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Abstract. In this paper we investigate how to optimally invest in cyber-
security controls. We are particularly interested in examining cases where
the organization suffers from an underinvestment problem or inefficient
spending on cybersecurity. To this end, we first model the cybersecurity
environment of an organization. We then model non-cooperative cyber-
security control-games between the defender which abstracts all defense
mechanisms of the organization and the attacker which can exploit dif-
ferent vulnerabilities at different network locations. To implement our
methodology we use the SANS Top 20 Critical Security Controls and
the 2011 CWE/SANS top 25 most dangerous software errors. Based on
the profile of an organization, which forms its preferences in terms of
indirect costs, its concerns about different kinds of threats and the im-
portance of the assets given their associated risks we derive the Nash
Equilibria of a series of control-games. These game solutions are then
handled by optimization techniques, in particular multi-objective, multi-
ple choice Knapsack to determine the optimal cybersecurity investment.
Our methodology provides security effective and cost efficient solutions
especially against commodity attacks. We believe our work can be used
to advise security managers on how they should spend an available cy-
bersecurity budget given their organization profile.

Keywords: cybersecurity, game theory, optimization.3

1 Introduction

One of the single largest concerns facing organizations today is how to protect
themselves from cyber attacks whose prominence impose the need for organiza-
tions to prioritize their cybersecurity concerns with respect to their perceived
threats. Organizations are then required to act in such a way so as to minimize
their vulnerability to these possible threats. The report [4] published by Deloitte
and NASCIO, points out that only 24% of Chief Information Security Officers
(CISOs) are very confident in protecting their organization’s assets against exter-
nal threats. Another important finding in this report is that the biggest concern

3 The original publication is available at www.link.springer.com.
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CISOs face in addressing cybersecurity is a “Lack of sufficient funding” where
86% of respondents were concerned.

Most organizations will have a fixed budget for the protection of their sys-
tems. Generally this budget would not allow them to fully cover all of the vul-
nerabilities that their data assets are at risk from. As such an organization is
interested in how to use the limited financial budget available to best protect
them from various vulnerabilities given that the implementation of a cybersecu-
rity control is associated with a direct cost.

Apart from the direct costs of controls, there are also indirect costs incurred
by the implementation of these controls. From this point of view investing more
in cybersecurity might not always be the most efficient approach that CISOs can
follow. Therefore another dimension of the cybersecurity investment problem
is “what is the optimal cybersecurity budget allocation given the importance
that the organization places into its different assets, the system performance
requirements, and the profile of employees and clients?”

1.1 Our Contributions

In this work we provide a methodology and a tool that can support security
managers with decisions regarding the optimal allocation of their cybersecurity
budgets.

We first motivate a method for the creation of an organization’s cybersecurity
strategy (Section 3). This is achieved by performing a risk analysis of the data
assets that an organization has, and analyzing the effectiveness of different secu-
rity controls against different vulnerabilities. We then formulate control-games
(Section 4) based on these risk assessments, in order to calculate the most effec-
tive way for an organization to implement each control. In a control-game the
defender aims at reducing cybersecurity risks by implementing a control in a
certain way dictated by the Nash Equilibrium (NE). In this way, the defender
minimizes the maximum potential damage inflicted by the attacker. The solu-
tions of the different control-games are handled by the optimization techniques of
multi-objective, multiple choice Knapsack (Section 5) to decide upon an optimal
allocation of a cybersecurity budget. We also present a case study (Section 6)
which includes vulnerabilities (i.e. CWE) and cybersecurity controls published
by the Council on CyberSecurity. We have implemented our methodology (Sec-
tion 7) for this case study by computing games solutions and investments and
measure its performance in terms of cybersecurity defense for different organi-
zation profiles.

To demonstrate the effectiveness of our methodology we have implemented
part of the SANS Top 20 Critical Security Controls and the 2011 CWE/SANS
top 25 most dangerous software errors. We present examples of investment strate-
gies that our tool recommends and test their optimality by looking at alternatives
to show that they are the best. In this way, our work is a step towards implement-
ing a theoretical cybersecurity investment decision-making methodology into a
realistic scenario.
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2 Related Work

Anderson [1] first proposed the study of security from an economics perspective
putting forward the idea that cybersecurity is bounded by other non-technical
incentives. Anderson highlighted with an example that although some organi-
zations spend less money on security they spend it more effectively therefore
having put in place better cyber defenses. In our work we share Anderson’s
view. However our approach is quite different as we focus on developing cyber-
security decision support tools to assist security managers on how to spend a
cybersecurity budget in terms of different controls acquisition and implementa-
tion. Our work has been partially influenced by a recent contribution within the
field of physical security [17], where the authors address the problem of finding
an optimal defensive coverage. The latter is defined as the one maximizing the
worst-case payoff over the targets in the potential attack set. One of the main
ideas of this work we adopt here is that the more we defend the less rewards the
attacker receives.

Alpcan [5] (p. 134) discusses the importance of studying the quantitative as-
pects of risk assessment with regards to cybersecurity in order to better inform
decisions makers. This kind of approach is taken in this work where we provide an
analytical method for deciding the level of risk associated from different vulner-
abilities and the impact that different security controls have in mitigating these
risks. By studying the incentives for risk management Alpcan [6] developed a
game theoretic approach that optimizes the investment in security across differ-
ent autonomous divisions of an organization, where each of the divisions is seen
as a greedy entity. Furthermore Alpcan et al. examine in [14] security risk depen-
dencies in organizations and they propose a framework which ranks the risks by
considering the different complex interactions. This rank is dictated by an equi-
librium derived by a Risk-Rank algorithm. Saad et al. [12] model cooperation
among autonomous parts of an organization that have dependent security assets
and vulnerabilities for reducing overall security risks, as a cooperative game. In
[13] Bommannavar et al. capture risk management in a quantitative framework
which aids decision makers upon allocation of security resources. The authors
use a dynamic zero-sum game to model the interactions between attacking and
defending players; A Markov model, in which states represent probabilistic risk
regions and transitions, has been defined. The authors are using Q-learning to
cope with scenarios when players are not aware of the different Markov model
parameters. Previous work carried out by Fielder et. al. [9] considers how to op-
timally allocate the time for security tasks for system administrators. This work
identifies how to allocate the limited amount of time that a system administra-
tor has to work on the different security related tasks for an organization’s data
assets.

