
Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

Equivalences in Euler-based diagram systems through normal
forms

Andrew Fish and John Taylor

Abstract

The form of information presented can influence its utility for the conveying of knowledge by
affecting an interpreter’s ability to reason with the information. There are distinct types of
representational systems (e.g. symbolic versus diagrammatic logics), various sub-systems (e.g.
propositional versus predicate logics), and even within a single representational system there
may be different means of expressing the same piece of information content. Thus to display
information, choices must be made between its different representations, depending upon many
factors such as: the context, the reasoning tasks to be considered, user preferences or desires (e.g.
for short symbolic sentences or minimal clutter within diagrammatic systems). The identification
of all equivalent representations with the same information content is a sensible precursor to
attempts to minimize a metric over this class. We posit that defining notions of semantic-
redundancy and identifying the syntactic properties that encapsulate redundancy can help in
achieving the goal of completely identifying equivalences within a single notational system or
across multiple systems, but that care must be taken when extending systems, since refinements
of redundancy conditions may be necessary even for conservative system extensions.

We demonstrate this theory within two diagrammatic systems, which are Euler diagram based
notations. Such notations can be used to represent logical information and have applications
including visualization of database queries, social network visualisation, statistical data visuali-
sation, and as the basis of more expressive diagrammatic logics such as constraint languages used
in software specification and reasoning. The development of the new associated machinery and
concepts required is important in its own right since it increases the growing body of knowledge
on diagrammatic logics. In particular, we consider Euler diagrams with shading, and then we
conservatively extend the system to include projections, which allow a much greater degree of
flexibility of representation. We give syntactic properties that encapsulate semantic equivalence
in both systems, whilst observing that the same semantic concept of redundancy is significantly
more difficult to realize as syntactic properties in the extended system with projections.

1. Introduction

We focus on particular diagrammatic systems, providing normal forms for two Euler diagram
systems, Euler diagrams with shading (EDS) and Euler diagrams with projections (EDP). This
provides a unique representative amongst the classes of semantically equivalent diagrams, and
for each system we provide a procedure for transforming any given diagram into its normal form,
thereby permitting an easy equivalence check. Along the way we develop general machinery
which will be useful to the field, and observe that even conservative system extensions require
a revisiting of all notions of syntactic and semantic redundancy due to potential interactions.
First, we describe works that impinge on the topic area, relating to cognition, diagrammatic

theory, and normal forms in symbolic logic. Then, we provide a summary of contributions,
definitions and results, for reference purposes whilst reading the paper, as well as a description
of the paper structure.

2000 Mathematics Subject Classification 11B83 (primary), 11J71, 37A45, 60G10 (secondary).

The authors would like to acknowledge UK EPSRC grants EP/E011160: Visualisation with Euler Diagrams,
and EP/J010898/1: Automatic Diagram Generation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/188253681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page 2 of 58 ANDREW FISH AND JOHN TAYLOR

Larkin and Simon [61] compare the ease of computation with sentential and diagrammatic
representations with the same informational content, making use of terms informational equiv-
alence (the information in either representation is inferable from the other) and computational
equivalence (informational equivalence holds and the ease of inferences in either representation
is comparable). Gurr [33] sketches a theory of diagrammatic communication, based upon
studies of relevant syntactic, semantic and pragmatic components, exploring the question
of “what makes for an effective diagrammatic representation?”. In [67], Shijomina brings
together important ideas, from many sources, relating to the functional traits of graphical
representations: free ride properties – expressing a certain set of information in the system
always results in the expression of another, consequential piece of information; auto-consistency
– incapacity of the system to express a certain range of inconsistent sets of information;
specificity – incapacity of the system to express certain sets of information without choosing
to express another, non-consequential piece of information; meaning derivation properties –
capacity to express semantic contents not defined in the basic semantic conventions, but
only derivable from them. Gurr and Tourlas [34] claim to permit “a principled approach
to the identification of intuitive (and counter-intuitive) features of diagrammatic languages”.
Hegarty [41] argues that “the design of external visualizations should be informed by
research on internal visualization skills, and that the development of technologies for external
visualizations calls for more research on the nature of internal visualization abilities.”
Ruskey and Weston provided a comprehensive survey of Venn diagrams [66], describing

historic and modern mathematics involved. Euler diagrams (EDs) permit the relaxation of the
Venn diagram [78] requirement that every set intersection of the set system is represented,
enabling the presentation of the transitive subset relation in a manner conductive for free
rides, for example. Whilst EDs are an important notation in their own right, their major
significance is due to the fact that they form the basis of a number of other different
notations. Harel [39, 40] developed higraphs, a diagrammatic system that extends Euler
diagrams making use of additional graph based features, suitable for applications to databases,
knowledge representation, and the behavioral specification of complex concurrent systems using
the higraph-based language of statecharts. Euler diagrams have been applied in a variety of
areas including personal resource management [17, 13], library database query language [77],
genetic set relation visualisation in bionformatics [59, 60] and statistical data visualisation [79].
Visualisation techniques for Euler diagrams with additional graph based features have also been
developed for highlighting clusters of nodes or for network visualisation [12, 65], for example.
Another key application area of EDs is that of formal diagrammatic logics, which is a

relatively new avenue of research, offering a potential alternative to the standard symbolic
logics, attempting to make use of spatial relationships as an advantage within a logical setting.
Euler diagrams are the modern version of Euler circles [23] which were introduced for the
purpose of syllogistic reasoning. Shin, Hammer and Barwise [36, 38, 68, 5] provided seminal
ideas about the production of such formal diagrammatic logics. Shin’s Venn-II system [68]
is expressively equivalent to monadic first-order logic, MFOL. Stapleton and Masthoff have
shown [73] that Euler diagrams together with a negation operator (as well as conjunction
or disjunction) is also expressively equivalent to monadic first-order logic. There are other
related systems that extend Euler diagrams or provide variations in syntax and semantics,
such as spider diagrams [47] and Euler/Venn diagrams [76]. Spider diagrams [47] extend Euler
diagrams by permitting the expression of existential quantification and cardinality restrictions
on sets. This Spider diagram system [47, 75] is expressively equivalent to monadic first
order logic with equality, MFOL[=]. The expressiveness of the Euler/Venn diagram system
has not been formally established but it lies between monadic first order logic and monadic
first order logic with equality. Delaney et al. defined spider diagrams of order [18], extending
spider diagrams with an ordering operator, and subsequently showed the logic is expressively

