attempts, even
if mainly limited to the reduction of surface waves, highlighted the importance of focusing on the
soil instead of the structure itself.

During the last two decades, studies on the site–city interaction [6–8] highlighted a substantial
change in the ground motion wave field and the consequent dynamic response of buildings in
an urban environment. Remarkably, Kham et al. [8] showed that the energy of ground motion
at the free field in a city is reduced by up to 50% due to the perturbation induced by resonant
buildings. The reasons for this phenomenon governing the site–city effects are based on the well-
known structure–soil–structure interaction (SSSI) [9,10]. Warburton et al. [9] studied the dynamic
response of two rigid masses in an elastic subspace, showing the influence of one mass with
respect to the other. Luco & Contesse [10] studied the dynamic interaction between two parallel
infinite shear walls placed on rigid foundations and forced by a vertically incident shear (SH)
wave. Wong & Trifunac [11] extended the previous case for non-vertically incident plane SH
waves by investigating the significance of the angle of incidence. A recent review of the SSSI
problem can be found in Lou et al. [12].

The benefits arising from the presence of other buildings in reducing structural vibrations have
not yet been exploited as a tool for seismic vibration control. This paper introduces for the first
time a novel device, herein called the vibrating barrier (ViBa), that aims to reduce the vibrations
of structures from ground motion waves by exploiting the SSSI phenomenon. Figure 1 illustrates
the physical problem investigated in this paper: a cluster of buildings subjected to base excitation
along with the proposed device, the ViBa, embedded in the soil for absorbing the input energy,
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Figure 2. Discrete model adopted for the study of vibration control of two structures through the ViBa.

reducing therefore damage and failures of the adjacent structures. The ViBa is a structure buried
in the soil and detached from the surrounding buildings. It consists of an embedded foundation
containing an internal oscillator unit that, if tuned appropriately, is able to absorb a significant
part of the dynamic energy that would otherwise affect the structures. In order to study this
novel vibration control strategy, a discrete model is first derived.

Discrete solutions to the SSSI problems using rigorous analytical formulations are available
in the literature [13–16]. Kobori et al. [13] defined a multi-spring–mass system for investigating
the dynamic coupling of two adjacent square superficial foundations. Mulliken & Karabalis [14]
defined a simple discrete model for predicting the dynamic interaction between adjacent
rigid, surface foundations supported by a homogeneous, isotropic and linear elastic half-space.
Recently, Alexander et al. [15] developed a discrete model to study the SSSI problem of surface
foundations by considering stochastic ground motion excitation; Aldaikh et al. [16] extended
the work of Alexander et al. [15] to the case of three buildings with validation of the discrete
theoretical model by means of experimental shake table testing.

Based on the same principles, the effects of the soil on the structures, i.e. the soil–structure
interaction (SSI) as well as the SSSI and the ViBa–SSI, are taken into account in this paper by
means of linear elastic springs, as in the conventional Winkler approach for a linear elastic soil
medium.

The simplified model is able to capture the main effects of the interaction phenomena of the
soil, as shown in the comparison with more advanced finite-element method (FEM)/boundary
element method (BEM) numerical solutions in a model of a nuclear reactor. Moreover,
experimental results showed a remarkable reduction in terms of maximum acceleration of 87% of
a structure controlled by the ViBa prototype.

2. Governing equations of the structure–soil–structure interaction
Consider the global system depicted in figure 1 under the ground excitation defined by
the ground displacement Ug. The proposed ViBa is also included with the aim of reducing the
vibration of the surrounding buildings. In this regard, a mechanical model able to describe the
interaction phenomenon is derived first. Figure 2 shows the mechanical relations of the ith and
jth structures coupled with the ViBa. Each building is modelled as a 2 d.f. system with one
translational d.f. at the top of the building and one at the foundation level, i.e. Ui and Uf ,i for
i = 1, . . . , n (where n is the number of surrounding buildings). The ViBa is modelled as an internal
unit device included in a rigid box foundation and globally described by the 2 d.f., UViBa and
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Figure 3. Definition of the kinematics quantities used in the formulation.

Uf ,ViBa. The dynamic governing equations of the global system are derived in terms of absolute
displacement, as conventional in SSI, namely the dynamics of the problem take the form

(K̃ − ω2M)U(ω) = Q Ug(ω), (2.1)

where U(ω) is the absolute displacement formulated in the frequency domain (ω is the circular
frequency) in which the components are ordered as follows:

UT(ω) = [Ui(ω) Uf ,i(ω) · · · Un(ω) Uf ,n(ω) UViBa(ω) Uf ,ViBa(ω)], (2.2)

where T indicates the transpose operator; for the sake of clarity the kinematics relations among
the displacement components of the ith structure and of the ViBa are indicated in figure 3. In
equation (2.1), M is the real global mass matrix and K̃ is the complex global stiffness matrix; note
that the symbol K̃ is used on the stiffness quantities to emphasize the hysteretic damping model
adopted in the paper (e.g. [17]).

