
 

 

 

 

ABSTRACT: This paper deals with the vibration control of existing structures forced by 

earthquake induced ground motion. To this aim it is proposed for the first time to exploit the 

structure-soil-structure mechanism to develop a device, hosted in the soil but detached from the 

structure, able to absorb part of the seismic energy so to reduce the vibration of neighbourhood 

structures. The design of the device is herein addressed to protect monopile structures from 

earthquake induced ground motion. By modelling the ground motion as zero-mean quasi-stationary 

response-spectrum-compatible Gaussian stochastic process, the soil as visco-elastic medium and the 

target monopiled-structure as a linear behaving structure the device, herein called Vibrating Barrier 

(ViBa), has been designed through an optimization procedure. Various numerical and experimental 

results are produced to show the effectiveness of the ViBa. Remarkably, a significant reduction of 

the structural response up to 44% has been achieved. 
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1 INTRODUCTION 

The problem of reducing vibrations in structures, generally known as vibration control, arises in 

various branches of engineering: civil, aeronautical and mechanical. Unpredicted vibrations can lead 

to the deterioration or collapse of structures. In the field of earthquake engineering, modern strategies 

of seismic design aim to reduce structural vibrations by: i) increasing the dissipative properties of the 

structure; ii) moving the natural frequencies of the structure away from the frequencies in which the 

seismic action possess the highest energy; iii) modifying the energy transferred from the earthquake 

to the structure. The control of vibrations of structures is currently performed using passive, active or 

hybrid strategies. In the framework of passive control systems is it possible to categorize the 

following three general devices: i) dampers; ii) tuned mass dampers (TMD); iii) isolation systems. 

Apart from few attempts to protect existing structures the use of vibration control devices is still 

restricted to new buildings and/or constructions. One main reason is that the introduction of control 

devices in existing structures is too invasive, costly and requires the demolishing of some structural 

and/or non-structural components. This is clearly prohibitive for developing countries and for 

historical buildings. An alternative solution is to protect the structures introducing trenches or sheet-

pile walls in the soil (see e.g. Woods [1]). However this approach seems to be more effective for 

surface waves coming from railways rather than seismic waves. Nevertheless, the use of trenches and 

more in general devices hosted in the soil appears as an alternative strategy, not yet thoroughly 

explored to protect structures from earthquakes. Indeed this strategy might be applied to historical 

buildings as it avoids the demolishing of part of them and also has the potential to be extended to the 

protection to more than one structure. 

Bearing in mind the global necessity to protect existing structures from earthquakes and the 

limitation of current technologies, a novel control strategy is proposed in this paper.  

The basic idea is based on the generally known structure-soil-structure interaction (SSSI) and on the 

findings from the pioneristic works of Warburton et al. [2] and Luco and Contesse [3].  



 

 

Specifically, it is know the dynamic structure-soil-structure interaction between two structures 

occurs through the radiation energy emitted from a vibrating structure to the other structure. As a 

consequence, the dynamic response of one structure cannot be studied independently from the other 

one. Warburton et al. [2] studied the dynamic response of two rigid masses in an elastic subspace 

showing the influence of the presence of one mass in the dynamic response of the other one. Luco 

and Contesse [3] studied the dynamic interaction between two parallel infinite shear walls placed on 

rigid foundations and forced by vertically incident SH wave. They showed the interaction effects are 

especially important for a small shear wall located close to a larger structure. Kobori and Kusakabe 

[4] extended the structure-soil-structure interaction study to flexible structures and pointed out that 

the response of a structure might be sensibly smaller due the presence and interaction of another 

structure. Mulliken and Karabalis [5] evidenced large differences in the response of three adjacent 

buildings founded on rigid, surface foundations with respect to the single case, by defining a simple 

discrete model for predicting the dynamic interaction. Effects of both soil-structure interaction and 

structure-soil-structure interaction were investigated by Naserkhaki and Pourmohammad [6] on 

response of twin buildings during earthquake excitations. A recent review of the structure-soil-

structure interaction problem can be found in Menglin et al. [7]. The natural extension of the 

traditional structure-soil-structure interaction problem, in which only two structures are considered, 

is generally known as the site-city interaction problem. Due to the difficulties involved in modelling 

the multiple interactions and the sustained progress in computational mechanics, numerical 

approaches based on wave propagation and finite or boundary element analysis are usually adopted 

for the study of site-city interaction [8-10]. 

Interestingly in [10] it has been shown as the energy of ground motion at the free field in the city 

might be reduced by around 50% due to the perturbation induced by resonant buildings. Analytical 

studies on site-city interaction have also been proposed in the literature by Guéguen et al. [11] and 

Boutin and Roussillon [12]. In [11] the effect of the city is accounted for by modelling the structures 



 

 

as simple oscillators, while in [12] the multiple interactions between buildings are studied through 

homogenization methods.  

The SSSI study is generally dealt with through a deterministic approach and few attempts have 

been made to consider seismic action as a random process. In the framework of the stochastic 

seismic analysis of the structure-soil-structure interaction problem Behnamfar and Sugimura [13] 

performed a parametric study of a 2D system consisting of two structures connected to a 

homogeneous, visco-elastic medium resting over a half-space by considering P-, SV-and Rayleigh 

wave propagation modelled as a stationary process. Alexander et al. [14] recently developed a 

discrete model to study the SSSI problem in the case of both deterministic and stochastic ground 

motion excitation.  