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 3 of 58

equivalent to monadic first-order logic of order, MFOL[<], and examined the expressiveness of
various fragments in [20, 19].
In terms of applications of such logics, constraint diagrams [58] were developed to specify

and reason with constraints in an object oriented setting. They extend spider diagrams via
the additional explicit representation of universal quantification and binary relations. Since
there can be flexibility in the reading order of diagrammatic notations (versus a linear
order in symbolic logics), one can augment a diagram with extra information to provide the
necessary uniqueness of semantics assigned to any given diagram [25]. In [70], constraint
diagrams were shown to be no more expressive than dyadic first-order logic and a system
of generalised constraint diagrams which is at least as expressive as dyadic first-order logic
was proposed. An example of the use of constraint diagrams for modelling a software system
was presented in [45], together with a parallel construction in the symbolic language Z.
The spider diagram notation has also been extended for practical usage by explicitly linking
to types and instances in an object oriented setting as well as extending to incorporate a
temporal component, along the lines of Allen’s interval calculus [2], in the policy specification
domain [8]. A variation of constraint diagrams, called concept diagrams, was proposed for
ontology modelling purposes [48]; these diagrams permit quantification over sets and are
expressively equivalent to dyadic second-order logic [71]. Chapman et al also defined second
order spider diagrams, generalising spider diagrams of order, including existential quantification
over subsets, indicating that it is at least as expressive as monadic second-order logic [9].
Furthermore, Conceptual Spider Diagrams were introduced in [16] as a hybrid notion combining
the advantages of Spider Diagrams, regarding the representation of set-based hierarchies, with
the power of Sowa’s Conceptual Graphs [51] regarding the expression of relational predicates
between objects; the latter have history tracing to Charles Sanders Peirce’s Existential Graphs.
When considering Euler diagrams with shading (used to place an upper bounds on the

cardinality of sets, thereby indicating sets are empty in this system), there are different ways
of representing relationships between sets. For instance, disjoint sets may be represented either
by interior-disjoint curves or by overlapping curves with shaded region of overlap; this is
analogous between a choice of presentation of set relationships of A ⊆ B versus A ∩B 6= ∅

in Propositional Logic. The decision between different representations within a diagrammatic
notation (or between notations) may involve many factors such as user preferences, drawability
criteria (called well-formedness conditions in [29]) and ‘clutter’ metrics [55].
In symbolic logic, there are various normal forms for formulae. For example, in Propositional

Logic a formula is in disjunctive normal form if is is a disjunction of a conjunction of literals
or conjunctive normal form if it is a conjunction of a disjunction of literals. In predicate logic,
a formula is in prenex normal form if all the quantifiers ‘come first’. There are algorithms
that take an ‘input’ formula and produce a logically equivalent formula in the required normal
form. Normal forms have a wide variety of uses in logical systems. For example, simplification
of propositional logic formulae, with applications in circuit design, using Karnaugh maps [57]
or the Quine-McCluskey algorithm assume an input formula in disjunctive normal form. In
predicate logic, Gödel’s proof of the completeness of first order logic supposes that all formulae
are expressed in prenex normal form. Automated theorem provers make extensive use of normal
forms in the manipulation, or rewriting, of formulae.

Paper Contributions and Structure. In this paper, we provide normal forms for unitary
Euler diagrams with shading as well as for unitary Euler diagrams with projections; one
can extend unitary systems to compound systems which permit logical connectives between
diagrams. Projections give a means to provide ‘local’ information within a unitary diagram,
providing flexibility in presentation of information, whilst overcoming certain specificity issues.
These normal forms concern the ‘internal’ structure of unitary diagrams, rather than the
‘global’ structure of compound diagrams (how the compound diagram is built from unitary

Page 4 of 58 ANDREW FISH AND JOHN TAYLOR

diagram components). We provide algorithms that produce, for any diagram, a semantically
equivalent diagram in its normal form. Thus, one can compare the semantic equivalence class
of any two diagrams (within either system) via conversion to their normal forms. Along the
way, the identification of purely syntactic conditions that completely encapsulate semantic
equivalence are discovered, permitting the treatment of diagrams syntactically, without the
need for recourse to model theory. The normal forms have the additional property that they
are the minimally cluttered of all semantically equivalent diagrams (using any of the clutter
metrics introduced in [55]).

syntaxDef 2.2

semanticsDef2.5

entailment results Thm 3.3

semantic entailmentDef2.7

Syntactic

transformationsSec 3

curve removalDef3.1!3.3 and additionDef3.4

zone additionDef3.5 and removalDef3.6

EDS systemSec 2

nomadsDef3.7!3.8 Semantic equivalence

results Thm 3.4!3.5, Cor 3.6
semantic coproductDef3.9

equivalence of

concepts Thm 4.3

Normal FormSec 4

redundant labels (semantic)Def4.1,

splitting label (syntactic)Def4.3

Normal formDef4.4

Normal form conversion,

semantic equivalence

results Thm 4.7!4.8

Figure 1. The landscape of Definitions and Theorems from Sections 2-4.

We introduce the syntax and semantics of Euler diagrams with shading (EDS) in Section 2.
Section 3 introduces various concepts and syntactic manipulations needed to define the
normal form, including nomads (capturing a particular syntactic form of the representation of
emptiness) and the semantic coproduct (for capturing common information). In Section 4 we
give a syntactic characterisation (using splitting labels) of the semantic property of redundancy
of contours and we define the normal form for the EDS system. Section 5 follows the same
strategy employed for the EDS system for the more complicated conservative extension to
the Euler diagram with projections (EDP) system. Further related work and discussions on
variations of choices made occur in Section 6. Finally, conclusions and directions of future work
are discussed in Section 7. For reference throughout the paper, see Figures 1 and 2.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 5 of 58

syntaxDef 5.1

concepts – context, intersectors, … Def5.2

embedded projected diagramDef5.3

given/projected curve additionDef5.4!5.5

EDP systemSec 5

equivalence with syntactic

concepts Thm 5.10!5.11, Thm 5.12

redundant labels (semantic)Def5.11!5.12,5.14

Normal formDef5.15

Normal form conversion,

semantic equivalence

results Thm 5.13

semanticsDef5.7
Semantic

equivalenceLem 5.5, Thm5.6!5.9

Projected/given curve removalDef5.10,5.13

Given curve removalDef5.10

Figure 2. The landscape of Definitions and Theorems from Section 5.

2. Euler diagrams with shading

2.1. Syntax of Euler diagrams

The simplest type of diagrams we consider are Euler diagrams with shading and this section
provides a standard description of Euler diagrams with shading; similar descriptions of related
systems can be found in [28, 42, 47, 55] for example. Euler diagrams are built using contours
(that is, simple closed curves) to represent sets. The topological relationships of ‘containment’
and ‘separation’ between contours represent the relations of subset and disjointness between
sets respectively. We augment Euler diagrams with shading. A shaded region of an Euler
diagram represents the empty set.

Example 2.1. Figure 3 shows two Euler diagrams with shading. The diagram d1 expresses
the following properties of the sets represented in the diagram.