In addition, the matrices of the global system are partitioned in the sub-matrices defined for
the individual buildings and the ViBa; therefore, the global mass matrix is stated as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

M1 0
0 Mi

· · · 0 0
0 0

...
. . .

...
0 0
0 0

· · · Mn 0
0 MV

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.3)
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in which the ith sub-block is defined as

Mi =
[

mi 0
0 mf ,i

]
, (2.4)

where mi is the mass of the ith structure and mf ,i is the mass of the ith foundation, while MV is
the mass matrix of the ViBa given by

MV =
[

mViBa 0
0 mf ,ViBa

]
(2.5)

composed of the mass of the ViBa, mViBa, and the mass of its foundation, mf ,ViBa. Also, the global
stiffness matrix K̃ is subdivided in the following form:

K̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

K̃1 K̃1,i
K̃i,1 K̃i

· · · K̃1,n K̃1,V
K̃i,n K̃i,V

...
. . .

...
K̃n,1 K̃n,i
K̃V,1 K̃V,i

· · · K̃n K̃n,V
K̃V,n K̃V

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.6)

The main diagonal sub-matrices K̃r(r = 1, . . . , n) of the structures to be protected are defined as
(figure 2)

K̃i =

⎡
⎢⎢⎢⎢⎣

k̃i −k̃i

−k̃i k̃i + k̃f ,i + k̃i,V +
n∑

r=1
r�=i

k̃i,r

⎤
⎥⎥⎥⎥⎦ . (2.7)

Note that the complex nature of the stiffness is due to the dissipation of energy, simulated
according to the hysteretic damping model given by

k̃ = k(1 + iη), (2.8)

where η is the loss factor and i = √−1 is the imaginary unit.
Furthermore, the matrix K̃V defines the ViBa stiffness as follows:

K̃V =

⎡
⎢⎢⎣

k̃ViBa −k̃ViBa

−k̃ViBa k̃ViBa + k̃f ,ViBa +
n∑

i=1

k̃i,V

⎤
⎥⎥⎦ . (2.9)

Finally, the off-diagonal sub-matrices K̃i,j(i, j = 1, . . . , n) related to the dynamic coupling between
the ith and the jth structures are defined as

K̃i,j =
[

0 0
0 −k̃i,j

]
(2.10)

and

K̃i,V =
[

0 0
0 −k̃i,V

]
, K̃V,i =

[
0 0
0 −k̃V,i

]
(2.11)

for the dynamic coupling between the ith structure and the ViBa. It is noted that in general the
components k̃i,V and k̃V,i can be different, resulting in an asymmetric stiffness matrix.

Finally, Ug is the ground motion displacement applied to the base of each foundation and Q is
the influence matrix that depends on the soil–foundation stiffness values as follows:

QT =
[
0 k̃f ,i · · · 0 k̃f ,n 0 k̃f ,ViBa

]
. (2.12)

It is noted that the addition of independent ground springs makes it possible to take into account
ground spatial variation.
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The structural parameters of the ViBa represent the unknowns of the problem, as they have
to be determined in order to reduce the dynamic response of the adjacent structures. Namely,
all five ViBa structural parameters, kViBa, mViBa, ηViBa, kf ,ViBa, mf ,ViBa, can be determined through
an optimization procedure aimed at reducing the structural response of the adjacent buildings.
However, it is noted that the relevant foundation parameters of the ViBa, namely the mass mf ,ViBa

and the stiffness k̃f ,ViBa, are provided through a preliminary design based on the geotechnical
bearing capacity, e.g. under static load. Therefore, the optimization procedure aims to determine
the remaining parameters such as the stiffness, kViBa, the mass, mViBa, and the damping, ηViBa, i.e.
the components of the internal oscillator unit of the ViBa. These parameters are collected in the
design parameters vector α = {kViBa, mViba, ηViBa}.

The objective of the ViBa is to reduce the vibrations of the adjacent structures and the
consequent stresses related to the relative displacements. Therefore, the optimization problem
is established as

min{Ur,max
i (α)} i = 1, . . . , n,

α = {kViBa, mViBa, ηViBa} ∈ R
+
0 ,

}
(2.13)

where Ur,max
i (α) is the maximum displacement of the ith structure relative to its foundation:

Ur,max
i = max(Ui − Uf ,i). (2.14)

The solution of the optimization problem (2.13) is usually obtained numerically; however, closed-
form expressions can be derived in some particular cases as described in the following sections.