One of the initial works studying the way to model investment in cyberse-
curity was conducted by Gordon and Loeb [7]. The authors identify a method
for determining the level of investment for the protection of individual targets,
showing that the optimal level of investment should be related to the proba-
bility of a vulnerability occurring. The main message of this work is that to
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maximize the expected benefit from information security investment, an organi-
zation should spend only a small fraction of the expected loss due to a security
breach. The work published in [8] examines the weakest target game which refers
to the case where an attacker is always able to compromise the system target
with the lowest level of defense and not to cause any damage to the rest of the
targets. The game theoretic analysis the authors have undertaken shows that
the game leads to a conflict between pure economic interests and common so-
cial norms. While the former are concerned with the minimization of cost for
security investments, the latter imply that higher security levels are preferable.
Cavusoglu et. al. [11] compare a decision theory based approach to game theo-
retic approaches for investment in cybersecurity. Their work compares a decision
theory model to both simultaneous and sequential games. The results show that
the expected payoff from a sequential game is better than that of the decision
theoretic method, however a simultaneous game is not always better. Recent
work on cybersecurity spending has been published by Smeraldi and Malacaria
[10]. The authors identified the optimum manner in which investments can be
made in a cybersecurity scenario given that the budget allocation problem is
most fittingly represented as a multi-objective Knapsack problem. Cremonini
and Nizovtsev, in [15], have developed an analytical model of the attacker’s be-
havior by using cost-benefit analysis therefore considering rewards and costs of
achieving different actions. Lastly, Demetz and Bachlechner [16] have identified,
analyzed and presented a set of approaches for supporting information security
investment decisions. A limitation of this paper, as highlighted by the authors,
is that they assume that sufficient money is available to make an investment
although in reality cybersecurity budgets are limited.

3 Cybersecurity Model

In this section we describe our cybersecurity model to illustrate an organization’s
network topology, systems and security components. The network architecture
will determine how the different assets of an organization are interconnected. In
this paper we follow the network architecture as proposed in the SANS Criti-
cal Security Control 19-1 entitled “Secure Network Engineering” and published
in [3]. This consists of three depths namely the demilitarized zone (DMZ ), the
Middleware, and the Private Network. An organization’s assets that can be ac-
cessed from the Internet are placed in the DMZ, and they should not contain
any highly sensitive data. Any asset with highly sensitive data must be located
at the Private Network, and communicate with the outside world only through
a proxy which resides on the Middleware.

We define the depth of an asset, denoted by d, as the location of this asset
within an organization’s network architecture. Depths are separated from each
other by a set of network security software, e.g. firewalls, IDS. A depth deter-
mines (i) the level of security that needs to be breached or bypassed in order
for an attack to successfully exploit a vulnerability at this depth, and (ii) the
importance of the data asset compromised if an attack is successful.

We denote the set of all cybersecurity targets within an organization by T
and the set of all vulnerabilities threatened by commodity attacks by V.
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Fig. 1. Sample network architecture.

Definition 1. Commodity attacks are attack methods where the attack tools can
be purchased by a user, where the adversaries do not develop the attacks them-
selves, and only configure the tools for their own use.

A cybersecurity target is defined as a (vulnerability, depth) pair, i.e. ti =
(vz, d). A target abstracts any data asset, located at depth d, that an attack
threatens to compromise by exploiting the vulnerability vz.

We define the set of all targets as T = {(vz, d)|vz ∈ V , d ∈ {1, . . . , n}}.
We assume that each network architecture has its own set of targets however
throughout this paper we consider the network architecture depicted in Fig. 1.
In this paper, we specify that data assets located at the same depth and having
the same vulnerabilities are abstracted by the same target, and they are worth
the same value to the organization.

A cybersecurity control is the defensive mechanism that can be put in place
to alleviate the risk from one or more attacks by reducing the probability of
these attacks successfully exploiting vulnerabilities. The defender can choose to
implement a control cj at a certain level l ∈ {0, . . . ,L}. The higher the level the
greater the degree to which the control is implemented.

Definition 2. We define a cybersecurity process as the implementation of a
control at a certain level, and we denote by pjl the cybersecurity process that
implements the control cj at level l.
We define as C = {cj} the set of all cybersecurity controls the defender is
able to implement to defend the system, and Pj = {pjl} the set of all cyber-
security processes associated with control cj . A cybersecurity process pjl has a
degree of mitigation for each target ti which equals the effectiveness of the cy-
bersecurity process on this target, denoted by e(ti, pjl) ∈ (0, 1]. We also define
Mitigation = e(ti, pjl). In this paper we are interested in how cybersecurity
processes are combined in a proportional manner to give an implementation plan
for this control. We call this a cybersecurity plan which allows us to examine ad-
vanced ways of mitigating vulnerabilities.
Definition 3. A cybersecurity plan is a probability distribution over different
cybersecurity processes.
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In the following we describe the notions of Risks, Indirect and Direct Costs re-
sulting from the implementation and purchase of a control and the Organization
Profile which determines the preferences of an organization in terms of risks,
indirect costs and how concerned the organization is about the different threats.

Risks. The target risks express the damage incurred to the defender when the
attacker succeeds in compromising one or more targets. The different risks we
consider are Data Loss (DL), Business Disruption (BD), and Reputation (RE).
Each risk factor depends on the depth d that the attack targets; therefore we
denote by DLd, REd, and BDd the risk values associated with a depth d.

Indirect Costs. For each cybersecurity process we consider three different types of
indirect costs. The System Performance Cost (SPC) is associated with anything
related to system performance being affected by a cybersecurity process (e.g.
processing speed affected by anti-malware scanning). The Morale Cost (MOC)
accounts for morale issues that higher levels of security can cause to users’ hap-
piness and job satisfaction. One negative implication of high MOC is that the
stricter the security measures that an organization implements, the more likely
an individual will want to circumvent them if possible. In these cases the at-
tacker is able to take advantage of the reduced security from user actions. For
example, having a control about different passwords for everything, might an-
noy users therefore increasing MOC. This might lead to circumvention of security
by the user picking weak, memorable passwords which can often be cracked by
dictionary or brute force attacks. Lastly, Re-Training Cost (RTC) refers to the
cost for re-training users, including system administration, so they can either
perform the cybersecurity process in the right way or be able to continue using
all systems after a security update. We express the different indirect costs of a
cybersecurity process pjl by SPCjl, RTCjl, and MOCjl.