Although it has been observed in the past by several authors the beneficial effect of the presence of 

a structure to reduce the vibrations of another this interaction has not been yet used, to the best 

knowledge of the authors, as a tool for the seismic vibration control. In this paper it is proposed for 

the first time to design a structural system, herein called Vibrating Barrier (ViBa), to reduce the 

vibration of a neighborough structure. The ViBa is designed in this paper to control the vibrations of 

pile-structures. To this aim, in order to better exploit the SSSI, the ViBa-soil-structure interaction 

model is developed by designing the ViBa as a piled structure as well. The numerical model used for 

describing the overall system has been derived by extending the approach used by several authors 

(Dobry and Gazetas [15], Mylonakys and Gazetas [16], Makris and Gazetas [17] and Dezi et al. [18]) 

for pile group foundations in order to simulate the ViBa-soil-structure interaction problem. In this 

approach, the soil is assumed as a Winkler-type medium, that is composed as a set of independent 

horizontal soil layers. The pile–soil–pile interaction effect and the radiation problem of the waves 

towards infinity are accounted for by means of complex impedances derived from elastodynamic 

Green’s functions.  



 

 

Furthermore the stochastic analysis of the ViBa-soil-structure interaction problem is performed. 

The structure and the ViBa are both modelled as linear behaving systems, the soil as a visco-elastic 

medium and the ground motion excitation as a zero-mean response-spectrum compatible Gaussian 

stationary/quasi stationary process. According to this hypothesis the structural parameters of the 

ViBa are optimized so to reduce a prefixed fractile of the maximum response of the target structure. 

Numerical and experimental results showed a remarkable reduction of the response up to 44% in 

terms of maximum relative displacement.  

2 PROBLEM FORMULATION 

Consider the ViBa-soil-structure system illustrated in Figure 1. In agreement with traditional 

vibration control strategies and structure-soil-structure interaction studies (see e.g. [14]) simplified 

models will be adopted in this paper to study the ViBa-soil-structure problem. Specifically the 

system consists of a cantilevered structure to be protected and the ViBa both assumed linear 

behaving and supported by monopile foundations. The soil is assumed to be a linear visco-elastic 

medium.  

In order to analyse the mutual interaction between ViBa and structure, the general problem is 

discretized in ne elements and nJ joints as depicted in Figure 2. For simplicity’s sake vertical 

displacements are neglected and masses are assumed as lumped, therefore every joint possesses two 

degrees of freedom. Due to the visco-elastic model adopted for the soil the equations of motion of 

the ViBa-soil-structure interaction model in terms of absolute displacements is cast in the frequency 

domain as follows:  

(𝐊̃(ω) − ω2𝐌)𝐔(ω) = 𝐅(ω) (1) 

where M is the real [n x n] diagonal global mass matrix, 𝐊̃(ω) is the complex [n x n] global stiffness 

matrix, 𝐔(ω) is the [n x 1] vector of the frequency Fourier transform of the nodal absolute 



 

 

displacements and 𝐅(ω) is the [n x 1] vector of the frequency Fourier transform of the nodal forces 

and n is the number of the degrees of freedoms. By ordering the vector  𝐔(ω) as follows 

𝐔(ω)=

{
 
 

 
 𝐔S,1(ω)

𝐔F,1(ω)

𝐔F,2(ω)

𝐔S,2(ω)}
 
 

 
 

 

(2) 

where 𝐔S,i and 𝐔F,i(ω) (i=1,2) are the vector collecting the absolute displacements of the structure 

and of the foundation respectively, Equation 1 can be rewritten in extended form in the following 

way:  

(

 
 

[
 
 
 
 
𝐊̃SS,1 𝐊̃SF,1

𝐊̃FS,1       𝐊̃FF,1(ω)

0                 0      
𝐊̃FF,c(ω)   0      

0            𝐊̃FF,c(ω)

0       0       

𝐊̃FF,2(ω)  𝐊̃FS,2

𝐊̃SF,2        𝐊̃SS,2]
 
 
 
 

− ω2

[
 
 
 
𝐌SS,1 0

0 𝐌FF,1

0       0 
0       0

0       0
0       0

𝐌FF,2 0 

0 𝐌SS,2]
 
 
 

)

 
 

{
 
 

 
 𝐔S,1(ω)

𝐔F,1(ω)

𝐔F,2(ω)

𝐔S,2(ω)}
 
 

 
 

= {

0
𝐅F,1(ω)

𝐅F,2(ω)

0

} 

(3) 

where [∙]SS,i and  [∙]FF,i indicates the sub matrices related to the superstructure and the soil-

foundation sub system, respectively and [∙]SF,i and [∙]FS,i refers to the coupling between the 

superstructure and the foundation (for i =1,2). Furthermore [∙]FF,c is referred to the structure-soil-

structure interaction effects, namely it indicates the coupling between the foundations of the two 

structures. Hysteretic damping [19] is used in the analysis to model the dissipation of energy in both 

the soil and the structures, therefore all the stiffness sub-matrices in Equation 2 can be written as 

𝐊̃rs,i = 𝐊rs,i(1 + jηrs,i)     (i=1,2;     r=F,S; s=F,S) (4) 

where ηrs,i is the loss factor and j = √−1 is the imaginary unit. In Equation 3, 𝐊̃FF,i(ω) is the [m ×

 m] stiffness matrix of the pile and it is given by the sum of the stiffness matrix of the pile structure 

𝐊FF,i
pile

 and the diagonal matrix of the visco-elastic soil 𝐊FF
soil(ω), that is 



 

 

𝐊̃FF,i(ω) = 𝐊̃FF,i
pile

+ 𝐊̃FF
soil(ω) (5) 

where 𝐊̃FF,i
pile

 is determined through the traditional Finite Element approach by considering Euler-

Bernoulli beam elements whereas 𝐊̃FF
soil(ω) takes into account to the contribution of both soil-

structure-interaction (SSI) and coupling between the two structures, i.e. the structure-soil-structure-

interaction and in accordance with the Winkler type model depicted in Figure 2 it is derived as 

𝐊̃FF
soil(ω) = 𝑑𝑖𝑎𝑔[… , kFF

SSI(zi, ω) + kFF
SSSI(zi, ω), … ]. It has to be emphasized that the number of joints 

in both structures 1 and 2 are the same so to facilitate the SSSI modelling. Note also that in Equation 

(5) the dependency by the circular frequency ω is due to the additional geometrical dissipation of 

energy generally known as radiation damping. 