3. Vibration control of two structures through the vibrating barrier
Consider a global system composed of two buildings protected by the ViBa, as illustrated in
figure 2, with i = 1 and j = 2. The governing equation of motion of the system is

K̃dyn(α, ω)U(ω) = QUg(ω), (3.1)

where K̃dyn(α, ω) = K̃(α) − ω2M(α) is the dynamic stiffness matrix and α is the design parameters
vector. If the shape of the two foundations of the buildings is identical, then the interaction with
the soil is identical as well and the following relations occur: k̃f = k̃f ,1 = k̃f ,2 and k̃SSSI = k̃1,V = k̃2,V.
Therefore, the dynamics of the problem of equation (2.1) is rewritten in the expanded form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k̃1 −k̃1 0 0 0 0

−k̃1 k̃1 + k̃f + k̃1,2 + k̃SSSI 0 −k̃1,2 0 −k̃SSSI

0 0 k̃2 −k̃2 0 0

0 −k̃1,2 −k̃2 k̃2 + k̃f + k̃1,2 + k̃SSSI 0 −k̃SSSI

0 0 0 0 k̃ViBa −k̃ViBa

0 −k̃SSSI 0 −k̃SSSI −k̃ViBa k̃ViBa + k̃f ,ViBa + 2k̃SSSI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−ω2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 0 0 0 0

0 mf ,1 0 0 0 0

0 0 m2 0 0 0

0 0 0 mf ,2 0 0

0 0 0 0 mViBa 0

0 0 0 0 0 mf ,ViBa

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1(ω)

Uf ,1(ω)

U2(ω)

Uf ,2(ω)

UViBa

Uf ,ViBa

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

k̃f

0

k̃f

0

k̃f ,ViBa

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ug(ω). (3.2)

The above equation is analysed by resorting to the transfer function representation that provides
a basis for determining the system response characteristics. The transfer functions of the system
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are defined as the ratio of the output U and input displacement Ug

H(α, ω) = K̃
−1
dyn(α, ω)Q

=
[
H1(α, ω) Hf ,1(α, ω) H2(α, ω) Hf ,2(α, ω) HViBa(α, ω) Hf ,ViBa(α, ω)

]T
, (3.3)

assuming the ground motion excitation is modelled by a harmonic signal with frequency ω0. The
adopted procedure consists in minimizing the transfer functions related to the structures at the
input frequency ω0. Therefore, by recalling the design parameters vector α = {kViBa, mViba, ηViBa}
from equation (3.4), the optimization problem is stated as

min{H1(α, ω0), H2(α, ω0)},
α = {kViBa, mViBa, ηViBa} ∈ R

+
0 .

}
(3.4)

Clearly, the solution to the optimization problem will be straightforward if it is possible to assign
a variable. It is noted that the mass of the ViBa, mViBa, is restrained by engineering criteria (e.g.
bearing capacity of the soil, volumetric restraint, etc.). Therefore, by assigning mViBa as a known

quantity, from equation (3.4), the stiffness koptimal
ViBa and the damping η

optimal
ViBa are derived in closed

form by determining the zeros of the transfer functions H1(α, ω0) and H2(α, ω0) according to Den
Hartog [18]. Following simple algebra, the following formula is derived:

k̃optimal
ViBa (ω0) = (ω2

0mViBa)[k̃f ,ViBa + k̃SSSI(2 + k̃f ,ViBa/k̃f ) − ω2
0mf ,ViBa]

k̃f ,ViBa + k̃SSSI(2 + k̃f ,ViBa/k̃f ) − ω2
0(mf ,ViBa + mViBa)

. (3.5)

From the above equation, the stiffness koptimal
ViBa and the damping η

optimal
ViBa are derived as follows:

koptimal
ViBa = Re

{
k̃optimal

ViBa (ω0)
}

and η
optimal
ViBa = Im

{
k̃optimal

ViBa (ω0)
}

Re
{

k̃optimal
ViBa (ω0)

} ,

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

where Re{·} and Im{·} indicate, respectively, the real and imaginary component of complex value

k̃optimal
ViBa .

Therefore, after proper tuning, the ViBa is designed for mitigating the dynamic response of
both buildings.

4. Vibration control of a single structure through the vibrating barrier
This section describes the vibration control of a structure protected by the ViBa under harmonic
base excitation. The mechanical model to be analysed is shown in figure 4. The building is
modelled as a simple linear oscillator characterized by the lumped mass, m, and the complex
stiffness, k̃; the oscillator is supported on a compliant restraint for simulating the SSI effects
described by the complex stiffness, k̃f , and the lumped mass, mf . The ViBa consists of the internal
oscillator unit described by the lumped mass, mViBa, and the spring complex stiffness, k̃ViBa,
as well as of the external containment foundation idealized by the lumped mass, mf ,ViBa, and
the complex stiffness, k̃f ,ViBa, for capturing the interaction effects with the soil. The SSSI effects
are taken into account by means of a linear elastic spring, k̃SSSI, connecting the structure to
the ViBa.
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Figure 4. Discrete model used for the vibration control of a single structure through the ViBa.