Direct Costs. Each cybersecurity process has a direct cost which refers to the
budget the organization must spend to implement the control cj at a level l. The
direct cost of a cybersecurity process is split into two categories, the Capital Cost
(CAC) and the Labour Cost (LAC). CAC is related to hardware or software that
must be purchased for the implementation of a control at some level. LAC is the
direct cost for having system administrators implementing the control such as
(hours spent) × (cost/hour). When investing in cybersecurity we will be looking
into the direct cost of each cybersecurity plan which is derived as a combination
of the different costs of the cybersecurity processes that comprise this plan.

Vulnerability Factors. The Council on CyberSecurity has published in [2] soft-
ware weaknesses (in this paper weakness and vulnerability are used interchange-
ably) and their factors. These factors are Prevalence (PR), Attack Frequency
(AF), Ease of Detection (ED), and Attacker Awareness (AA). For a vulnerabil-
ity vz we denote the vulnerabilities factors by PRz,AFz,EDz,AAz. The level of
a factor determines its contribution towards an overall vulnerability assessment
score. For a commodity attack, one can argue that AA measures whether the
average adversary would know that a malicious script is for sale, and ED is a
measure of the computational cost of the attack discovery process. PR indicates
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the number of times the weakness is found in the system (e.g. only 30% of win-
dows systems ever downloaded a given patch), and AF dictates the number of
times someone actually tries to exploit it (e.g. how many random SQL injec-
tion probes a day). We see PR and AF accounting for threats that are currently
widespread (current threats) and ED and AA for threats that have the most
potential for future attack vectors (future potential threats).

Organization Profile. To represent an organization profile we define a set {R,K, T }
which dictates the preferences that an organization has with regards to risks,
indirect costs and how concerned the organization is about well-known threats,
respectively. These are given by the probability distributions R = [r1, r2, r3],
K = [k1, k2, k3], and T = [τ1, τ2]. The idea behind defining an organization pro-
file is that a security manager can reason about the organization at a high level.
This means whenever managers use our model they do not have to undertake
some detailed security assessment, but only considers the high level needs of the
organization.

The Risk Profile, denoted by R, represents the importance that each of the
potential areas of loss (DL,RE,BD) has to the organization. This is designed to
prioritize the risk factors, such that each organization is able to identify the
balance of the damage that they can expect from a successful attack. While the
expectation is that data loss will be the predominant concern for most organiza-
tions, there are some that may consider that their reputation or the disruption
to the operation of the business have a more significant impact. The most no-
ticeable case for this would be organizations that predominantly deal with third
party payment systems (e.g. Paypal), where the organization will hold relatively
little data of value for their customers. For the Risk Profile weights we create
the relation such that r1 7→ DL, r2 7→ RE, and r3 7→ BD. We implicitly assume
here that the organization’s risk profile remains the same at all depths. We then
define Risks = r1DLd + r2REd + r3BDd.

The Indirect Costs Profile K defines an importance for each of three different
indirect cost factors SPC, RTC, and MOC. This is so that an organization can
reason about the relative importance of indirect costs that it may incur when
implementing a defense. The mapping of the different weights to costs are k1 7→
SPC, k2 7→ RTC, and k3 7→ MOC. Therefore, Ind Costs = k1SPCjl + k2RTCjl +
k3MOCjl.

Lastly, Threat Concern T is the level of importance that the business places
on each of the threat factors. The main priority here is identifying whether
the organization is concerned more about current threats or future potential
threats. Therefore τ1 7→ current threats and τ2 7→ future potential threats. We
define Threat = τ1[(PRz + AFz)/2] + τ2[(EDz + AAz)/2].

4 Cybersecurity Control-Games
In this section we use game theory to model the interactions between two play-
ers; the defender and the attacker. The defender D abstracts any cybersecurity
decision-maker (e.g. security manager) which defends an organization’s data as-
sets by minimizing cybersecurity risks with respect to the indirect costs of the
cybersecurity processes while the attacker A abstracts all adversaries that aim to
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benefit from compromising the defender’s data assets. The game we model here
is a two-player game where there is a negative functional correlation between the
attacker and the defender payoffs; the idea is that the more an attacker gains the
more the defender loses. This means that equilibria in these games are minimax
in an associated zero sum game. For any control cj we define a control-subgame
as follows.

Definition 4 (Control-subgame Gjλ). A control-subgame Gjλ is a game where
(i) D’s pure strategies correspond to consecutive implementation levels of the
control cj starting always from 0 (i.e. fictitious control-game) and including all
levels up to λ and, (ii) A’s pure strategies are the different targets akin to pairs
of vulnerabilities and depths.
D’s finite strategy space is given by the set AD = {pjl}. This means that D’s

actions are the different cybersecurity processes akin to implementations of a
control cj at different levels. The attacker can choose among different targets to
attack therefore AA = {(vz, d)}. We define D’s mixed strategy as the probability
distribution Qjλ = [qj0, . . . , qjλ]. This expresses a cybersecurity plan, where qjl
is the probability of implementing cj at level l in the control-subgame Gjλ.

A mixed strategy of A is defined as a probability distribution over the differ-
ent targets and it is denoted by Hjλ = [hj1, . . . , hjn], where hji is the probability
of the adversary attacking target ti when D has only the control cj in their pos-
session. D’s aim in a control-subgame is to choose the Nash cybersecurity plan
Q?jλ = [q?j0, . . . , q

?
jλ]. This consists of λ cybersecurity processes chosen proba-

bilistically as determined by the Nash Equilibrium (NE) of Gjλ and it minimizes
cybersecurity risks and indirect costs.

Example 1. In this example we consider a security control entitled Vulnerability
Scanning and Automated Patching, and we assume 5 different implementation
levels i.e. {0, 1, 2, 3, 4} where level 4 corresponds to real-time scanning while level
2 to regular scanning. We say that a mixed strategy [0, 0, 7

10 , 0,
3
10 ] determines a

cybersecurity plan that dictates the following:
3
10 7→ real-time scanning for the 30% of the most important devices

7
10 7→ regular scanning for the rest 70% of devices

This mixed strategy can be realized more as advice to a security manager on
how to undertake different control implementations rather than a rigorous set of
instructions related only to a time factor. We claim that our model is flexible thus
allowing the defender to interpret mixed strategies in different ways to satisfy
their requirements.