– A ∩ C = ∅ by the shading in the ‘overlap’ region between A and C;
– E ⊆ A ∩C ∩ F by the positioning of the contour E inside contour A but outside contours
C and F ;

– F = ∅ by shading the whole region inside F .

Although the contour B appears in the diagram, d1 makes no assertion about the
corresponding set B. In this sense the contour B is ‘redundant’.
The diagram d2 represents the same information as d1 about these sets but it is visually

simpler. The properties of the sets are more readily observed from d2 than d1.

Page 6 of 58 ANDREW FISH AND JOHN TAYLOR

A

E

C

B

1d

F

A

E

C

2d

F

Figure 3. Two Euler diagrams representing the same information.

Informally, an Euler diagram with shading in the plane R
2 comprises a collection of simple

closed curves called contours. We draw the contours of our Euler diagrams inside a bounding
rectangle although formally the rectangle is not part of the diagram but serves to indicate
‘where the diagram ends’. The contours divide the part of the plane inside the bounding box
into connected regions. A minimal region is called a zone. The diagram d1 in Figure 3 has 12
zones. A zone can be described neatly as being inside some of the contours of the diagram and
outside the remaining contours. For example, the four shaded zones in d1 in Figure 3 can be
described as follows:

inside A, C; outside B, E, F ;
inside A, B, C; outside E, F ;
inside C, F ; outside A, B, E;
inside F ; outside A, B, C, E.

To specify an Euler diagram with shading d, it is sufficient to specify the following.
– The set of contours in d.
– Which zones are present. A zone can be described as a pair (in, out) where in and out are
sets of contours that partition † the set of contours of d.

– Which zones are shaded.
For example, the diagram d2 in Figure 3 is specified as follows.
– The set of contours is {A,C,E, F}.
– The five zones are: ({A}, {C,E, F}), ({A,E}, {C,F}), ({C}, {A,E, F}), ({F}, {A,C,E})
and (∅, {A,C,E, F}).

– There is one shaded zone: ({F}, {A,C,E}).
In fact, the set of contours may be deduced from the description of any one of the zones.
We call this specification of d1 in Figure 3 an abstract diagram. The benefits of distinguishing

clearly between ‘concrete diagrams’ – that is, diagrams that are drawn on paper or realised
on some other medium such as a computer screen – and their abstract descriptions is well-
documented; see [42], for example.
It is convenient for the contour labels of the diagrams in the system to be drawn from a

fixed, countably infinite set L. Given L, we can define an abstract zone to be an ordered pair
(a, b) where a and b are finite subsets of L such that a ∩ b = ∅. We may think of the zones of
an abstract diagram d as being drawn from the set of abstract zones (a, b) where a ∪ b is the
set of contour labels in the diagram. Thus, for example, the abstract zone ({A,B}, {C,D})
could appear in the description of an Euler diagram with contour label set {A,B,C,D}. We
formalise these notions in the following definition.

†In this paper we allow sets in a partition to be empty.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 7 of 58

Definition 2.1. The set L is a countably infinite set of contour labels from which all
contour labels of diagrams will be drawn.
An abstract zone on L is an ordered pair z = (in(z), out(z)) where in(z) and out(z) are

disjoint, finite subsets of L. The set in(z) is called the set of contour labels that contain z

and the set out(z) is the called the set of contour labels that exclude z. The set of abstract
zones is

Z = {(a, b) ∈ F(L)× F(L) : a ∩ b = ∅}

where F(L) denotes the set of all finite subsets of L.
An abstract region on L is a set of abstract zones. The set of regions on L is R = P(Z),

the power set of Z.

We are now in a position to define an abstract unitary Euler diagram with shading.

Definition 2.2. An abstract Euler diagram with shading d with labels in L is an
ordered pair 〈Z,Z•〉 whose components are defined as follows.

(i) Z = Z(d) ⊆ Z is a finite set of zones such that, for some finite set of contour labels
L ∈ F(L), the following three conditions are satisfied.
(a) For all z ∈ Z, in(z) ∪ out(z) = L; the set L = L(d) is called the set of contour

labels in d;
(b) For all ℓ ∈ L, there is a zone z ∈ Z such that ℓ ∈ in(z);
The set Z = Z(d) is called the set of zones in d.

(ii) Z• = Z•(d) ⊆ Z(d) is the set of shaded zones.

Henceforth, we will use ‘Euler diagram’ to mean ‘abstract Euler diagram with shading’. In
the following definition we introduce some terminology that will be used in the rest of the
paper.

Definition 2.3. Let d = 〈Z,Z•〉 be an Euler diagram.
(i) The set of unshaded zones of d is Z◦(d) = Z(d)− Z•(d).
(ii) A region is a non-empty set of zones; the set of regions in d is R = R(d) = P(Z)− {∅}.

We also define R◦ = R◦(d) = P(Z◦)− {∅} to be the set of unshaded regions in d

and R• = R•(d) = P(Z•)− {∅} to be the set of shaded regions in d.
(iii) We refer to the set of unshaded zones of d, Z◦(d), as the unshaded region of d and

to the set of shaded zones of d, Z•(d), as the shaded region of d.
(iv) Given any region r ∈ R(d), its unshaded subregion is

r◦ = {z ∈ r : z ∈ Z◦(d)} = r ∩ Z◦(d)

and its shaded subregion is

r• = {z ∈ r : z ∈ Z•(d)} = r ∩ Z•(d).

(v) Given any set of labels L ⊆ L, the Venn zone set on L, V Z(L), is the set of all
possible zones formed using L,

V Z(L) = {(x, L− x) : x ⊆ L}.

(vi) If a diagram d contains all the possible zones – that is, if Z(d) = V Z(L(d)) – then d is
said to be in Venn form or is simply called a Venn diagram. The (abstract) zones in
the set V Z(L(d))− Z(d) are said to be missing from d and the set V Z(L(d))− Z(d)
is called the missing zone set of d, denoted Zm(d).

Page 8 of 58 ANDREW FISH AND JOHN TAYLOR

(vii) The zone outside all the contours (∅, L(d)) is called the outside zone of d although,
unlike some authors, we do not assume this zone is present in every Euler diagram d.

2.2. Semantics of Euler diagrams

The zones and regions in an Euler diagram represent sets; missing and shaded zones represent
the empty set. The following definitions, modified from those given in [47], make this precise.
We first interpret the abstract labels, zones and regions as subsets of some universal set U and
then define a ‘semantics predicate’ that captures the conditions that missing and shaded zones
represent the empty set. Augmenting Euler diagrams with shading increases expressiveness; for
example, no unshaded Euler diagram can express ‘A = ∅’. It also allows us to overcome some
drawability problems. For example, the diagrams d1 and d2 in Figure 4 each express ‘A = B’.
Without the use of shading, we need to use concurrent contours (contours that ‘run along one
another’) to represent this equality as in d3 in Figure 4. Also, some notations based on Euler
diagrams, such as spider or constraint diagrams, use shading to represent upper bounds on set
cardinalities rather than just denoting the empty set.