To determine the values of both kFF
SSI(z, ω) and the kFF

SSSI(z, ω), in this paper, the procedure 

proposed by Dobry and Gazetas [15] for floating pile groups has been extended to evaluate the 

dynamic stiffness and damping of the foundations for the case in which SSSI effects are involved. As 

first step, the dynamic soil response of single pile subjected to dynamic load obtained by Novak [20] 

under the hypothesis of plane strain conditions and embedded in a homogeneous, isotropic soil 

medium has been assumed.  Therefore, the dynamic horizontal reaction of a rigid, massless, circular 

cylinder of radius r and height dz, is thus evaluated by the following expression: 

kFF(z, ω) = 2πG(z)a0

1

√q
  ∙ H2

2(a0)H1
2(x0) +  H2

2(x0)H1
2(a0) 

 H0
2(a0)H2

2(x0) +  H0
2(x0)H2

2(a0)
dz 

(6) 

where q =
1−2ν

2(1−ν)
, x0(z) = a0(𝑧)√q , ν is the Poisson’s ratio, a0(z) =

ωr

Vs(𝑧)
,  H𝑖

2 is the Hankel 

function of the second kind of order i, G(z) the shear modulus at depth z and assumed constant in the 

interval [z-dz/2, z+dz/2], and Vs(𝑧) is the shear wave velocity of the considered soil layer at depth z. 

Note that the dependence of x0(z) and a0(𝑧) from the depth z in Equation (6) is omitted for brevity 

sake. In order to calibrate the dynamic stiffness kFF
SSI(z, ω) related to the vibration of the single pile 



 

 

and the dynamic stiffness kFF
SSSI representing the coupling interaction due to the propagation of the 

vibrations arising from each structure and traveling through the soil, the attenuation function 

proposed by Dobry and Gazetas [15] is herein used to analyse the SSSI problem.  The attenuation 

function α(S,ω) is necessary to obtain the displacement field around a vibrating foundation at a 

distance S. From the acoustic theory, Morse and Ingard [21] obtained the following relation for 

asymptotic cylindrical waves propagating from a cylinder subjected to harmonic force: 

U(S,ω) ≅
A

√S
exp (−

ηωS

VLa
) exp [−jω(𝑡 −

S

VLa
)] 

(7) 

where S is the spacing between source and receiver pile, t is the time, A is the amplitude of wave 

oscillation and η is the hysteretic damping ratio of the soil,  VLa = (3.4Vs) [π(1 − ν)]⁄  is the 

Lysmer’s analogue velocity used when the alignment of the piles is in the same direction of the 

propagation of the travelling waves.  

Moreover, the displacement of the pile under its own dynamic load is obtained from (6): 

U(r,ω) ≅
A

√r
∙ exp (jωt) 

(8) 

where it is assumed that there is not time lag (VLa → ∞) between the pile axis and its perimeter. 

Therefore, the attenuation α(S,ω) yields 

α(r, S, ω) =
U(S,ω)

U(r, ω)
= √

r

S
exp (−

ηωS

VLa
) exp [−jω(

S

VLa
)] 

(9) 

This expression allows computing the effect on the receiver pile once the behaviour single pile is 

obtained. Therefore, the displacements of the piles i=1 and i=2 under harmonic forces [𝐹1 𝐹2] are 

obtained by superposition of the two contributions at the same depth z: U𝑖𝑖(z, ω) and 

U𝑘𝑘(z, ω)α(r𝑘, S, ω); (𝑖 = 1,2; 𝑘 = 1,2) related to the displacement of the single pile and to the 

influence of the second pile on the first pile, respectively. Therefore, the equations of the 

displacements of a generic joint of the two piles at depth z are written as follows: 



 

 

U1(z, S, ω) = U11(z, ω) + U22(z, ω)α(r2, S, ω)

U2(z, S, ω) = U22(z, ω) + U11(z, ω)α(r1, S, ω)
 

(10) 

 

Eq. (10) constitutes a strategy to define an equivalent spring linear model ensuring the same 

displacements of Eq. (10) at each depth 𝑧𝑖 (Dobry and Gazetas [15]). By assuming u𝑖𝑖 = 𝐹𝑖 kFF⁄  and 

setting for simplicity’s sake r = 𝑟1 = 𝑟2, Eq. (10) can be restated as 

1

kFF
[

1 α(r, S,ω)

α(r, S,ω) 1
] [
𝐹1
𝐹2
] = [

U1(r, S,ω)

U2(r, S,ω)
] 

(11) 

Therefore,   

kFF
[1 − α2(r, S, ω)]

[
1 −α(r, S, ω)

−α(r, S, ω) 1
] [
U1
U2
] = [

𝐹1
𝐹2
] 

(12) 

 

Note that the first element of the equivalent stiffness matrix in Equation (12) is given by the 

superposition of the stiffness of the two springs kFF
SSI and the kFF

SSSI placed in series as shown in the 

reference model in Figure 2, while the off diagonal terms represent directly the term kFF
SSSI. Therefore 

after simple algebra they are determined as follows: 

kFF
SSI(𝑧𝑖, ω) = kFF(𝑧𝑖, ω)[1 + α(r, S, ω)]

−1 (13) 

and 

kFF
SSSI(𝑧𝑖, ω) = kFF(𝑧𝑖, ω)

α(r, S, ω)

[1 − α2(r, S, ω)]
 

(14) 

It is worth noting that in case of uncoupled case (i.e. S → ∞), the attenuation function α assumes the 

null value and the expression (6) for the single pile is again obtained (kFF
SSI → kFF) while the coupling 

term kFF
SSSI is zero.  