We denote by UD(pjl, ti) the utility of D when target ti = 〈vz, d〉 is attacked,
and the cybersecurity process pjl has been selected to mitigate vz at depth d, in
general:

UD(pjl, 〈vz, d〉) := Risks×Threat× (1−Mitigation) + Ind Costs (1)

Theorem 1. The zero-sum cybersecurity control-subgame Gjλ admits an NE in
mixed strategies, (Q?jλ, H

?
jλ), with the property that

Q?jλ = arg max
Qjλ

min
Hjλ

UD(Qjλ, Hjλ), and H?
jλ = arg max

Hjλ
min
Qjλ

UA(Qjλ, Hjλ)
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The minimax theorem states that for zero sum games NE and minimax solution
coincide. Therefore in Gjλ any Nash cybersecurity plan mini-maximizes the at-
tacker’s payoff. If any Gjλ admits multiple Nash cybersecurity plans they have the
ordered interchangeability property which means that D reaches the same level
of defense independent from A’s strategy, i.e.

Q?jλ = arg min
Qjλ

max
Hjλ

UA(Qjλ, Hjλ)

Definition 5. The non-zero sum control-subgame G′jλ = 〈UD, U
′
A〉 where U ′

A =
αUA + β, andα, β constants andα > 0 is called a positive affine transformation
(PAT) of the zero sum control-subgame Gjλ = 〈UD, UA〉.
Proposition 1. If one of the game matrices of a control-subgame Gj is a positive
affine transformations (PAT) of a zero sum control-subgame G′j (and the other
matrix is the same for both games) then the Nash equilibria of Gj are minimax
strategies. These also correspond to saddle-points [5] (p. 42).

In the rest of the paper we will restrict ourselves to control-subgames which are
positive affine transformation of a zero sum control-subgame.

Definition 6 (Control-game Gj). For any control cj, with L possible im-
plementation levels, we define a control-game Gj which consists of L control-
subgames, each of them denoted by Gjλ, λ ∈ {0, 1, . . . ,L}.
In other words, a control-game is the collection of L control-subgames for a
specific control. The solution Cj of a control-game for the defender is a set of
Nash cybersecurity plans {Q?jl}, ∀l ∈ {0, λ} each of them determined by the NE
of each control-subgame. The set {Cj} for all controls cj ∈ C contains all sets of
Nash cybersecurity plans one per control.

5 Cybersecurity Investment Optimization
In the previous section we were concerned with the implementation of a cyber-
security control. Nevertheless, organizations will generally implement more than
one control. In this section we identify a method for combining these controls
given that an organization’s budget is constrained. More specifically, we describe
how the control-game solutions are handled by optimization techniques to pro-
vide investment strategies. Each cybersecurity plan imposes its own direct costs
including both CAC and LAC. Given a set {cj} of N controls each of them being
associated with a set {Cj} of L Nash cybersecurity plans, and an available bud-
get B, in this section we examine how to optimally invest in the different plans
by choosing at most one plan per control.

In relation to the cybersecurity investment problem we consider a 0-1 Knap-
sack problem similar to the cybersecurity budget allocation problem studied by
Smeraldi and Malacaria [10]. In fact, in this paper we model this cybersecu-
rity investment optimization problem as a 0-1 Multiple-Choice Multi-Objective
Knapsack Problem.

We assume that a plan can be effective in protecting more than one target
and its benefit on a target is determined by the expected damage caused to the
target when only this plan is purchased. The benefit of an investment solution
on a target is determined by the sum of the benefits of the different plans on that
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target where this sum never exceeds 1. Furthermore, each investment solution
has a score determined by the maximum expected damage across all targets.
When there are investment solutions with the same score we consider a tie-
break. The question then arises, which one solution should one use? We consider
that in the event of a tie-break, the solver uses the solution with the lowest cost.
This tie-break makes sense as no-one would normally pay more for a defense
that does no better.

The optimization method creates one objective function per target, which
constraint is constrained by a common total budget B. Our goal is to derive
the set of Nash cybersecurity plans (one per control) which minimizes the in-
vestment solution score. To derive the optimal investment solution, we compute
the expected damage of each target for each possible set of plans. The weakest
target is defined as the target that suffers the highest damage. In this way our
method of evaluating the security of a system is to consider that “the security of
a system is only as strong as it’s weakest point”. We then choose the set of plans
that provides the minimum final expected damage among all highest expected
damages.

Definition 7. Defining the value of any target ti as γi = −Risks × Threat,
considering N controls and assuming that each Nash cybersecurity plan Q?jλ is

associated with some benefit bjλ(ti)
4 upon target ti, and it has cost ωjλ, the

defender seeks a cybersecurity investment I such that

max
I

min
ti
{1−

N∑
j=1

L∑
λ=0

bjλ(ti)xjλ} γi (2)

subject to

N∑
j=1

L∑
λ=0

ωjλxjλ ≤ B and

L∑
λ=0

xjλ = 1, xjλ ∈ {0, 1},∀j = 1, . . . , N

The objective of Definition 7 is to choose an investment solution with the
lowest expected damage for the weakest target. This is subject to the condition
that such an investment is within the budget B, where we consider if the control
is used, given by xjλ (either 0 or 1), and the cost of implementing the control,
given by ωjλ. Additionally, we must satisfy that for each of the N controls
only a single subgame solution can and must be selected. Hence although each
xjλ can only take a value of 0 or 1, the sum must equal 1, ensuring that only
one solution (given by a control subgame solution) is selected for each control.
We denote by I, the vector of cybersecurity plans (i.e. investment solution)
purchased by solving the cybersecurity investment optimization problem for a
constant number of targets.

For example in Table 5, we buy the solution (represented by a value of 1 in the
knapsack) for subgame 3 of control 3, which might correspond to [0,0,0.3,0.7,0],
which suggests that the control is implemented at level 2, 30% of the time and
at level 3, 70% of the time, with a cost of 8.2. Such that we then select 0
for all other subgame solutions for that control. For each control cj there is a

4 we assume that
∑N
j=1

∑L
λ=0 bjλ(ti) ≤ 1 achieved by normalized benefit values.
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cybersecurity plan, denoted by Q?j that represents the optimal choice for the
defender to purchase given some budget. Therefore I = [Q?1, Q

?
2, . . . , Q

?
N ].