(a) General solution
Equation (2.1) is rewritten in the expanded problem as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

k̃ −k̃ 0 0

−k̃ k̃ + k̃f + k̃SSSI 0 −k̃SSSI

0 0 k̃ViBa −k̃ViBa

0 −k̃SSSI −k̃ViBa −k̃ViBa + −k̃f ,ViBa + −k̃SSSI

⎤
⎥⎥⎥⎥⎦− ω2

⎡
⎢⎢⎢⎣

m 0 0 0
0 mf 0 0
0 0 mViBa 0
0 0 0 mf ,ViBa

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

×

⎡
⎢⎢⎢⎣

U1(ω)
Uf (ω)

UViBa(ω)
Uf ,ViBa(ω)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

0
k̃f
0

k̃f ,ViBa

⎤
⎥⎥⎥⎦Ug(ω). (4.1)

The transfer function is then determined as follows:

H(α, ω) = K̃
−1
dyn(α, ω)Q

=
[
H(α, ω) Hf (α, ω) HViBa(α, ω) Hf ,ViBa(α, ω)

]T
. (4.2)

After simple algebra, the components of the vector H(α, ω) are given by

H(α, ω) = U(ω)
Ug(ω)

= k̃ · [(k̃SSSI · k̃f ,ViBa + b̃ · k̃f )(k̃ViBa − ω2mViBa) − k̃2
ViBa · k̃f ]

(k̃ · k̃ViBa)2 − (k̃2
ViBa · ã)(k̃ − ω2m) + [(ã · b̃ − k̃2

SSSI)(k̃ − ω2m) − (k̃2 · b̃)]c̃
, (4.3)

Hf (α, ω) = Uf (ω)

Ug(ω)
=
(

1 − ω2

ω̃2

)
H(α, ω), (4.4)
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HViBa(α, ω) = UViBa(ω)
Ug(ω)

= k̃ViBa · {k̃f ,ViBa · [(k̃ − ω2m)ã − k̃2] + k̃f (k̃ − ω2m) · k̃SSSI}
(k̃ · k̃2

ViBa)2 − (k̃2
ViBa · ã)(k̃ − ω2m) + [(ã · b̃ − k̃2

SSSI)(k̃ − ω2m) − (k̃2 · b̃)]c̃
(4.5)

and

Hf ,ViBa(α, ω) = Uf ,ViBa(ω)

Ug(ω)
=
(

1 − ω2

ω̃2
ViBa

)
HViBa(α, ω), (4.6)

where ω̃2 = k̃/m and ω̃2
ViBa = k̃ViBa/mViBa; furthermore, the following positions have been made:

ã = k̃ + k̃f + k̃SSSI − ω2mf ,

b̃ = k̃ViBa + k̃f ,ViBa + k̃SSSI − ω2mf ,ViBa

and c̃ = k̃ViBa − ω2mVIBa.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.7)

The optimization problem of equation (2.13) can be restated as follows:

min{H(α, ω0)},
α = {kViBa, mViBa, ηViBa} ∈ R

+
0 .

}
(4.8)

(b) Closed-form solution
By assigning the mass mViba, the optimization procedure (4.8) leads to finding the zeros of the
transfer function at the frequency ω0. After some simple algebra, the following formula is derived:

k̃optimal
ViBa (ω0) = (ω2

0mViBa)[k̃f ,ViBa + k̃SSSI(1 + k̃f ,ViBa/k̃f ) − ω2
0mf ,ViBa]

k̃f ,ViBa + k̃SSSI(1 + k̃f ,ViBa/k̃f ) − ω2
0(mf ,ViBa + mViBa)

. (4.9)

Also, the real and imaginary part can be separated as follows:

k̃optimal
ViBa (ω0) = kreal

ViBa(ω0) + ikimag
ViBa (ω0) = koptimal

ViBa (ω0)[1 + iηoptimal
ViBa ], (4.10)

in which the real part kreal
ViBa(ω0) = koptimal

ViBa (ω0) is defined as

kreal
ViBa(ω0) = ω2

0mViBa[(Xreal(ω0))2 + (Ximag)2 − Xreal(ω0)ω2
0mViBa]

(Xreal(ω0) − ω2
0mViBa)2 + (Ximag)2

, (4.11)

where

Xreal(ω0) = (kf ,ViBa + kSSSI − ω2
0mf ,ViBa)

+ kSSSIkf ,ViBa

kf (1 + η2
f )

[1 + ηf ηf ,ViBa + ηSSSI(ηf − ηf ,ViBa)], (4.12)

while the imaginary part kimag
ViBa (ω0) is

kimag
ViBa (ω0) = −(ω2

0mViBa)2Ximag

[Xreal(ω0) − ω2
0mViBa]2 + (Ximag)2

, (4.13)

in which

Ximag = (ηf ,ViBakf ,ViBa + kSSSIηSSSI)

+ kSSSIkf ,ViBa

kf (1 + η2
f )

[ηSSSI(1 + ηηηf ,ViBa) + ηf ,ViBa − ηf ]. (4.14)
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Therefore, the optimal ViBa parameters that set the structural response U(ω0) equal to zero, for
the assigned mass mViBa, are the following:

koptimal
ViBa = kreal

ViBa(ω)

and η
optimal
ViBa = kimag

ViBa (ω)

kreal
ViBa(ω)

,

⎫⎪⎪⎬
⎪⎪⎭ (4.15)

according to the expression given by equation (4.10).