2d1d

A B A B

3d

A

B

Figure 4. Three Euler diagrams representing A = B.

Definition 2.4. An interpretation is a pair (U,Ψ) where U is a set, called the universal
set, and Ψ: L ∪ Z ∪R → P(U) is a function that interprets contour labels, zones and regions
as subsets of U such that the images of the zones and regions are completely determined by
the images of the contour labels as follows:

(i) for each zone, (x, y) ∈ Z,

Ψ(x, y) =
⋂

ℓ∈x

Ψ(ℓ) ∩
⋂

ℓ∈y

Ψ(ℓ)

where Ψ(ℓ) = U −Ψ(ℓ). We also define
⋂

ℓ∈∅

Ψ(ℓ) = U =
⋃

ℓ∈∅

Ψ(ℓ).

(ii) for each region, r ∈ R,

Ψ(r) =
⋃

z∈r

Ψ(z)

and we take
⋃

z∈∅

Ψ(z) = ∅.

Definition 2.5. Let d be an Euler diagram and let I = (U,Ψ) be an interpretation. We
define the semantics predicate of d, denoted Pd(I), to be the conjunction of the following
conditions.

(i) Shaded Zones Condition
The shaded region of d represents the empty set, Ψ(Z•(d)) = ∅.

(ii) Missing Zones Condition
The missing region of d represents the empty set, Ψ(Zm(d)) = ∅.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 9 of 58

Both the Shaded Zones Condition and the Missing Zones Condition can be rephrased at the
individual (shaded or missing) zone level. This is captured in the following lemma.

Lemma 2.1. Let d be an Euler diagram and let I = (U,Ψ) be an interpretation.
Shaded Zones Condition

The Shaded Zones Condition is equivalent to the following condition.

Each shaded zone represents the empty set:
∧

z∈Z•(d)

Ψ(z) = ∅.

Missing Zones Condition

The Missing Zones Condition is equivalent to the following condition.

Each missing zone represents the empty set:
∧

z∈Zm(d)

Ψ(z) = ∅.

Definition 2.6. Let d be an Euler diagram and I = (U,Ψ) be an interpretation.
We say I is a model for d, denoted I |= d, if and only if Pd(I) is true. Also, we say d is

satisfiable if and only if d has a model.

Definition 2.7. Let d1 and d2 be Euler diagrams. Then d1 semantically entails d2 (and
d2 is a semantic consequence of d1), denoted d1 � d2, if every interpretation that is a model
for d1 is also a model for d2; that is,

d1 � d2 if I |= d1 implies I |= d2 for all interpretations I.

If d1 � d2 and d2 � d1 then we say that d1 and d2 are semantically equivalent, denoted
d1 ≡� d2.

3. Manipulating diagrams

In this section, we describe ways of manipulating diagrams by adding, moving or removing
syntactic elements and we consider the semantic consequences of these manipulations. The
manipulations we introduce here will be used in the next section to obtain a normal form.
We are primarily interested in Euler diagrams for information representation and reasoning,
so we require our diagram manipulations to respect the semantics in the sense that if d2 is
obtained from d1 by a syntactic manipulation then d1 � d2. So, for example, our definition
of ‘add contour’ is more restrictive than the ‘insert contour’ rule given in [55]. Thus, the
manipulations described in this section are examples of ‘reasoning rules’; see [47] for a complete
set of reasoning rules for the Spider Diagram system.

3.1. Adding and Removing Syntactic Elements

We define four operations: add and remove a contour label and add and remove a shaded zone.
These four operations are sufficient to be able to ‘navigate’ the semantic equivalence class of
a diagram 〈d〉; any diagram semantically equivalent to d may be obtained from d by applying
a sequence of these four syntactic operations. Identifying manipulation rules that navigate
semantic equivalence classes and those that ‘move between’ equivalence classes is likely to be
important in the systematic development of reasoning and information presentation systems
more generally than the Euler diagram system considered here.

Page 10 of 58 ANDREW FISH AND JOHN TAYLOR

We wish to define a syntactic operation that removes a label from a diagram. For ℓ ∈ L, we
first define a remove label function on the set of abstract zones.

Definition 3.1.

(i) Let ℓ ∈ L be a contour label. The remove ℓ function is defined on the set of abstract
zones Z by

rℓ : Z → Z, rℓ(a, b) = (a− {ℓ}, b− {ℓ}).

The function extends naturally to the set of abstract regions R by defining

rℓ : R → R, rℓ(r) = {rℓ(z) : z ∈ r}.

(ii) Let d be an Euler diagram. The restriction of the domain of rℓ to Z(d) is denoted

rℓ,d : Z(d) → Z.

The extension of rℓ,d to regions of d is also denoted rℓ,d,

rℓ,d : R(d) → R, rℓ,d(r) = {rℓ,d(z) : z ∈ r}.

Example 3.1. Consider the diagram d1 in Figure 5. Removing the contour labelled B from
d1 results in the diagram d2. Note that d2 is not semantically equivalent to d1; for example, d1
expresses that A ∩B ∩ C ∩ E = ∅ (among other things) but d2 makes no statement about B.
Simply to erase the contour B from d1 without making any other adjustments would produce
a diagram in which the zone inside contour E was ‘part shaded’. Since there is no notion of a
‘partially shaded zone’ within our system, in order to obtain a well-formed diagram, this zone
is unshaded in d2.

A

E

CA

E

C
B

1d 2d

Figure 5. Removing a contour: losing information.

The zone set of d1 is

Z(d1) = {({A}, {B,C,E}), ({A,B}, {C,E}), ({C}, {A,B,E}), ({B,C}, {A,E}),

({B,C,E}, {A}), ({C,E}, {A,B}), ({B}, {A,C,E}), (∅, {A,B,C,E})}.

The zones of d1 are arranged in pairs with the property that removing B from each zone in a
pair produces the same zone in d2. Thus the zones of d2 are

Z(d2) = {({A}, {C,E}), ({C}, {A,E}), ({C,E}, {A}), (∅, {A,C,E})}

= {rB,d1
(x, y) : (x, y) ∈ Z(d1)}

= rB,d1
(Z(d1))

and the mapping rB,d1
: Z(d1) → Z(d2) is two-to-one.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 11 of 58

The zone inside E in d2, ({E}, {A,C}) corresponds to the pair of zones ({B,E}, {A,C}) and
({E}, {A,B,C}) in d1. Only one of these zones in d1 is shaded; since we cannot have partially
shaded zones in our diagrams, the corresponding zone in d2 is left unshaded.
The shaded zones of d1 and d2 are

Z•(d1) = {({A}, {B,C,E}), ({A,B}, {C,E}), ({B,C,E}, {A})} and

Z•(d2) = {({A}, {C,E})}.