6 Case Study
In this section we describe the case study we use to implement our methodology.
With regards to the organization size, we consider an SME with approximately
30 employees and we are interested in mitigating commodity attacks. This as-
sumption allows us to have complete information in all control-games because
the defender can be aware of the attacker’s payoff when it has been disclosed
online. From the 2011 CWE/SANS top 25 most dangerous software errors aka
vulnerabilities published in [2], we have considered 12 of those for the purposes
of this case study as described in Table 1 along with their factors, and asso-
ciated levels. For each vulnerability factor different levels are defined as in [2],
and summarized in Table 2. Moreover, we have chosen 6 controls out of the The
SANS 20 Critical Security Controls published by the Council on Cybersecurity
in [3]. These are shown in Table 4 along with the different vulnerabilities that
each control mitigates. As the same vulnerability can appear at different data
assets at the same depth, we assume that the implementation of a control miti-
gates all occurrences of this vulnerability. Otherwise, the security of the system
won’t increase because it is as strong as the weakest point. For a control, we
assume five possible levels (i.e. 0-4) that the control can be implemented, where
level 0 corresponds to no defense against the vulnerabilities and level 4 presents
the highest possible level of control implementation with no regard for system
operation. In Table 3, we highlight the indirect costs for all 6 controls consid-
ered in this case study. In the following we classify the controls into different
implementation methods.

Depth Based Mitigation. This refers to controls that when applied at higher lev-
els are used to cover additional depths within a system. This form of mitigation
applies a system-wide control at level 1 and then applies more advanced coun-
termeasures at additional depths, based on the level of implementation. The dif-
ferent levels are 〈c, 0〉: no implementation, 〈c, 1〉: all depths – basic, 〈c, 2〉: depths
1,2 – basic & depth 3 – advanced, 〈c, 3〉: depth 1 – basic & depths 2,3 – advanced,
and 〈c, 4〉: all depths – advanced. Associated controls: c1, c3, c6.

Frequency Based Mitigation. This type of mitigation applies a control in a
system-wide manner and higher levels of implementation reduce the time be-
tween scheduled performance of the mitigation. Low levels of a frequency based

Table 1. Notation of 12 examined vulnerabilities.
vz :Vulnerability
(CWE-code)

PR AF ED AA Vulnerability PR AF ED AA

v1: SQLi (89) 2 3 3 3
v7: Missing
encryption (311)

2 2 3 2

v2: OS command
injection (78)

1 3 3 3
v8: Unrestricted
upload (434)

1 2 2 3

v3: Buffer
overflow (120)

2 3 3 3
v9: Unnecessary
privileges (250)

1 2 2 2

v4:XSS (79) 2 3 3 3 v10:CSRF (352) 2 3 2 3

v5: Missing
authentication (306)

1 2 2 3
v11: Path
traversal (22)

3 3 3 1

v6: Missing
authorization (862)

2 3 2 2
v12: Unchecked
code (494)

1 1 2 3
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level PR AF ED AA
3 Widespread Often Easy High
2 High Sometimes Moderate Medium
1 Common Rarely Difficult Low

Table 2. Values of vulnerabilities fac-
tors published by CWE.

Cyber. Proc. SPC MOC RTC
p00, . . . , p60 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0
p01, . . . , p61 1,1,1,1,2,2 1,1,1,0,1,1 0,0,0,2,1,0
p02, . . . , p62 2,2,1,2,2,2 2,1,1,0,2,1 0,0,0,2,1,0
p03, . . . , p63 2,3,2,3,2,2 4,1,1,0,3,3 0,0,0,2,1,1
p04, . . . , p64 3,3,2,4,2,2 5,2,2,0,4,3 0,0,0,2,2,2

Table 3. Indirect costs of the different
cybersecurity processes.

Table 4. Vulnerabilities that each control mitigates.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c1:Account Monitoring and Control - X - - - X - X X X - -

c2:Continuous Vulnerability Assessment and Remediation X X X - X - X - - - - -

c3:Malware Defenses - - - X - - - X - X - X

c4:Penetration Tests and Red Team Exercises X X X - X X X - X X X X

c5:Controlled Use of Administrative Privileges - - - X - - - - X - X -

c6:Data Loss Prevention X - - X - - X X - - X -

control may be performed as a one-off event or very infrequently, but this is
then made more frequent at higher levels, where at the highest level these ac-
tions can be performed on demand. The different levels are 〈c, 0〉: no implemen-
tation, 〈c, 1〉: all depths – infrequent, 〈c, 2〉: all depths – regular, 〈c, 3〉: all depths
– frequent, 〈c, 4〉: all depths – real-time. Associated controls: c2, c4.

Hybrid Mitigation. A hybrid mitigation control implements an approach to re-
ducing the vulnerability of a system that acts with aspects of both depth based
and frequency based controls. As such, these controls increase defense at lower
depths as the control level increases, but additionally the frequency with which
the schedule of the control at the other depths is also increased. The different lev-
els are 〈c, 0〉: no implementation, 〈c, 1〉: all depths – basic & infrequent, 〈c, 2〉: all
depths – basic & regular, 〈c, 3〉: all depths – basic & frequent, 〈c, 4〉: all depths –
advanced & real-time. Associated control : c5.

Each cybersecurity plan Qjλ = [qj0, . . . qjλ] has a benefit, denoted by bjλ(ti),
on a target ti. This is derived by the sum of the effectiveness values of the
cybersecurity processes on ti multiplied by the corresponding probability hence
bjλ(ti) =

∑λ
l=0 e(ti, pjl)qjλ. A cybersecurity process pjl has its own direct costs

denoted by yjl. Therefore the direct cost of a cybersecurity plan Qjλ is given by

ωjλ =
∑λ
l=0 yjlqjl. In this work here we have defined the direct costs CAC and

LAC per annum. Some of the controls have a one-off cost therefore any purchase
can benefit the organization’s cybersecurity for the next years also. However,
we examine the challenge of spending a cybersecurity budget annually assuming
that in the worst case controls might need to be replaced or updated by spending
an amount of money similar or even higher to the amount spent in the last year.
In this paper we neither present the cybersecurity products we have chosen to
implement the various controls nor their direct costs.