(c) Particular cases
It should be noted that, for lightly damping η � 1, the quadratic terms involving damping are
negligible; thus (Ximag)2 → 0 and equations (4.11) and (4.13) can be rewritten as

kreal
ViBa(ω0) ∼= ω2

0mViBa[(Xreal(ω0))2 − Xreal(ω0)ω2
0mViBa]

[Xreal(ω0) − ω2
0mViBa]2

(4.16)

and

kimag
ViBa (ω0) ∼=

−(ω2
0mViBa)2[ηf ,ViBakf ,ViBa + kSSSI(1 + kf ,ViBa/kf )(ηSSSI + ηf ,ViBa − ηf )]

[Xreal(ω0) − ω2
0mViBa]2

. (4.17)

It has to be emphasized that in contrast to the common dynamic vibration absorber (DVA;
e.g. [18]) in the presence of SSI effects both kViBa and mViBa have to be obtained since the ratio
between the structural and soil stiffness becomes a relevant factor that must be taken into account.

In the case of undamped systems, i.e. every η = 0, equation (4.9) reduces to

kViBa = (ω2
0mViBa)[kf ,ViBa + kSSSI(1 + kf ,ViBa/kf ) − ω2

0mf ,ViBa]

kf ,ViBa + VSSSI
(
1 + kf ,ViBa/kf

)− ω2
0(mf ,ViBa + mViBa)

. (4.18)

The calibration of the ViBa parameters according to equation (4.18) provides the total reduction
of the relative displacement of the structure resulting in U(α, ω0) = 0 for the harmonic excitation
at a given frequency ω0.

Both the achieved formulae of equations (4.9) and (4.18) are independent from the
characteristics of the above-ground structures to be protected, such as k̃ and m. Only kf and kSSSI
are required for the design of the ViBa. In the case of a rigid foundation, they can be determined
as a function of the foundation shape and of the stiffness of the soil. Moreover, for mViBa � mf ,ViBa,
equation (4.18) can be cast as

ω2
ViBa = kViBa

mViBa
∼= ω2, (4.19)

i.e. the ViBa is tuned to the same frequency as the input signal that must be absorbed. An analogue
result is determined when the coupling stiffness kSSSI → ∞, e.g. the structure and the ViBa resting
on the same rigid foundation; in this case, the governing equations derived from equations (4.3)
and (4.5) are described as follows:

HSSSI→∞(ω) = −k · [(kf ,ViBa + kf )(kViBa − ω2mViBa)]

[a(k − ω2m) − k2]c + [b(kViBa − ω2mViBa) − k2
ViBa](k − ω2m)

(4.20)

and

HSSSI→∞
ViBa (ω) = −kViBa · [(kf ,ViBa + kf )(k − ω2m)]

[a(k − ω2m) − k2]c + [b(kViBa − ω2mViBa) − k2
ViBa](k − ω2m)

, (4.21)

where the following positions have been made: a = (k + kf − ω2mf ); b = (kViBa + kf ,ViBaf −
ω2mf ,ViBa) and c = (k̃ViBa − ω2mViBa).

In this case, the ViBa is calibrated by the formula defined in equation (4.9) behaving as the
classical DVA.
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structure
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k̃ k̃SSSI
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k̃f,ViBak̃f

m

mViBa

mf,ViBa

mf

Figure 5. Experimental shake table set-up: prototype structure made in aluminium and acrylic connected to the shake table
through elastic springs and controlled by the ViBa made of a rigid acrylic box with a 1 d.f. internal mass unit. (Online version
in colour.)

Table 1. Mechanical characteristics of the structure.

structure

symbol S.I. value

k1 N m−1 9.0985 × 102
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m1 kg 0.590
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kf ,1 N m−1 640
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mf ,1 kg 0.353
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. Numerical and experimental analyses
In this section, numerical and experimental analyses are carried out to investigate the
performance of the proposed ViBa to reduce the vibrations of structures subjected to harmonic
ground motion excitation. The physical model comprises one structure to be protected coupled
with a ViBa, and it is represented by the prototype in figure 5. Mechanical properties are
derived directly from the prototype. Structural characteristics are reported in table 1 and in
the experimental section. The first fundamental frequency of the structure by considering the
compliant base is ω0 = 22.62 rad s−1. In table 2, the known mechanical characteristics of the ViBa
are determined for the manufacturing of the prototype, whereas the internal device parameters
described by the mass, mViba, the stiffness, kViBa, and the loss factor, ηViBa, are derived by the
optimization procedure determined in this paper.

(a) Numerical results for harmonic base excitation
In this section, numerical analyses are performed to scrutinize the efficiency of the ViBa. The
goal is to reduce the vibrations of the structure subjected to harmonic excitation with circular
frequency ω0 equal to its first fundamental frequency, i.e. ωstr = ω0 = 22.62 rad s−1, that would
otherwise cause severe damage due to the induced condition of resonance. The undamped
case is addressed first. Figure 6 shows the modulus of the transfer function response of the
structure, |H(ω)|, and of the ViBa, |HViBa(ω)|, obtained by calibrating the mass of the ViBa, kViBa,
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Figure 6. Transfer functions of the undamped system for the (a) structure and (b) ViBa obtained for different mass ratios.