The matrix 𝐊FF,c(ω) lists the coupling terms given by Equation (14) as 𝐊FF,c(ω) =

𝑑𝑖𝑎𝑔[… , kFF
SSSI(𝑧𝑖, ω), … ] and the matrices 𝐊̃FS,i and 𝐊̃SF,i(𝑖 = 1,2) are determined  through 

traditional assembling FE procedures and list the coupling terms between the ith structure and its 



 

 

foundation. Moreover, the nodal forces 𝐅(ω) are determined through the seismic wave propagation 

of shear waves from the bedrock through the soil deposit as  

𝐅(ω) = 𝐐(ω)𝐇soil(ω)Ug(ω) (15) 

where 𝐇soil(ω) is the [2m ×  1] vector listing the transfer functions of the soil deposit at the depth 

𝑧𝑖, Ug(ω) is the Fourier transform of the ground motion displacement at the bedrock and 𝐐(ω) is the 

[n ×  2m] matrix defined as:  

𝐐(ω) =

[
 
 
 
0                   0
𝐊̃FF,1
SSI (ω)       0

0       𝐊̃FF,2
SSI (ω)

0                   0 ]
 
 
 
 

(16) 

where 𝐊̃FF,i
SSI (ω) is a diagonal matrix listing the stiffness kFF

SSI(𝑧𝑖, ω) connected to the joints of the 

piles. It is noted that ground motion acceleration is considered the same at the bedrock underneath 

both structure and device. Ground motion horizontal propagation can be also included in the 

formulation by the meaning of the vector 𝐔g(ω)  taking into account wave propagation and 

incoherent effects. For sake of simplicity horizontal propagation will be omitted in this paper. 

3 STOCHASTIC RESPONSE AND VIBA DESIGN 

Consider the ViBa-soil-structure system is forced by a ground motion excitation determined through 

the propagation of the seismic wave from the bedrock to the ground surface. The ground motion at 

the bedrock is modelled by a Gaussian monocorrelated zero-mean stationary process defined by the 

power spectral density function (PSD) of the ground displacement GUgUg(ω). The stochastic 

structural response is determined as: 

E[𝐔(ω)𝐔∗(ω)]

= E [(𝐊̃−1dyn(ω)𝐐(ω)𝐇soil(ω)) (𝐊̃
−1
dyn(ω)𝐐(ω)𝐇soil(ω))

∗

] GUgUg(ω) 

(17) 



 

 

where ∗ is the complex conjugate transpose, E[∙]  is the expectation operator, and 𝐊̃dyn = 𝐊̃(ω) −

ω2𝐌; therefore after setting  𝐇glob(ω) = 𝐊̃
−1
dyn
(ω)𝐐(ω)𝐇soil(ω), Equation (17)  yields 

𝐆UU(ω) = 𝐇glob(ω)𝐇glob
∗ (ω)GUgUg(ω) (18) 

where 𝐆UU(ω) is the PSD matrix of the response in terms of absolute displacements. Moreover, the 

fractile of order p of the distribution of maxima of the relative horizontal displacements Ur of the 

structure to be protected is determined through the first crossing problem: 

X𝑈𝑟(𝑇𝑠, 𝑝) = 𝜂𝑈𝑟(𝑇𝑠, 𝑝)√𝜆0,𝑈𝑟 (19) 

where 𝑇𝑠 is the time observing window;  𝜂𝑈𝑟 is the peak factor; 𝜆0,𝑈𝑟 is the zero-order response 

spectral moment. The peak factor determined by Vanmarcke [22] is used: 

𝜂𝑈𝑟(𝑇𝑠, 𝑝) = √2 ln {2𝑁𝑈𝑟 [1 − exp [−𝛿𝑈𝑟
1.2√𝜋 ln(2𝑁𝑈𝑟)]]} 

(20) 

with 

𝑁𝑈𝑟 =
𝑇𝑆

−2π ln 𝑝
√
𝜆2,𝑈𝑟
𝜆0,𝑈𝑟

 

(21) 

and 

𝛿𝑈𝑟 = √1 −
𝜆1,𝑈𝑟
2

𝜆0,𝑈𝑟𝜆2,𝑈𝑟
 

(22) 

where the response spectral moments 𝜆𝑖,𝑈𝑟 are given by the following equation: 

𝜆𝑖,𝑈𝑟 = ∫ 𝜔𝑖G𝑈𝑟𝑈𝑟(𝜔)𝑑𝜔
+∞

0

 
(23) 

G𝑈𝑟𝑈𝑟(𝜔) is the PSD function of the horizontal relative displacements between the absolute top 

displacement of the structure and the foundation; it can be obtained by the following relation: 

G𝑈𝑟𝑈𝑟(𝜔) = G𝑈𝑇𝑈𝑇(𝜔) + G𝑈𝐹𝑈𝐹(𝜔) − G𝑈𝑇𝑈𝐹(𝜔) − G𝑈𝐹𝑈𝑇(𝜔) (24) 



 

 

 

where the subscripts UT and UF are the absolute top displacement of the structure and the absolute 

top displacement of the foundation, respectively. Note that the PSD matrix of the response (see e.q. 

18) lists both the response of the ViBa and of the structure to be protected. Therefore it can be used 

as vehicle to minimize the maximum response statistics by calibrating the ViBa structural parameters 

as shown in the next section. 