Note that if (x, y) ∈ Z(d2) is a zone in d2 then the corresponding zones in d1 are

r−1
B,d1

(x, y) = {(x ∪ {B}, y), (x, y ∪ {B})}.

Hence (x, y) ∈ Z(d2) is shaded if and only if both the zones in r−1
B,d1

(x, y) are shaded in d1.

In the example above, for each zone (x, y) ∈ Z(d2), the inverse image r−1
B,d1

(x, y) contains

two zones. In general, if d has missing zones and ℓ ∈ L(d) then the set r−1
ℓ,d(x, y) may contain

only a single zone. For example, if we were to remove the contour labelled C from the diagram
d1 in Figure 5, then the zone ({A,B}, {E}) in the resulting diagram, has inverse image

r−1
C,d1

({A,B}, {E}) = {({A,B}, {C,E})}.

This is because the zone ({A,B,C}, {E}) is missing from d1. The zone ({A,B}, {E}) would
be shaded in the diagram obtained from d1 by removing C since the zone ({A,B}, {C,E}) in
the inverse image is shaded in d1. The general situation is described in the following definition.

Definition 3.2. Let d = 〈Z(d), Z•(d)〉 be an Euler diagram and let ℓ ∈ L. The Euler
diagram d with ℓ removed, denoted rℓ(d) = d− ℓ, is d′ = 〈Z(d′), Z•(d′)〉 where

(i) Z(d′) = rℓ,d(Z(d)) and
(ii) Z•(d′) = {(x, y) ∈ Z(d′) : r−1

ℓ,d(x, y) ⊆ Z•(d)}.

The following are straightforward consequences of definition 3.2.

Lemma 3.1. Let d = 〈Z(d), Z•(d)〉 be an Euler diagram. Then
– L(rℓ(d)) = L(d)− {ℓ};
– if ℓ ∈ L − L(d) then rℓ,d : Z(d) → Z(d) is the identity mapping so that rℓ(d) = d and
– if ℓ ∈ L(d) then, for each zone (x, y) ∈ Z(d− ℓ), r−1

ℓ,d(x, y) = r−1
ℓ (x, y) ∩ Z(d).

It is straightforward to generalise definition 3.2 to define removing a set of labels L ⊂ L.

Definition 3.3 (Remove set of labels).
(i) Let L ⊂ L. The remove labels in L function, rL , is defined on the set of abstract

zones by

rL : Z → Z, rL (a, b) = (a− L , b− L).

If d is an Euler diagram, then the restriction of rL to Z(d) is denoted

rL ,d : Z(d) → Z.

(ii) Let d = 〈Z(d), Z•(d)〉 be an Euler diagram and let L ⊂ L. The Euler diagram d with
labels in L removed, denoted rL (d) = d− L , is d′ = 〈Z(d′), Z•(d′)〉 where
(a) Z(d′) = rL (Z(d)) and
(b) Z•(d′) = {(x, y) ∈ Z(d′) : r−1

L ,d(x, y) ⊆ Z•(d)}.

Page 12 of 58 ANDREW FISH AND JOHN TAYLOR

Thus rL defines a function Eshade → Eshade.

Theorem 3.2 below shows that removing a pair of labels is equivalent to removing first one
label and then the other (in either order). It follows by a simple inductive argument that
removing the labels L ⊆ L(d) is equivalent to removing the labels in L one at a time (in any
order).

1d 2d

A

E
CB

F

E

CB

F

remove A

3d

A

E
CB

4d

E

CB
remove A

remove Fremove F

remove {A, F}

z

2
z

3
z

1
z

az

bz

Figure 6. Removing two contours.

Figure 6 illustrates the commutativity of removing labels. We wish to demonstrate the
commutativity of the upper triangle in Figure 6; that is, removing A then removing F produces
the same diagram as removing {A,F}. It is easy to verify that the zones in d− {A,F} and
(d−A)− F agree. We need to verify that the shaded zones are the same in the two diagrams.
Consider, for example, the zone z = ({C,E}, {B}) in d4 in Figure 6. Firstly we consider d4 as
d1 − {A,F}. Then r−1

{A,F},d1

(z) contains three (of the possible four) zones

r−1
{A,F},d1

(z) = {({A,C,E}, {B,F}), ({C,E}, {A,B, F}), ({C,E, F}, {A,B})}

= {z1, z2, z3}.

Since only two of these zones are shaded, the zone z = ({C,E}, {B}) is unshaded in d4 =
d1 − {A,F}.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 13 of 58

Next we consider d4 as (d1 −A)− F . Firstly, r−1
F,d1−A(z) comprises two zones,

r−1
F,d1−A(z) = {({C,E}, {B,F}), ({C,E, F}, {B})} = {za, zb}

and we need to consider the inverse image under rA,d1
of each of these zones. Now

r−1
A,d1

(za) = r−1
A,d1

({C,E}, {B,F})

= {({A,C,E}, {B,F}), ({C,E}, {A,B, F})}

= {z1, z2},

but since only one of these zones is shaded in d1, it follows that za = ({C,E}, {B,F}) is
unshaded in d2. Also

r−1
A,d1

(zb) = r−1
A,d1

({C,E, F}, {B}) = {({C,E, F}, {A,B})} = {z3}

and since this zone is shaded in d1, it follows that zb = ({C,E, F}, {B}) is shaded in d2.
Therefore only one of the two zones in

r−1
F,d1−A(z) = {({C,E, F}, {B}), ({C,E}, {B,F})} = {za, zb}

is shaded in d2 so the zone z = ({C,E}, {B}) is unshaded in d4 = (d1 −A)− F .

Theorem 3.2. Let d be an Euler diagram and let ℓ1, ℓ2 ∈ L be two contour labels. Then

r{ℓ1,ℓ2}(d) = (rℓ2 ◦ rℓ1)(d) = (rℓ1 ◦ rℓ2)(d),

where ◦ denotes composition.

Proof. If ℓ2 6∈ L(d) then rℓ2,d and rℓ2,d−ℓ1 are identity mappings and r{ℓ1,ℓ2},d = rℓ1,d. The
result then follows. Similarly, if ℓ1 6∈ L(d) the result follows. So assume that ℓ1, ℓ2 ∈ L(d).
As functions defined on abstract zones, r{ℓ1,ℓ2} = rℓ2 ◦ rℓ1 : Z → Z due to the set identity,

X − {ℓ1, ℓ2} = (X − {ℓ1})− {ℓ2}. It follows that

Z(d− {ℓ1, ℓ2}) = Z((d− ℓ1)− ℓ2) = {r{ℓ1,ℓ2}(z) : z ∈ Z(d)}.