Table 2. Mechanical characteristics of the ViBa.

ViBa

symbol S.I. value

kViBa N m−1 kViBa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mViBa kg mViBa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kf ,ViBa N m−1 760
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mf ,ViBa kg 0.491
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kSSSI N m−1 315
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

by means of equation (4.18) for three mass ratios, mViBa/m = {0.5; 1; 1.5}, with comparison with
the response of the uncoupled single structure. Each curve converges at the same null value,
|H(ω)| = 0, at the target circular frequency, ω0 = 22.62 rad s−1. Therefore, in undamped systems
the ViBa is able to absorb 100% of the vibrations of the structure. Figure 7 depicts the modulus
of the transfer function response of the structure and the ViBa obtained for different values of
the coupling interaction stiffness, kSSSI. Three cases are reported, specifically the single structure
when kSSSI = 0, the coupled structure with ViBa when kSSSI = 315 N m−1, i.e. the spring value
used for the prototype, and the limit case of kSSSI → ∞ (e.g. the same foundation for ViBa and
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Figure 7. Transfer functions of the undamped system for the (a) structure and (b) ViBa obtained for different coupling
stiffness values.

Table 3. Loss factors of the global system.

symbol value

η1 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ηViBa ηViBa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ηf ,1 0.046
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ηf ,ViBa 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ηSSSI 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the structure). The case obtained for kSSSI = 0 (e.g. very long spacing between the ViBa and the
structure) is identical to the uncoupled structure.

A frequency-independent hysteretic damping model for simulating the dissipation of the
energy is then considered. The loss factors applied to determine the complex stiffness springs
are given in table 3 and have been determined through an identification procedure.

Optimization of the internal parameters of the ViBa is performed by the formula described

in equations (4.9)–(4.14), where the stiffness koptimal
ViBa is obtained once the mass mViBa is assigned

and the optimal damping η
optimal
ViBa is obtained by equation (4.15). It is noted that equation (4.15)
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Figure 8. Transfer functions of the (a) structure and (b) ViBa obtained for different mass ratios and null ViBa loss factors.

yields a negative value of the loss factor η
optimal
ViBa that cannot be adjusted since equation (4.13) is a

function of only the soil and structural parameters, that is, it is independent of the parameters of
the ViBa; thus the minimum real value ηViBa = 0 is assigned.

Figure 8a shows the modulus of the transfer function of the structural displacement, |H(ω)|,
obtained by calibrating the stiffness of the ViBa, kViBa, by means of equation (4.9) for three different
mass ratios, mViBa/m = {0.5; 1; 1.5}, and compared with the response of the structure itself (referred
to as a single structure). Although the steady-state responses for the three mass ratios are different
because of the SSI effect, every curve converges at the same minimum value at the target circular
frequency, ω0 = 22.62 rad s−1.

The achieved percentage reduction caused by the ViBa expressed in terms of the reduction
factor (RF), which is defined as the ratio of the response between the coupled and uncoupled
systems at the target circular frequency ω0 = 22.62 rad s−1,

RF = |H(ω0)|
|Huncoupled(ω0)| , (5.1)

is 99.05% on the structural relative displacement. On the other hand, figure 8b shows, for the
same case, the modulus of the transfer function of the ViBa, |HViBa(ω)|, showing an increment in
the response with respect to the ViBa alone, manifesting the transfer of energy from the structure
to the ViBa.
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It is noted that the realization of a ViBa with zero damping might be extremely challenging if

not impossible. Therefore, the effect of the ViBa in the case of damping η
optimal
ViBa different from zero

is also investigated. Specifically, in addition to the previous analysis, the steady-state response
is investigated by considering the loss factor experimentally measured in the prototype, i.e.
ηViBa = 0.18. Results are reported in figure 9. The minimum values of the response obtained at the
target circular frequency, ω0 = 22.62 rad s−1, are different for the three mass ratios and are higher
than the value obtained by considering the loss factor ηViBa as null. Nevertheless, the presence
of damping is fundamental to protecting the structure for a wide-band excitation. Moreover, by
increasing the mass ratio, the minimum value at the target circular frequency decreases.