 

The optimal dynamic characteristics of the ViBa designed to reduce the vibrations of adjacent 

structures under stochastic seismic load are determined in this section. The optimization procedure 

aims to reduce a target response parameter selected by the designer. In the following the relative 

displacement of the structure to be protected is selected as representative, even though different 

response parameter can be chosen to define alternative penalty functions. According to the modelling 

adopted to describe the ViBa-soil-structure interaction, the design parameters of the ViBa device are 

the internal mass 𝐌SS,1, the stiffness 𝐊SS,1  and the damping 𝜂𝑠𝑠,1. In order to reduce the maximum 

relative displacements expressed by first passage problem in Equation (19), the power spectral 

density function (18) is restated by introducing the vector 𝛃 = [𝐌SS,1; 𝐊SS,1; 𝜂𝑠𝑠,1] listing the design 

parameters as follows: 

𝐆UU(ω, 𝛃) = 𝐇glob(ω, 𝛃)𝐇glob
∗ (ω, 𝛃)GUgUg(ω) (25) 

where 𝐇glob(ω) = 𝐊̃−1
dyn
(ω, 𝛃)𝐐(ω)𝐇soil(ω). 

Therefore the optimization procedure aims to minimize the largest value of the peak of the relative 

horizontal displacements of the structure at the not-exceeding probability p as follows: 

𝑚𝑖𝑛{X𝑈𝑟(𝑇𝑠, 𝑝, 𝛃) = 𝜂𝑈𝑟(𝑇𝑠, 𝑝, 𝛃)√𝜆0,𝑈𝑟(𝛃)}, 𝛃𝑚𝑖𝑛 < 𝛃 < 𝛃𝑚𝑎𝑥 (26) 

It is worth noting that the optimization procedure is bounded to control each parameter of the 

vector 𝛃 achieving physically reliable values at each iteration.  

 



 

 

4 NUMERICAL ANALYSES 

 Case studies 

In this section the previous procedure is applied to obtain the ViBa parameters in order to minimize 

the relative displacement response of the monopile structure depicted in Figure 1. The structure is  

12.5m tall of which 10 m is embedded on the ground working as pile foundation whereas the part 

over the ground surface is H𝑝= 2.5 m. The shaft is made in reinforced concrete with circular section 

of 1 meter radius. A lumped mass of 500.000 kg is placed on the top of the structure. Hysteretic-type 

damping assumed fixed at 0.1 is considered. The ViBa is modelled as the structure: the foundation is 

a 10 meter depth monopile with the same diameter of the structure to be protected. The mass, the 

height and the hysteretic damping factor of the ViBa will be the design parameters calibrated to 

minimize the response of the target structure.  

Both structures and ViBa are founded on a 30 meter thickness deposit. The soil is considered as a 

homogeneous linear visco-elastic material. Several shear wave velocities, as reported in Table 1, are 

investigated in the analysis in order to study the response for the soil types described by seismic 

design codes (see e.g. [23]). 

 Determination of the input PSD 

In this section, the 1D linear site response analysis is carried out for capturing the local site effects 

for each of the investigated soil deposits. By performing a steady state analysis, the transfer functions 

𝐇soil(ω) are evaluated in order to determine the free field motion displacement at each depth in 

which the pile is discretized. Therefore, from Equation (18), the stationary power spectral density 

function of the ground displacement GUgUg(𝜔) used in this analysis is determined from the response-

spectrum-compatible model obtained for the ground motion acceleration by Cacciola et al. [24]. 

Specifically, 



 

 

𝐺ÜgÜg(𝜔𝑖) =
4𝜁0

𝜔𝑖𝜋 − 4𝜁0𝜔𝑖−1
(
𝑅𝑆𝐴(𝜔𝑖, 𝜁0)

2

𝜂𝑢2(𝜔𝑖, 𝜁0)
− Δ𝜔∑𝐺ÜgÜg(𝜔𝑖)

𝑖−1

𝑘=1

) 

(27) 

where 𝜂𝑢 is the peak factor given in Equation 15 with 𝑁𝑈 and 𝛿𝑈 given by the following equations: 

𝑁𝑈 =
𝑇𝑆

−2π ln 𝑝
𝜔𝑖 

(28) 

and 

𝛿𝑈 = [1 −
1

1 − 𝜁0
2 (1 −

2

𝜋
arctan

𝜁0

1 − 𝜁0
2)

2

]

1
2⁄

 

(29) 

Moreover, 𝐺ÜgÜg(𝜔𝑖 < 𝜔𝑎) = 0 where 𝜔𝑎 ≅ 1 𝑟𝑎𝑑/𝑠 is the lowest bound of the existence domain 

of 𝜂𝑢 and 𝑅𝑆𝐴(𝜔𝑖, 𝜁0) is the response spectral acceleration consistent with the bedrock classified as 

soil type A according to Eurocode 8 [23]. Figure 3 shows the input PSD of the ground motion 

acceleration used in the analysis for damping ratio 𝜁0 = 0.05 and 𝑇𝑆 = 20𝑠. Therefore the power 

spectral density function of the ground motion displacement is GUgUg(𝜔) =  𝐺ÜgÜg(𝜔)/𝜔
4 .  

 Numerical results 

This section presents the numerical results of the case study previously described in section 5.1. A 

parametric study is initially conducted varying the mass mViBa  of the ViBa between 0.25 to 2 times 

the mass mstr of the structure to be protected. Moreover, the stiffness and the damping of the ViBa 

are selected as parameters of optimization procedure by means of the vector 𝛃 = [KSS,1; 𝜂𝑠𝑠,1] in 

which the stiffness KSS,1 is equal to 3EViBaJViBa HViBa
3⁄  where EViBa = 30000 MPa is the Young’s 

modulus of the concrete and JViBa is the moment of inertia of the circular shaft. Accordingly, the 

optimal parameters are the height HViBa and the hysteretic damping 𝜂𝑠𝑠,1 of the ViBa and they are 

both evaluated for each of the several pile-pile spacing considered in the analysis. Lower bound of 

the hysteretic damping,  𝜂𝑠𝑠,1 , has been set equal to 0.02 according to engineering considerations 



 

 

even though beneficial effects might be occur for lower values of damping. The analyses are carried 

out for each of the soil deposit reported in Table 1. 