Now, for an abstract zone (x, y) ∈ Z, the set r−1
{ℓ1,ℓ2}

(x, y) comprises four zones as follows:

r−1
{ℓ1,ℓ2}

(x, y) = {(x ∪ {ℓ1, ℓ2}, y), (x ∪ {ℓ1}, y ∪ {ℓ2}),

(x ∪ {ℓ2}, y ∪ {ℓ1}), (x, y ∪ {ℓ1, ℓ2})} ⊆ Z.

We consider which zones are present in the diagrams. For any zone (x, y) ∈ Z(d− {ℓ1, ℓ2}),

r−1
{ℓ1,ℓ2},d

(x, y) = {(x ∪ {ℓ1, ℓ2}, y), (x ∪ {ℓ1}, y ∪ {ℓ2}),

(x ∪ {ℓ2}, y ∪ {ℓ1}), (x, y ∪ {ℓ1, ℓ2})} ∩ Z(d).

Hence (x, y) ∈ Z(d− {ℓ1, ℓ2}) is shaded if and only if each of the zones

(x ∪ {ℓ1, ℓ2}, y), (x ∪ {ℓ1}, y ∪ {ℓ2}), (x ∪ {ℓ2}, y ∪ {ℓ1}), (x, y ∪ {ℓ1, ℓ2})

that appears in d is shaded:

{(x ∪ {ℓ1, ℓ2}, y), (x ∪ {ℓ1}, y ∪ {ℓ2}), (x ∪ {ℓ2}, y ∪ {ℓ1}), (x, y ∪ {ℓ1, ℓ2})} ∩ Z(d) ⊆ Z•(d).

Now we consider the same zone (x, y) but in the diagram (d− ℓ1)− ℓ2. We have that (x, y) ∈
Z((d− ℓ1)− ℓ2) is shaded if the zone(s) in

r−1
ℓ2,d−ℓ1

(x, y) = {(x ∪ {ℓ2}, y), (x, y ∪ {ℓ2})} ∩ Z(d− ℓ1)

are all shaded in d− ℓ1. We consider each zone in turn. Firstly, (x ∪ {ℓ2}, y) is shaded in
Z(d− ℓ1) if the zones in

r−1
ℓ1,d

(x ∪ {ℓ2}, y) = {(x ∪ {ℓ1, ℓ2}, y), (x ∪ {ℓ2}, y ∪ {ℓ1})} ∩ Z(d)

Page 14 of 58 ANDREW FISH AND JOHN TAYLOR

are shaded. Similarly, (x, y ∪ {ℓ2}) is shaded in Z(d− ℓ1) if the zones in

r−1
ℓ1,d

(x, y ∪ {ℓ2}) = {(x ∪ {ℓ1}, y ∪ {ℓ2}), (x, y ∪ {ℓ1, ℓ2})} ∩ Z(d)

are shaded.
Therefore the zone (x, y) is shaded in (d− ℓ1)− ℓ2 if and only if all the zones in

r−1
ℓ1,d

(

r−1
ℓ2,d−ℓ1

(x, y)
)

= {(x ∪ {ℓ1, ℓ2}, y), (x ∪ {ℓ2}, y ∪ {ℓ1}),

(x ∪ {ℓ1}, y ∪ {ℓ2}), (x, y ∪ {ℓ1, ℓ2})} ∩ Z(d)

are shaded.
This is precisely the condition for (x, y) to be shaded when considered as a zone of d−

{ℓ1, ℓ2}. Therefore the shaded zones of d− {ℓ1, ℓ2} and (d− ℓ1)− ℓ2 agree.

We may add a contour that is not already present to a diagram. In order to obtain a
semantically equivalent diagram, the new contour will be added in such a way that it splits
each existing zone into two new zones. Adding the contour labelled E to the diagram d1 in
Figure 7 produces d2.

A B

1d 2d

C

A B

C

E

A

B

3d

C

Figure 7. Adding a contour.

Definition 3.4. Let d be an Euler diagram and let ℓ ∈ L be a contour label not in d,
ℓ 6∈ L(d). The Euler diagram d with ℓ added, denoted d+ ℓ, is d′ = 〈Z(d′), Z•(d′)〉 where

(i) L(d′) = L(d) ∪ {ℓ};
(ii) Z(d′) = {(x ∪ {ℓ}, y) : (x, y) ∈ Z(d)} ∪ {(x, y ∪ {ℓ}) : (x, y) ∈ Z(d)}; and
(iii) Z•(d′) = {(x ∪ {ℓ}, y) : (x, y) ∈ Z•(d)} ∪ {(x, y ∪ {ℓ}) : (x, y) ∈ Z•(d)}.

Note that the operations ‘add ℓ’ and ‘remove ℓ’ do not in general commute. If we first add ℓ to
d (where ℓ 6∈ L(d)) and then remove ℓ from the resulting diagram, we obtain d: (d+ ℓ)− ℓ = d.
However, if we remove ℓ from d′ (where ℓ ∈ L(d′)) and then add ℓ to the resulting diagram, we
do not always obtain d′: (d′ − ℓ) + ℓ 6= d′, in general. For example, in Figure 7, (d1 −B) +B

produces the diagram d3 which is different (syntactically and semantically) from d1.
In terms of the semantics of the Euler diagram system, both shaded and missing zones denote

the empty set. This allows for a variety of representations of set theoretic relationships. Systems
based on Euler diagrams with shading may allow users a choice of representation. Hence it is
desirable, at the syntactic level, to be able to move between different representations of the
empty set; that is, to introduce a missing zone into a diagram as a shaded zone and to delete
a shaded zone from a diagram.
For example, in Figure 8, the diagram d2 can be obtained from d1 by removing the shaded

zone ({A}, {B,C}) and adding two new shaded zones ({A,B,C},∅) and ({B,C}, {A}) as
shaded zones.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 15 of 58

A
C

B

1d

A
CB

2d

Figure 8. Adding and removing zones

Definition 3.5. Let d be an Euler diagram and let z ∈ Zm(d) be a missing zone of d. The
Euler diagram d with z added, denoted d+ z, is d′ where

(i) L(d′) = L(d);
(ii) Z(d′) = Z(d) ∪ {z}; and
(iii) Z•(d′) = Z•(d) ∪ {z}.

Removing a shaded zone is complicated by the fact that it may result in the removal of one
or more labels from the diagram. For example, referring back to Figure 5, removing the shaded
zone ({A}, {C,E}) from d2 has the effect of removing A entirely from the diagram. This is
because the removed zone is the only zone in the diagram that contains the contour label A.
The resulting diagram is not semantically equivalent to d2 since it does not assert Ψ(A) = ∅.