The presence of damping ηViBa different from the optimal value produces a detrimental effect
for the protection of the structure subjected to harmonic loading that gets worse with an increase
in the damping. This trend is illustrated in figure 10, where the RF is plotted versus the mass
ratio and for various values of the loss factors ηViBa. Note that each curve lies below the unit
value; therefore, the response of the structure protected by the ViBa is always smaller than the
response of the same structure without protection, manifesting the efficiency of the ViBa. Also,
the RF decreases with the decrease of the loss factor ηViBa and with the increase of the mass ratio
mViBa/m, i.e. the lower the ViBa damping ratio, the higher the mass ratio mViBa/m and the higher
the reduction in the dynamic response. Moreover for very low values of the ViBa damping ratio,
the RF tends to become insensitive to the mass ratio mViBa/m.
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(b) Experimental test
Experimental shake table tests are performed in order to validate the analytical formulae and
numerical results determined in the previous sections. The prototype as depicted in figure 5
is designed to reproduce the system of figure 4 and is tested on a 45 × 45 cm shake table.
The purpose is to show the efficacy of the ViBa, calibrated by equation (4.9), in reducing the
structural accelerations. The structure to be protected is realized as a one-storey shear-type
building made up of acrylic for the base foundation as well as for the storey (80.5 × 80.5 × 10 mm)
while aluminium sheets (80.5 × 141.6 × 0.6 mm) are used for the walls. Additional masses are
placed on the top of the structures in conjunction with an accelerometer of mass 4.2 g on the
top of the structure in order to record the structural response. The interaction effects with
the soil are captured by linear elastic springs leading to a total stiffness kf = 640 N m−1 and
kf ,ViBa = 760 N m−1. The SSSI is represented by a linear spring kSSSI = 315 N m−1 coupling the
structure with the device. The prototype is set up on a Quanser Shake Table II for performing
dynamic tests. Harmonic tests are carried out at several frequencies ranging from 2.0 to 10.0 Hz
considering first the structure on its own and then coupled with the ViBa. The inherent damping
is quantified through a best fit of transfer functions evaluated numerically and experimentally.
Moreover, the ViBa is modelled as a rigid container with an internal oscillator made up of a
spring connected to a mass and placed adjacent to the structure as shown in figure 5. The ViBa
has been calibrated in order to absorb the energy affecting the structure at a selected frequency,
i.e. the resonant frequency in the uncoupled system, that is, ωstr = ω0 = 22.62 rad s−1. However,
the device is efficient for whichever desired frequency, i.e. the device can be calibrated to absorb
any target frequency. The optimal design is accomplished by means of equation (4.9). Namely,

the optimal stiffness of the ViBa, calculated by means of equation (4.9), is koptimal
ViBa = 440 N m−1 for

mass mViBa equal to 0.629 kg. The transfer function is derived as the ratio between the maximum
acceleration recorded at the top of the structure and that applied to the shake table. Figure 11
shows the comparison of the calculated transfer function of the structure uncoupled and coupled
with the ViBa. The experimental curves show the efficiency of the ViBa in altering the structural
response. Moreover, numerical transfer function curves are drawn by means of equation (4.3), and
show a good match with the experimental results. Finally, the RF calculated as the ratio between
the maximum acceleration recorded in the coupled system and uncoupled system provides

RF = max{Ücoupled
1 (t)}

max{Üuncoupled
1 (t)}

= 0.13.
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Figure 11. Experimentally evaluated transfer functions of the structure for the uncoupled and coupled case and comparison
with numerical results.
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Figure 12. Recorded acceleration of the structure subjected to harmonic base motion at a circular frequency= 22.62 rad s−1

in the case of a single structure and a structure coupled with the ViBa.

Therefore, the device has been able to reduce the dynamic response of the structure by
87%. Figure 12 also reports the structural time-history accelerations for both the coupled and
uncoupled case recorded during the shake table test when a harmonic base input at the target
frequency ωstr = ω0 = 22.62 rad s−1 with maximum acceleration of 1 m s−2 is applied.

(c) Numerical application on a reactor building
In this section, the proposed optimization procedure for tuning the ViBa parameters is applied
to investigate the response of the model of a reactor building as depicted in figure 13. The
characteristics of the model of the reactor building are derived from the Electric Power Research
Institute [19]. The relevant dimensions are summarized in table 4. The model of the reactor
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Figure 13. BEM/FEMmodel of a reactor building protected by the ViBa. (Online version in colour.)

Table 4. Basic geometry of the reactor building.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

reactor building shell radius 25.8 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

basement shell radius 25.8 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

height of springline above basemat 46.12 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

embedded height 12.9 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wall thickness 1.07 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

basemat thickness 3.05 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5. Basic geometry of the proposed ViBa device.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

basement shell radius 12.9 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

distance from reactor 12.9 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

embedded height 6.45 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wall thickness 1.5 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

basemat thickness 1.5 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

building is founded on a 30 m thick soil deposit (which is the conventional soil depth for the
soil classification provided by Eurocode) characterized by shear wave velocity Vs = 400 m s−2,
mass density ρs = 2.1 KN m−3, Poisson ratio vs = 0.45 and hysteretic damping ηs = 0.1, resting on
bedrock with a shear wave velocity of Vs = 800 m s−2 and hysteretic damping ηbed = 0.05.