Numerical results are illustrated in terms of reduction factor RF defined as: 

RF =
𝑋
U𝑈𝑟
𝑐𝑜𝑢𝑝𝑙𝑒𝑑

𝑋
U𝑈𝑟
𝑢𝑛𝑐𝑜𝑢𝑝𝑙𝑒𝑑

 
(30) 

where 𝑋
U𝑈𝑟
𝑐𝑜𝑢𝑝𝑙𝑒𝑑 and 𝑋

U𝑈𝑟
𝑢𝑛𝑐𝑜𝑢𝑝𝑙𝑒𝑑  are the median values of the peak (i.e. p = 0.5) obtained by Equation 

(14) of the relative displacements of the structure coupled and uncoupled with the ViBa, 

respectively.  

Figure 4 shows the reduction factor curves for the several soil types obtained for assigned mass 

ratios by varying the spacing between the structure and the ViBa. Each marker is determined by 

independent optimization of the ViBa. Clearly, the higher the RF value the lower is the efficiency of 

the ViBa. A value of the RF greater than 1 denotes a detrimental effect of the ViBa on the structural 

response. Also the RF values will be higher as the distance between the ViBa and structure increases. 

Nevertheless, a reduction of around 20%, RF= 0.83, is achieved for the case related to the soil type C 

at long distance (50 m) when the mass of the ViBa is high (i.e. 2 times the mass of the structure).  

It is worth noting that the RF assumes small values at spacing less than 10 meters; it proves the 

high efficacy of the ViBa for engineering practical distances. The best case is achieved for the case 

of soil type C, with the higher mass and closest spacing in which the obtained RF is 0.56, which is a 

44% of reduction compared to the case of uncoupled structure. 

By focusing on the case related to the spacing = 1 m, Figure 5 shows the RF curves for each soil type 

on varying the mass ratio. Additionally, a comparison with the results obtained from a Monte Carlo 

Simulation (MCS) performed in the frequency domain by using 100 quasi-stationary samples 

generated by the meaning of the power spectral density function of Figure 3, is carried out.  The 

excellent matching between the time and frequency domain solutions further validates the accuracy 

of the formulation adopted.  



 

 

The curves show that the efficiency of the ViBa increases with the increase of the mass ratio. 

Moreover, the RF curves are different for each soil type and the smallest RFs are obtained for the 

soil type C. One cause can be elicited from Table 2 that lists the first fundamental frequencies (in 

Hz) of the soil deposit and the uncoupled single structure for each soil type; the smaller is the 

difference between the natural frequency of the soil and the natural frequency of the structure the 

higher is the efficiency of the ViBa, namely the smaller is the RF. Indeed, when the two natural 

frequencies are closer each other, the structure is in the situation referred to as double resonance and 

the displacements of the uncoupled structure are significantly high; the protection provided from the 

ViBa considerably decreases the structural relative displacement by absorbing a significant part of 

the seismic input energy. 

Figure 6 shows the effects of the ViBa with the distance. The ViBa has been optimized for the 

spacing = 1 m and its effects are sensible as far as around 120 m where the curves become 

asymptotic to the unity where the structure to be protected is no more affected by the coupling 

interaction with the ViBa. 

Figure 7 shows the PSD functions of the response acceleration G𝑈̈𝑇𝑈̈𝑇(𝜔) =  𝜔
4G𝑈𝑇𝑈𝑇(𝜔) for the 

soil types adopted in this paper obtained for the case of mass ratio = 0.75 and pile-pile spacing = 1 

m. The continuous line is related to the PSD in term of absolute acceleration of the response of the 

structure after being protected by the ViBa; the dotted line is related to the same response before 

being protected by ViBa (uncoupled case). The highest reduction is obtained for the case related to 

the soil type C where the structure is in resonance with the ground motion excitation due to the 

natural frequency of the soil deposit; in this case the ViBa is able to reduce of about 40% the 

maximum absolute acceleration.  

A relevant reduction is achieved also for the case in the soil type D, where the difference between 

the natural frequency of the soil and of the structure is moderate. Moreover, the highest peak is 



 

 

related to the frequency of the soil deposit (0.83 Hz) whereas in the other cases the highest peaks are 

consistent with the frequency of the structure to be protected. 

It is worth noting that in every case the PSD of the coupled case shows a further peak with regards 

to the uncoupled case; this is due to the influence of the ViBa that produce the typical shape of the 

Tuned Mass Damper. A similar behaviour has been observed in the past see e.g. Luco and Contesse 

[3],  Kobori and Kusakabe [4], and more recently by Alexander et al. [12] in the case of the study of 

cross dynamic interaction of structures founded on surface foundations and by Padròn et al. [25] in 

the case of nearby pile supported structures as well as in the laboratory and field tests on models of 

nuclear power plant buildings conducted by the Nuclear Power Electric Corporation (NUPEC) for 

investigating the dynamic cross interaction effects [26-27]. Figure 8 illustrates the stochastic 

response of the internal unit of the ViBa under the same input and soil profiles used for Figure 7. The 

Figure shows the increment of the energy absorbed by the device in comparison with the uncoupled 

case that can be used to ensure the designed ViBa does not collapse under seismic action. 