Definition 3.6. Let d be an Euler diagram and let z ∈ Z•(d) be a shaded zone of d. Let
L ⊆ in(z) be the set of those labels ℓ for which the zone z is the only zone in d that has ℓ in
its containing set. The Euler diagram d with z removed, denoted d− z, is d′ where

(i) L(d′) = L(d)− L ;
(ii) Z(d′) = {(x, y − L) : (x, y) ∈ Z(d)− {z}}; and
(iii) Z•(d′) = {(x, y − L) : (x, y) ∈ Z•(d)− {z}}.

If L = ∅ (so that no labels are removed from d), then Z(d′) = Z(d)− {z} and Z•(d′) =
Z•(d)− {z}. Also, if L 6= ∅ then d− z is the same diagram as that obtained by removing the
label set L , d− L .
We require our diagram manipulations to be valid in the sense that if we manipulate d1 to

obtain d2 then d2 is a semantic consequence of d1, d1 � d2. Each of the four manipulations
described above is valid in this sense although it is not always the case that applying one of
the manipulations produces a semantically equivalent diagram.

Theorem 3.3. Let d be an Euler diagram.
(i) If ℓ ∈ L(d) is a contour label in d then d � d− ℓ.
(ii) If ℓ ∈ L− L(d) is a contour label not in d then d ≡� d+ ℓ.
(iii) If z ∈ Zm(d) is a zone missing from d then d ≡� d+ z.
(iv) If z ∈ Z•(d) is a shaded zone then d � d− z.

Proof.
The proofs of (i), (ii) and (iii), in the context of spider diagrams, can be found in [47] where

the emphasis is on reasoning with the system of diagrams. We provide a sketch of the proofs
of parts (ii) and (iv).

(ii) Let ℓ be a contour label not in d. For each zone (x, y) ∈ Z, (x, y) ∈ Z(d) if and
only if the zones (x ∪ {ℓ}, y), (x, y ∪ {ℓ}) ∈ Z(d+ ℓ). Furthermore, (x, y) is shaded in

Page 16 of 58 ANDREW FISH AND JOHN TAYLOR

(respectively, missing from) d if and only if (x ∪ {ℓ}, y) and (x, y ∪ {ℓ}) are both shaded
in (respectively, missing from) d+ ℓ.
For any interpretation (U,Ψ), Ψ(x ∪ {ℓ}, y) = Ψ(x, y) ∩Ψ(ℓ) and Ψ(x, y ∪ {ℓ}) =
Ψ(x, y) ∩Ψ(ℓ). Hence Ψ(x ∪ {ℓ}, y) ∪Ψ(x, y ∪ {ℓ}) = Ψ(x, y). Therefore Ψ(x, y) = ∅ if
and only if Ψ(x ∪ {ℓ}, y) = ∅ and Ψ(x, y ∪ {ℓ}) = ∅. It follows that the Shaded Zones
Condition and Missing Zones Condition for d and for d+ ℓ are equivalent.

(iv) Let z be a shaded zone of d.
If removing z from d does not remove any labels from d, then it is the reverse operation
to adding a missing zone, (d− z) + z = d. Hence d− z ≡� d in this case by part (iii).
Now suppose that removing z also removes all the contour labels in some non-empty
set L . Then z is of the form z = (x′ ∪ L , y′) where x′ ∪ y′ ∪ L = L(d). Furthermore z
is the only zone in d for which L ⊆ in(z). Note also that the zone (x′, y′) is missing in
d− z.
Let (U,Ψ) be an interpretation that is a model for d. Note that, if (x, y) is a zone of
d− z then

Ψ(x, y) =
⋃

{P,Q}

Ψ(x ∪ P, y ∪Q)

where the union is taken over all partitions {P,Q} of L . Hence, if Ψ(x ∪ P, y ∪Q) = ∅

for all partitions of L then Ψ(x, y) = ∅. We use this observation several times in what
follows.
Let (x, y) be a shaded zone of d− z. Then (x, y ∪ L) is a shaded zone in d. Every zone
of the form (x ∪ P, y ∪Q) where {P,Q} is a partition of L and P 6= ∅ is missing from
d. Therefore, by the Missing and Shaded Zones conditions for d, Ψ(x ∪ P, y ∪Q) = ∅

for every partition {P,Q} of L . Hence Ψ(x, y) = ∅ so (U,Ψ) satisfies the Shaded Zones
Condition for d− z.
Let (x, y) be a missing zone of d− z. Then either (x, y) = (x′, y′) or (x, y ∪ L) is missing
in d. In the first case, every zone of the form (x′ ∪ P, y′ ∪Q) where {P,Q} is a partition
of L and P 6= L is missing from d. Also z = (x′ ∪ L , y′) is shaded in d. Therefore, by
the Missing and Shaded Zones conditions for d, Ψ(x′ ∪ P, y′ ∪Q) = ∅ for every partition
{P,Q} of L . Hence Ψ(x′, y′) = ∅.
In the second case, every zone of the form (x ∪ P, y ∪Q) where {P,Q} is a partition
of L and P 6= ∅ is missing from d. Therefore, since (x, y ∪ L) is also missing, every
zone of the form (x ∪ P, y ∪Q) where {P,Q} is a partition of L is missing from d.
Hence Ψ(x′, y′) = ∅ by the Missing Zones Condition for d. Therefore (U,Ψ) satisfies
the Missing Zones Condition for d− z.
Hence (U,Ψ) is a model for d− z.

3.2. Nomads

If every zone ‘inside’ a contour is shaded, the diagram asserts that the set assigned to the
label of the contour is empty.

Example 3.2. In Figure 9, each of the diagrams d1, d2, d3 and d4 asserts:

A ∩ C = ∅ and E = ∅.

Essentially, the only difference between the diagrams is the placing of the entirely shaded
contour labelled E within the diagram. Note that the number of zones that lie inside the
contour E also differs between the diagrams: E contains 2, 1, 1 and 4 zones respectively in
d1, d2, d3 and d4.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 17 of 58

E

A CB

1d

A CB

2d

A CB

3d

A CB

4d

E

E E

Figure 9. Four diagrams where E is a ‘nomad’.

Provided there is at least one zone inside E and all the zones inside E are shaded, there are
many diagrams that are semantically equivalent to those in Figure 9 with different placing of
the contour E. Informally, we can think of E as being ‘free to wander around’ the diagram
and, following John [54], we refer to the contour E as a ‘nomad’.
Of these four diagrams, d2 and d3 have the fewest number of zones. It appears that d3 is

‘visually simpler’ than d2 in the sense that the assertion ‘E = ∅’ is represented visually by the
shaded contour labelled E in a way that ‘separated from’ the other contours of the diagram.

The following definition, which is equivalent to that in [54], formalises the notion of a nomad.

Definition 3.7. Let d be an Euler diagram and ℓ ∈ L(d) be a label. We say ℓ is a nomad
in d if the set of zones within ℓ is entirely shaded,

{(x, y) ∈ Z(d) : ℓ ∈ x} ⊆ Z•(d).