Lastly, the different risks values 〈DLd,REd,BDd〉 are defined as depth 1 7→
〈2, 4, 3〉, depth 2 7→ 〈3, 2, 4〉, and depth 3 7→ 〈4, 3, 2〉. We have chosen the value
of data loss to be the highest within the Private Network, because this depth
will generally contain the most sensitive data. We have assessed the value of
reputation loss RE independently of the value of data loss DL to show the impact
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Table 5. Nash cybersecurity plans for the Case 1 with their associated direct costs.

cj Q?j0 Q?j1 Q?j2 Q?j3 Q?j4
c1 [1,0,0,0,0] 0 [0,1,0,0,0] 9.7 [0,0.7,0.3,0,0] 9.8 [0,0.4,0.23,0.37,0] 10.7 [0,0,0.14,0.22,0.64] 12.4

c2 [1,0,0,0,0] 0 [0,1,0,0,0] 1.7 [0,0.4,0.6,0,0] 2 [0,0,0.5,0.5,0] 5.1 [0,0,0.5,0.5,0] 5.1

c3 [1,0,0,0,0] 0 [0,1,0,0,0] 7.1 [0,0,1,0,0] 7.3 [0,0,0.3,0.7,0] 8.2 [0,0,0.3,0.7,0] 8.2

c4 [1,0,0,0,0] 0 [0,1,0,0,0] 4.2 [0,0,1,0,0] 8.3 [0,0,0,1,0] 16.7 [0,0,0,0,1] 33.4

c5 [1,0,0,0,0] 0 [0,1,0,0,0] 4.1 [0,0.47,0.53,0,0] 4.1 [0,0,0.41,0.59,0] 4.1 [0,0,0,0.33,0.67] 5.4

c6 [1,0,0,0,0] 0 [0,1,0,0,0] 6 [0,0,1,0,0] 7.4 [0,0,0.44,0.56,0] 12 [0,0,0.32,0.52,0.16] 13.6

that only RE has to the organization. We have set the highest value of RE to
the DMZ because it contains the forward facing assets of the organization. For
example when the organization’s website is defaced this can be seen by any
potential user who visits the organization’s website and harm its reputation. As
most of the organization’s workload is likely to be handled by devices in the
Middleware we have assigned the highest BD value to this depth.

7 Games Solutions and Investments
This section explains the set of results we have retrieved for 3 different organi-
zation profiles (3 Cases). For each profile: (i) we solve a series of control-games
therefore a set of control-subgames for each control to derive the Nash cyber-
security plans (in this section we use the terms Nash cybersecurity plans and
plans interchangeably) and, (ii) we determine the optimal cybersecurity invest-
ment given a budget by using optimization techniques and the control-game
solutions. In Cases 1, and 3 we consider an organization which places a high
importance on its data assigning a value 0.8 to DL. RE, and BD are equally
important taking the same value 0.1. We also consider here that the organiza-
tion is equally interested in current and potential future threats in all cases. In
Cases 1 and 2 the organization prioritizes system performance costs higher than
re-training and morale costs by giving an SPC value twice that of RTC and MOC
values. We have increased MOC in Case 3 making it twice as large as SPC to
assess the impact of morale in cybersecurity strategies.

To derive the different Nash cybersecurity plans we have solved 24 different
control-subgames (i.e. 6 control-games) for each organization profile. The game
solutions were computed by using a minimax solver, implemented in Python. For
simplicity reasons we have chosen the first equilibrium computed by our solver
noting that all equilibria offer the same level of defense as we state in Theorem
1. In Table 5 we present the results of the control-subgames in Case 1, where
the solution calculated for each control subgame taken is the strategy with the
smallest support.

The graphs presented in Figs. 2 and 3 are designed to show which plans should
be chosen for each possible budget level. In other words, each graph shows the
optimal investment I which is the set of plans chosen for a certain budget.
The graphs should be used to identify which are the most important plans for
a given organization at an available budget. It is worth noting here that we
have normalized the cost values such that the sum of the direct costs of of all
the controls implemented at the highest possible level (i.e. the most expensive
possible cybersecurity plans) equals 100. Our methodology uses the optimization
technique presented in Section 5 to compute the investment solution I that
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Fig. 2. Case 1:R = [0.8, 0.1, 0.1], T = [0.5, 0.25, 0.25],K = [0.5, 0.5].

has the highest score for a given budget. As we have discussed in Section 5,
each investment solution has a score determined by the maximum expected
damage across all targets. A question a security manager may ask is, how is the
investment solution I translated in terms of controls acquisition and how can
someone describe that it is better, in terms of cyber defense, than alternative
solutions where I ′ 6= I?

Example 2. From Fig. 2 we consider an available budget of 17. In this example
our decision support methodology advices the security manager to implement
I = [Q?10, Q

?
21, Q

?
30, Q

?
42, Q

?
50, Q

?
61] with a cost of 16.102. The above solution

determines a set of plans to be selected for the implementation of the 6 SANS
controls as defined in our case study. To be able to translate the solution into
the implementation of the different available controls in Table 5 we present the
Nash cybersecurity plans of Case 1. According to I the controls that should be
implemented and the manner in which they are implemented is listed as follows

– Q?10: With the given budget, Account Monitoring and Control (c1) software
should not be purchased, nor should system administrators spend time on
activities to this control.

– Q?21: The organization must implement the Continuous Vulnerability Assess-
ment and Remediation (c2) control by purchasing a vulnerability scanner and
patch management software. Additionally system administrators measuring
the delay in patching new vulnerabilities and audit the results of vulnerabil-
ity scans at all network depths infrequently (e.g, once per month).

– Q?30: The decision tool does not recommend the implementation of specific
Malware Defenses (c3) given the available budget.

– Q?42: The security manager is advised to schedule regular (e.g. twice a year)
system-wide Penetration Tests and Red Team Exercises (c4), with system
updates being performed based on the results of the exercise.

– Q?50: The tool does not recommend the implementation of the Controlled Use
of Administrative Privileges (c5) control which means that neither enterprise
password manager software must be purchased nor any password renewal
policy must be enforced.
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– Q?61: The tool recommends the implementation of the Data Loss Preven-
tion (c6) control system-wide and at a basic level (e.g. integrated services
router with security, VPN).