5 LABORATORY TEST 

In this section the effectiveness of the ViBa is evaluated by means of laboratory tests. The study 

case involves the protection of a structure modelled as cantilevered structure founded on monopile 

foundation as well as the designed ViBa. The test model consists of a ground model made of silicone 

rubber and structural models made of steel for the superstructure and aluminium for the pile shaft. 

Structural models are founded on the ground model with their piles embedded in the silicone rubber 

specimen (see e.g. Kitada et al. [26] and Niwa et al.[28]). Two cases are analysed: firstly, the case 

related to the single structure, specifically the uncoupled situation without the protection by the ViBa 

and secondly the case of the structure with the vibration control provided by the ViBa. The test 

model is set up on a reduced scale shaking table. The two test models are depicted in Figure 9a-b for 

both the cases uncoupled and coupled with the ViBa. An Experimental Monte Carlo Simulation 



 

 

(EMCS) is applied to the test model in order to investigate the reduction of the response acceleration 

at the top of the structure induced by the ViBa. 

 

 Test set-up 

Figure 10 shows the set-up of the experimental test. The ground model has been reproduced by a 

cylinder made of silicone rubber depicted in Figure 9a-b. The structure is composed of 3-mm 

diameter steel bar of 0.125 m net height with a 73.2 gr mass placed at the top of the shaft. The shaft 

is fixed to the single pile foundation made of aluminium. The pile shaft has dimensions of 6 mm in 

diameter and 0.1 m in length. The elastic properties of the materials used in the test are reported in 

Table 3. The pile is fixed into the silicon rubber except for a part of 0.03 m length kept above the 

surface to allow the setting of the transducers. The same structural system has been used for 

modelling the ViBa where the net height of the pier shaft is obtained according to the procedure 

defined in Section 3.1. The ViBa is placed at the interaxial distance of 0.05 m between the two piles. 

The test model is set up on Quanser Shake Table II for performing dynamic tests with simulated 

earthquake ground motion accelerations. An accelerometer is mounted on the shake table platform in 

order to measure directly the accelerations at the base of the test model and an accelerometer of 4.2 

gr is mounted on the upper mass of the structure in order to record the structural response of the 

structure to be protected. Monte Carlo Simulation has been performed experimentally. In particular, 

30 quasi-stationary ground motion time-histories were generated by using the power spectral density 

function of Figure 3 adopted in the numerical analyses.  

 

 ViBa design 

In this test the ViBa parameter to be designed is the net height of the pier shaft directly related to 

the ViBa stiffness while the mass of the device is set as almost twice of that one of the structure 

(mViBa = 174.8 𝑔𝑟). In this experimental test, the reduction factor involved in the optimization 

procedure described in Section 3.1 is expressed in terms of ratio of the absolute accelerations 



 

 

measured by the accelerometer directly mounted on the top of the structure. Along with the reference 

model, the test model has been reproduced in SAP2000 [29]. The numerical model is used for 

simulating the actual boundary conditions of the experimental test that might differ from the ideal 

model described in the previous section possessing boundary at infinity; the model has been used for 

calibrating an equivalent hysteretic-type damping used for the ViBa design and equal to 𝜂 = 0.09. 

Both cases of single structure and structure protected by the ViBa device are carried out by means of 

the models depicted in Figure 11a and b, respectively. The silicone rubber ground model, the piles 

and the piers of both structure and ViBa are modelled by means of solid elements. Power spectral 

density analyses have been performed by applying the PSD functions recorded at the shaking table 

platform. Results are then compared to those obtained by the experimental tests in order to better 

calibrate the hysteretic damping of the system. Consequently by setting up the reference model, the 

outcome of the procedure has resulted in a net height of 0.08 m for which the achieved reduction 

factor is 0.78. 

 

 Shaking table results 

Shaking table tests are carried out for 30 simulated ground motion accelerations for both cases of 

single structure and structure protected by the ViBa. The results of the experimental Monte Carlo 

Simulation are the structural accelerations recorded at the top of the structure. Figure 12 shows the 

target PSD function used for generating the accelerograms and the PSD curves obtained by 

averaging each PSD function derived from the accelerations recorded by the transducer mounted at 

the shake table platform for both investigated cases; Figure 13 reports the cumulative average 

maximum acceleration with respect to the number of simulations for both single structure and 

structure coupled by ViBa; it is worth noting that these curves become stable after around 15 

realizations indicating the convergence of results of the Monte Carlo Simulations.  



 

 

 In Figure 14 the average PSD functions of the recorded response acceleration for both cases with 

and without the protection of the ViBa are reported. The PSD function obtained for the case with the 

coupling of the structure with the ViBa shows a significant alteration of the dynamic characteristics 

of the global system and a reduction of the energy related to the uncoupled case. Similar behaviour 

has been observed in the numerical analyses as shown in Figure 7. By the comparison with the 

numerical results it has been also observed an increment of the energy dissipation from 𝜂 = 0.09 

(uncoupled case) to 𝜂 = 0.12 (coupled case). Finally, Figure 15 shows the results in terms of 

cumulative average reduction factor. It is worth mentioning that each individual RF obtained from 

each individual experiment is less than unity which means that the ViBa always provides a beneficial 

effect for every single case; the results range from the highest reduction of about 42% (RF=0.584) to 

a minimum of 9% (RF=0.914) and with an average value of 26% corresponding to RF equal to 0.743 

close to the value evaluated from the optimization procedure and from the numerical results obtained 

from a power spectral analysis performed in SAP2000 (RF = 0.72).  

 

 

6 CONCLUSIONS 

A novel vibration control strategy has been proposed in this paper to reduce the vibrations of 

structure due to seismic waves. The new strategy exploits the structure-soil-structure interaction 

mechanism to develop a novel device herein called Vibrating Barrier (ViBa). This barrier is hosted in 

the soil nearby the structure to be protected and it is designed to absorb part of the seismic input. 