The ViBa is placed at a net distance of 6.45 m in order to mitigate the response to the harmonic
input with frequency ω0 equal to the first natural frequency ωstr = 21.05 rad s−1. The ViBa is
modelled externally as a circular embedded foundation characterized by dimensions reported
in table 5. The internal structure of the ViBa is a single oscillator characterized by the internal
mass, mViBa, the stiffness, kViBa, and the hysteretic damping, ηViBa. The study has been undertaken
by assuming linear behaviour of the structure, soil and ViBa. The substructure methodology
proposed by Kausel et al. [20] is applied in order to solve the dynamic problem in which the
reactor building is modelled according to the finite-element approach by means of the Code_Aster
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Figure 14. Transfer functions of the node at the top of the dome in the case of a single structure and a structure coupled with
the ViBa by varying the mass ratio.
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Figure 15. Time-history acceleration response of the node at the top of the dome in the case of a single structure and a structure
coupled with the ViBa for the 1989 Loma Prieta earthquake event.

open source finite-element software [21], whereas the BEM formulation is used to derive the soil
dynamic impedances by means of Miss3D [22]. As the BEM approach is used no internal mesh is
required for the soil. The overall damping of the soil is the result of two dissipation phenomena:
the first is the material damping defined by means of the complex hysteretic coefficient, the second
is the radiation damping that is internally accounted for by the solution of the BEM, which applies
the condition of convergence at infinity. It has to be emphasized that this approach has been
validated through comparison with the experimental results of Clouteau et al. [23].

Equation (4.9) is used for obtaining the ViBa parameters; owing to the frequency dependence of
the soil dynamic impedances, the stiffness and damping values of each impedance are calculated
at the circular frequency ω0. A null damping, ηViBa = 0, is assigned as the optimization problem
also in this case leads to an optimal negative value.
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Figure 14 shows the transfer function responses of the nodal displacement recorded at the top
of the dome by varying the mass ratio between the mass, mViBa, of the ViBa and the mass of
the reactor building, m. Note that the reduction of the response at the circular frequency ω0 due
to the effect of coupling with the ViBa is independent from the mass ratio, as already shown
in figure 8 in the case of null ViBa damping. The calculated RF is 0.25; therefore, a relevant
reduction of 75% of the absolute displacement is achieved. This shows the efficiency of the
ViBa in realistic cases by designing the device with formulae determined through simplified
structural models.

Finally, the performance of the ViBa is tested for a wide-band signal. The real ground motion
recorded in the 1989 Loma Prieta earthquake event is thus applied to the system. The ViBa is
designed by equation (4.9) by considering the mass ratio mViBa/m = 1.5. Figure 15 shows the
comparison of the responses in terms of the acceleration at the top of the dome for both cases
of a single structure and a structure protected by the ViBa. The comparison of the time-history
accelerations show a beneficial effect due to the ViBa achieving a reduction in the maximum
acceleration of 43.2% (RF = 0.568).

6. Conclusion
A novel passive control device, called ViBa, is herein presented. The ViBa aims to reduce
the vibrations of a cluster of neighbouring structures, subjected to ground motion waves, by
exploiting the SSSI effect. The proposed vibration control strategy presents a novel approach
moving towards a global solution for the passive control of structures under ground motion as
an alternative to the conventional localized solutions.

A simplified discrete model has been determined to analyse the performance of the proposed
device on the structural dynamic response. Closed-form solutions have been derived for
designing the ViBa in order to protect surrounding buildings subjected to harmonic ground
motion waves.

Numerical analyses are performed to evaluate the performance of the ViBa calibrated through
the proposed procedure. Results have confirmed the efficiency of the proposed closed-form
solutions. The ideal condition of zero damping has been considered first to study the performance
of the ViBa, and for this academic case a reduction of 100% of the relative structural displacement
has been shown. For the damped condition in all the cases analysed, a reduction greater than 75%
has been found.

Shake table experimental tests have been performed showing a significant reduction in the
structural acceleration of 87%.

It has to be emphasized that, even if the ViBa has been designed to control harmonic
excitations, it was able to significantly reduce the response of a nuclear reactor to broad-band
excitation as well.

Clearly, it has to be pointed out that all the three seismic wave components cannot be damped
by a single one-dimensional ViBa. To this aim, a three-dimensional ViBa should be used. Also in
analogy with the tuned mass damper (TMD) technology, multiple ViBas might also be embedded
in the soil to take account of a large variety of inputs.

In addition, the paper addresses the simplistic hypothesis of linear soil behaviour and
nonlinearity might induce issues in the tuning of the ViBa. A possible approach to consider
nonlinear soil behaviour in the study is to use the formulation presented in this paper by
considering nonlinear springs as proposed in Allotey & El Naggar [24] and then calibrate the
ViBa numerically.

The major criticism that can be raised for the novel device is the large mass of the ViBa.
Although the basic working principle is similar to TMD systems, the mass of the ViBa needs
to be large in comparison with the TMD. It has to be emphasized, on the other hand, that the
ViBa can be designed to reduce the vibrations of more than one building and/or for buildings of
historical relevance, for which it might still be considered a viable solution.
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