By using Table 4 we see that with these controls all targets are covered to
some degree. In the following we consider alternative cases to highlight the opti-
mality of the solution. If we implement system-wide Penetration Tests and Red
Team Exercises infrequently (e.g. once per year) (Q?41) instead of regularly (Q?42)
then we release a budget of 4.174 therefore we can implement Controlled Use
of Administrative Privileges by using an enterprise password manager software
and renew passwords of all systems infrequently (e.g. annually) (Q?51 with cost
4.153). This gives another investment I ′ = [Q?10, Q

?
21, Q

?
30, Q

?
41, Q

?
51, Q

?
61] with

cost 16.081. Under I ′ the Controlled Use of Administrative Privileges control
improves the defense on targets associated with the following vulnerabilities;
XSS (v4), Unnecessary privileges (v9), and Path traversal (v11). But it then
leaves worse off, due to the less frequent Penetration Tests and Red Team Exer-
cises, 8 vulnerabilities namely; SQLi (v1), OS command injection (v2), Buffer
overflow (v3), Missing authentication (v5), Missing authorization (v6),
Missing encryption (v7), CSRF (v10), and Unchecked code (v12). Due to I be-
ing the choice of the optimization the score achieved by I is higher than I ′
therefore the weakest target in I ′ must appear in these 8 vulnerabilities and it
must be weaker than the weakest target under I. By saying weakest target we
refer to the target with the maximum expected damage. Therefore our methodol-
ogy advices the security manager to undertake Penetration Tests and Red Team
Exercises regularly (e.g. twice a year, Q?42) without implementing Controlled Use
of Administrative Privileges at all.

If we do not spend any money on Penetration Tests and Red Team Exer-
cises we then have an available budget of 8.347 which can be spent in imple-
menting Malware Defenses by installing a free anti-malware software with man-
ual scheduled scans and database updates in all devices of the organization (Q?31,
7.095). Therefore another investment is I ′ = [Q?10, Q

?
21, Q

?
31, Q

?
40, Q

?
50, Q

?
61]. Un-

der I ′ targets associated with Missing authorization (v6) and Unnecessary

privileges (v9) are not covered by any control thus one of these becomes the
weakest target under I ′. Due to I being the optimal investment solution pro-
vided by our tool, the weakest target (not covered at all) under I ′ must be
weaker than the weakest (partially covered) target under I. Therefore our so-
lution recommends not to ignore (even at some basic level) the implementation
of Penetration Tests and Red Team Exercises which can actually identifies if a
user can access a given resource, despite not being authorized for that (v6) and
it can also mitigate v9 by identifying cybersecurity processes that run with ex-
tra privileges, such as root or Administrator, and they can disable the normal
security checks.

Finally, if we assume a slightly higher budget of 17.145 we can choose the in-
vestment strategy I ′ = [Q?10, Q

?
21, Q

?
31, Q

?
42, Q

?
50, Q

?
60] which does not implement

the Data Loss Prevention control but it installs free anti-malware with manual
scheduled scans and database updates system-wide (Q?31). This is not a better
investment than I despite being more expensive. Both Data Loss Prevention (in
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I) and Malware Defenses (in I ′) mitigate XSS (v4) and Unrestricted upload

(v8) which Penetration Tests and Red Team Exercises does not. Thus from
this point of view the replacement of Data Loss Prevention by Malware De-
fenses does not affect the effectiveness of the targets associated with XSS and
Unrestricted upload. However due to I being the choice of the optimization
the target associated with Path traversal (v11), which is mitigated only by
Penetration Tests and Red Team Exercises under I ′, is weaker than a target
associated with CSRF (v10) or Unchecked code (v12) mitigated only by Pene-
tration Tests and Red Team Exercises under I. In other words, according to the
effectiveness values we have provided in our case study, Path traversal is not
mitigated as much as CSRF and Unchecked code, which are both mitigated by
Penetration Tests and Red Team Exercises, therefore I is better than I ′.
Example 3. According to Fig. 2 for a budget of 28 our methodology gives the
investment solution I = [Q?13, Q

?
21, Q

?
31, Q

?
41, Q

?
52, Q

?
60] with a total direct cost

27.80. This solution provides the following list of recommendations.

– Q?13: Implementation of Account Monitoring and Control (c1) at a basic level
(e.g. control built into OS and manually review all accounts or set files/folders
auditing properties) in all devices in DMZ ; in 63% of the devices in Mid-
dleware; and in 40% of the devices in Private Network. The control must be
also implemented at an advanced level (e.g. vulnerability scanner and patch
management software) in 37% of the devices in Middleware and 60% of the
devices in Private Network.

– Q?21: System-wide Continuous Vulnerability Assessment and Remediation (c2)
must be implemented infrequently (e.g. once per month).

– Q?31: System-wide Malware Defenses (c3) must be implemented at a basic
level (e.g. free anti-malware with manual scheduled scans and database up-
dates).

– Q?41: Penetration Tests and Red Team Exercises (c4) to be undertaken infre-
quently (e.g. once per year).

– Q?52: Controlled Use of Administrative Privileges (c5) to be implemented at
a basic level (e.g. using an enterprise password manager software) with 47%
of the devices to change passwords infrequently (e.g. once per year) and 53%
regularly (e.g. every 4 months).

– Q?60: The purchase of a Data Loss Prevention control is not recommended.

To see how I outperforms other investments we have considered some alter-
native investments for a budget of 28. As the first alternative investment I ′,
we decide not to follow Q?13 therefore saving 10.68. By doing that the targets
associated with v2, v6, v8, v9, v10 are now defended in a lower degree than in I
as the effectiveness of Q?13 does not count in the sum of the benefits for these
targets. Also under I ′ the targets associated with v2, v9, and v10 are defended
by two controls while the targets with v6, and v8 are only defended by one
control. With a budget of 10.68 available we can purchase c6 and implement it
according to plan Q?62 with cost 7.408 or according to Q?61 with cost 6.052. If
we choose the former the control is implemented at an advanced level (e.g. drive
encryption, system recovery) in the Private network, and at a basic level (e.g.
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integrated services router with security, VPN) in DMZ and Middleware. Data
Loss Prevention improves the defense of targets with v1, v4, v7, v8, and v11. When
implementing Data Loss Prevention, v6 (Missing authorization) is mitigated
only by one control therefore making any target with this vulnerability likely to
be the weakest among all in I ′ and weaker than the weakest target under I.
Our solution I dictates that it is preferable for the security manager to purchase
the Account and Monitoring Control as opposed to Data Loss Prevention to pre-
vent unauthorized users accessing resources or data of the organization in the
first case rather than allowing such access and hoping that data encryption and
system recovery capabilities can discourage an adversary from attacking.