Remarkably the device is not in contact with the structure, therefore can be used to protect existing 

structures. A simplified structural model has been used design the ViBa device. Specifically, a 

cantilevered structure founded on monopile has been selected as the structure to be protected; the 

ViBa has been modelled as well as a cantilevered structure founded on monopile. Numerical and 

experimental tests have been carried out to explore the effectiveness of the ViBa in reducing the 

vibration of a simplified structure. Various soil conditions according to the Eurocode 8 classification 



 

 

have been considered in the numerical model highlighting the effectiveness of the ViBa for different 

different scenarios. Interestingly a reduction of up to 44% has been achieved. Experimental results 

did validate the numerical model adopted. The paper represents the first study in this field and 

addressed the design of this innovative device through a simplified approach. The study provides a 

framework to enhance the modelling by including nonlinear behaviour in soil and structures as well 

as non-stationary spatially variable ground motion models. Moreover, it is worth noting that as the 

ViBa is hosted in the soil it can be able protect more than one structure according to the Poulos’s 

superposition procedure [30]. Specifically, the response of a pile groups can be obtained from the 

study of only two piles at a time by assuming “transparent” the other piles. As proven by several 

authors (see e.g  Roesset [31], Kaynia and Kausel [32]), the results of this approximation are in very 

good agreement with more rigorous dynamic solutions as the pile diameter is small in comparison to 

the seismic wavelength. 
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Table 1. Properties of the investigated soil deposits 

Soil 

Type 

𝑉𝑠 [m/s] 𝜌𝑠 

[kg/m3] 

𝜐  

A 800 2000 0.45 

B 400 2000 0.45 

C 200 2000 0.45 

D 100 2000 0.45 

 

  



 

 

Table 2. Comparison of the fundamental frequencies of the structure considering SSI and the soil 

deposit  

Soil 

Type 

𝑓𝑠𝑜𝑖𝑙 [Hz] 𝑓𝑠𝑡𝑟 [Hz] (𝑓𝑠𝑜𝑖𝑙−𝑓𝑠𝑡𝑟)

𝑓𝑠𝑡𝑟
%  

A 6.67 2.67 150 

B 3.33 2.08 60.1 

C 1.67 1.57 6.4 

D 0.83 1.15 -28.0 

 

  



 

 

  



 

 

Table 3 Properties of the materials used in the experimental test 

 

 

Materials Young’s Elastic 

Modulus [kPa] 

Poisson coefficient Unit weight 

[kN/m3] 

Silicone rubber 470.66 0.47 12.29 

Aluminium 69637055.00 0.33 26.60 

Steel 84980000.00 0.30 76.36 



 

 

  



 

 

 

 

Figure 1. ViBa-soil-structure system 
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Figure 2. Discrete ViBa-soil-structure interaction model 

  



 

 

 

Figure 3. Input PSD defined at bedrock  
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Figure 4 Reduction factor curves for soil type a) A, b) B, c) C, and d) D
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Figure 5. RF curves obtained for several soil types after tuning the ViBa for spacing = 1 m 

  

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

m
ViBa

/m
str

R
F

 

 

Soil Type A

Soil Type B

Soil Type C

Soil Type D

Soil Type A (MCS)

Soil Type B (MCS)

Soil Type C (MCS)

Soil Type D (MCS)



 

 

 

Figure 6. RF values at several distances after tuning the ViBa for spacing = 1 m 
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Figure 7. Acceleration PSD functions for soil type a) A, b) B, c) C, and d) D obtained for mass 

ratio = 0.75 and spacing = 1m 

 

  

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

Circular Frequency [rad/s]

G
Ü

T
 Ü

T

 [
m

2
s-3

]

 

 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Circular Frequency [rad/s]

G
Ü

T
 Ü

T

 [
m

2
s-3

]

0 5 10 15 20 25
0

2

4

6

8

10

Circular Frequency [rad/s]

G
Ü

T
 Ü

T

 [
m

2
s-3

]

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Circular Frequency [rad/s]

G
Ü

T
 Ü

T

 [
m

2
s-3

]

 

 

coupled structure

uncoupled structure

b)a)

c) d)

RF = 0.82
H

ViBa
=3.84m


ViBa

=0.02

RF = 0.85
H

ViBa
=3.69m


ViBa

=0.02

RF = 0.66
H

ViBa
=6.93m


ViBa

=0.02

RF = 0.62
H

ViBa
=3.61m


ViBa

=0.02



 

 

 

Figure 8 Acceleration PSD functions of the ViBa for soil type a) A, b) B, c) C, and d) D obtained 

for mass ratio = 0.75 and spacing = 1m 
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Figure 9 Test models realized in the laboratory and placed over a shaking table for a)single structure and b )structure 

coupled with ViBa. 
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Figure 10 Set up of the experiment for shaking table (case with structure protected by ViBa device) 

 

 

  



 

 

 

  

Figure 11 Reproduction of the experimental test by SAP2000 for both cases: a) without and b) with the protection by 

ViBa 
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Figure 12 Comparison between desired and measured Power Spectral Density curves at the shake table platform 
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Figure 13 Cumulative average of the recorded maximum accelerations of the structure for single structure and structure 

coupled by ViBa 
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Figure 14 Numerical and experimental averaged power spectral density functions of the recorded accelerograms of the 

structure without and with the coupling of the ViBa  
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Figure 15 Evaluation of cumulative reduction factor in MCS and comparison with results from stochastic analyses 

 

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

number of sample

R
ed

u
ct

io
n

 F
ac

to
r

 

 

MCS-Experimental test

Stochastic Analysis - Expected RF

Stochastic Analysis - SAP2000