Next, we assume another variation I ′ of our investment where Malware De-
fenses (c3) is removed and 7.095 budget is available for spending in other con-
trols. By not purchasing c3 vulnerabilities v4, v8 and v10 are mitigated by one less
control. With an available budget of 7.095 we can purchase c6 and implementing
it according to Q?61. The difference between I and I ′ is that v10 is mitigated by
one more control in I. Since the latter has been the result of optimization, any
target with v10 (CSRF) is the weakest target and weaker than the weakest target
under I. In other words I advises the security manager to purchase Malware
Defenses rather than Data Loss Prevention to detect malware that can be in-
stalled when a CSRF attack is launched. Again here I dictates that stopping the
attack at a first infection stage is more important than guaranteeing that stolen
data are encrypted thus unreadable. Besides the attacker’s motivation might
be to just corrupt or delete data which is something Data Loss Prevention can
address only at high levels of implementation which require a higher budget.

Graph Trends. From the graphs in Fig. 2 we see the results level off (at around
a budget of 45), when the perceived benefit from a combination of plans brings
the expected damage down to a minimum, this is such that adding a new plan
or a plan at a higher level won’t improve the defense of the system. This is as a
result of us capping the sum of improvements to 1, but would exist in any form
of interdependent control methodology and only the point at which it levels off
would change. Furthermore, this observation dictates that cybersecurity does not
get improved by investing more in cybersecurity plans. With higher budgets it
is much more feasible to reduce the damage of not just the weakest target, but
other targets as well. A spike exists when there is a small budget range that opens
up a number of new cybersecurity plans. In reality a number of the solutions in
that range will have similar expected damage values, but we only see the best
solution for that particular budget. For budgets 1-19 the progression is the same
regardless of the plans. The reason for this is that at these levels only certain
plan combinations are available and we want to ensure that as low an expected
damage as possible is achieved. At these levels it is seen as most important to
cover all of the targets with some form of plan, bringing down the system-wide
expected damage.

While there is a consistent strategy for investment with budget levels for
solutions up to a budget of 20, after this budget we see that different investment
profiles are suggested by our methodology across the different organization pro-
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Fig. 3. (i) Case 2: R = [0.6, 0.4, 0], T = [0.5, 0.25, 0.25],K = [0.5, 0.5], (ii) Case 3:
R = [0.8, 0.1, 0.1], T = [0.3, 0.1, 0.6],K = [0.5, 0.5].

files. From budgets 22 to 26 and from 36 to 38, there is no change in the solution.
While alternative solutions may become available in these ranges, none of these
solutions will improve on the security of the weakest target, which means that as
with very low budgets there is no incentive to implement a more expensive plan
combination that does not improve the effectiveness of defense on the weakest
target. Between budgets 30 and 36 as the budget increases more, there are new
combinations of plans that become available at each of these levels that will im-
prove the overall defense of the system. However it can also be seen that in order
to implement a different solution some components of the previous solution need
to be removed in order to reduce the cost to fit within the budgetary constraint.

Sensitivity to Organizations’ Profile Perturbations. One question that
arises is how robust is the proposed approach to informing the way an organiza-
tion should invest in cyber security? We have focused on the importance of the
decisions made by the organization with regards to their profile. In this way we
have looked at how small perturbations in a single case affect the allocation of in-
vestment. We consider the two cases of [0.75, 0.125, 0.125] and [0.85, 0.075, 0.075]
for R. Both alternative profiles have minor deviations from the original solution.
Each of the deviations found would cause the solution to differ for up to a maxi-
mum of 3 consecutive budget levels, before the proposed controls would realign.
Using the values of [0.55, 0.45] and [0.45, 0.55] for T we find that, in the case of
[0.55, 0.45] there is a different investment strategy that is proposed between con-
trols 5 and 6 for budgets between 13 and 17. This is the only case we have seen
where there is a difference in the low budget strategies across all the cases tested
for this work. With a value for T of [0.45, 0.55], we find that there is no change to
the proposed investment plans. In the case of K we consider [0.45, 0.275, 0.275]
and [0.55, 0.225, 0.225], which for both values give us no change in the proposed
investment from the original case. Importantly in all of the cases tested we have
seen that the stable investment solution for all of the results is the same as the
case presented in Fig. 2.
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8 Conclusions
This paper presents a cybersecurity decision support methodology for calculat-
ing the optimal security investment for an organization. This is formulated as
a multiple choice and multi-objective Knapsack problem which handles the so-
lutions of cybersecurity control-games. Our methodology creates strategies for
each control at different levels of implementation and enforcement, where the
combination of the most effective controls within a budget are suggested for
implementation. The model supports the movement of human decision making
from trying to analyze the explicit security requirements of the system to de-
ciding upon an organization’s priorities. The feature of the model that helps
to create this movement is the organization profile, where a profile allows the
model to reflect the individual nature of different organizations in the proposed
investment. One of the most important factors that this work highlights is that
it is important for an organization to know how to appropriately generate their
profile. This is crucial because it influences the way an organization should in-
vest in their cybersecurity defenses. From the results we have noticed that for
similar organizations the best protection will be similar if not the same, because
the results of the control-games will favor certain targets or controls.

In this paper we have assumed additive benefits for the different plans and
the same target. One important future aim is to better understand the steps of
the attacks, as such identifying steps in the chain will better inform the way in
which different security controls interact in order to better cover different targets.
This will better inform the way in which the subgames results are combined in
the investment problem and reflect in a more realistic way how cyber defenses
work.

At the moment our data is generated with the advice of a limited set of ex-
perts. In the future we aim to increase the number of experts involved to better
understand their cyber environment needs. This will allow us to implement our
methodology in a realistic environment. Additional limitations of our work that
we wish to address in future work is to consider a higher number of available
controls and continuous values for the levels of controls implementation. More-
over, at the moment our control-subgames are games of complete information.
In the future we will examine incomplete information games where the defender
is not aware of the attacker’s payoff therefore any investment solution has to
respect this uncertainty which highlights a situation very close to realistic en-
vironments that are prone to 0-days attacks and Advanced Persistent Threats
(APTs). Finally, we do not see a strong case for using Stackelberg games in
the case of commodity attacks where both players have publicly available in-
formation about attack types. The case would have been stronger if we were
considering sophisticated cyber criminals or nation states where surveillance of
the defender’s actions prior to the attack would be important for the recognition
of the defending mechanisms and the exploitation of one or more weak targets.
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