We denote the set of nomads in d by N = N (d).

Example 3.3. Consider the diagram d1 in Figure 10 which has two separated nomads
labelled A and B. In d2, these contours are concurrent. The diagrams d1 and d2 are semantically
equivalent. Conflating the contour label with the set it represents, both diagrams assert:

A ∩B = ∅ and A ∩B = ∅; (3.1)

A ∩B = ∅. (3.2)

The equations in (3.1) follow from the Shaded Zones Condition for d1 and the Missing Zones
Condition for d2. Similarly, the equation (3.2) follows from the Missing Zones Condition for d1
and the Shaded Zones Condition for d2. The conditions in (3.1) and (3.2) are equivalent to the
assertion A = ∅ and B = ∅.

Combining the ideas in examples 3.2 and 3.3, an Euler diagram containing several nomads is
semantically equivalent to a diagram where all of the nomads have been moved to the outside
zone and ‘overlaid’ to form a single shaded zone. This is illustrated in Figure 11 where diagram

Page 18 of 58 ANDREW FISH AND JOHN TAYLOR

2d1d

A B A B

Figure 10. Moving nomads.

d1 has three nomads, the contours labelled E, F and G. In the semantically equivalent d2,
these three contours form a single shaded zone situated in the outside zone. We refer to this
exiling the nomads and we say that d2 has exiled nomads.

2d1d

A B

C
E

F

G

A B

C
E

F G

Figure 11. Moving several nomads.

Definition 3.8. Let d be an Euler diagram with a non-empty set of nomads, N (d) 6= ∅.
(i) The set of zones Z(d) partitions into the zones inside nomads

ZinN
(d) = {(x, y) ∈ Z(d) : x ∩ N 6= ∅}

and the set of zones outside nomads

ZoutN (d) = {(x, y) ∈ Z(d) : x ∩ N = ∅}.

The set of shaded zones also partitions in a similar way into the two sets Z•
inN

(d) and
Z•
outN

(d).
(ii) The Euler diagram d with exiled nomads is d′ where

(a) the unshaded zones of d′ are the same as the unshaded zones of d,

Z◦(d′) = Z◦(d);

(b) the shaded zones in d2 are the shaded zones outside nomads in d together with a
single additional shaded zone inside all the nomads,

Z•(d′) = Z•
outN

(d) ∪ {(N (d), L(d) −N (d))}.

Theorem 3.4. Let d be an Euler diagram with a non-empty set of nomads, N (d) 6= ∅,
and let d′ be d with exiled nomads. Then d is semantically equivalent to d′, d ≡� d′.

Proof. Since the sets of nomads in d and d′ are equal, we will write N for either N (d) or
N (d′).
Suppose that (U,Ψ) is a model for d. The missing zones of d′ are

Zm(d′) = Zm(d) ∪
(

Z•
inN

(d)− {(N , L(d)−N (d))}
)

.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 19 of 58

Since each missing zone of d′ is either missing or shaded in d, the Missing Zones Condition for
d′ follows from the Shaded Zones and Missing Zones Conditions for d.
The Shaded Zones Condition for d implies that Ψ(n) = ∅ for each nomad n ∈ N . Since

Ψ(N , L(d)−N (d)) ⊆ Ψ(n) (for any nomad n), we have Ψ(N , L(d)−N (d)) = ∅. The other
shaded zones in d′ are those in Z•

outN
(d). Hence the Shaded Zones Condition follows for d′.

Therefore (U,Ψ) is a model for d′, so d � d′.
Conversely, suppose that (U,Ψ) is a model for d′. The missing zone set of d satisfies Zm(d) ⊆

Zm(d′) ∪ {(N , L(d)−N (d))}. Therefore the Missing Zones Condition for d follows from the
Missing Zones and Shaded Zones Conditions for d′, since (N , L(d) −N (d)) is shaded in d′.
The shaded zone set of d is Z•(d) = Z•

inN
(d) ∪ Z•

outN
(d). Now Z•

outN
(d) = Z•

outN
(d′) so

Ψ(z) = ∅ for any zone z ∈ Z•
outN

(d). For any zone z ∈ Z•
inN

(d), z lies inside some nomad
n so Ψ(z) ⊆ Ψ(n). But the Missing Zones and Shaded Zones Conditions for d′ imply that
Ψ(n) = ∅. Hence Ψ(z) = ∅. Therefore the Shaded Zones Condition holds for d.
Hence (U,Ψ) is a model for d′, so d′ � d.
Therefore d ≡� d′.

3.3. Capturing common semantic information

Let d1 and d2 be two Euler diagrams. If d1 and d2 are not semantically equivalent, we wish
to define a diagram that captures the semantic information that is common to both d1 and
d2. As a simple, example consider the diagrams d1 and d2 in Figure 12. Using (non-italic) X
informally to denote the set represented by contour X , d1 asserts that B ⊆ A and d2 asserts
that A ∩ C = ∅. The second assertion is equivalent to C ⊆ A so the semantic information
common to both diagrams is B ∩ C ⊆ A. This common information is asserted by diagram d.

B

A

1d

CA

2d

C

A B

d

Figure 12. Capturing the semantic information common to two diagrams.

For simplicity, we define the ‘common information diagram’ to be a Venn diagram with label
set incorporating all the labels of d1 and d2. A zone of the common information diagram will
be shaded only when the both of the corresponding zones in d1 and d2 represent the empty set
(by being either shaded or missing from the diagram). The formal definition is the following.

Definition 3.9. Let d1 and d2 be two Euler diagrams. The semantic coproduct of d1
and d2 is the Euler diagram d = d1 ⊔ d2 defined as follows:

(i) L(d) = L(d1) ∪ L(d2);
(ii) d is in Venn form: Z(d) = V Z(L(d));
(iii) a zone (x, y) ∈ Z(D) is shaded if and only if both (x ∩ L(d1), y ∩ L(d1)) ∈ Z•(d1) ∪

Zm(d1) and (x ∩ L(d2), y ∩ L(d2)) ∈ Z•(d2) ∪ Zm(d2):

Z•(d) = {(x, y) ∈ Z(d) : (x ∩ L(di), y ∩ L(di)) ∈ Z•(di) ∪ Zm(di), i = 1, 2}.

Page 20 of 58 ANDREW FISH AND JOHN TAYLOR

In Figure 12, the zone ({B,C}, {A}) is shaded in the semantic coproduct d because the
zone ({B}, {A}) = ({B,C} ∩ L(d1), {A} ∩ L(d1)) is missing from d1 and the zone ({C}, {A}) =
({B,C} ∩ L(d2), {A} ∩ L(d2)) is shaded in d2.
The terminology for d1 ⊔ d2 is motivated by the following theorem.

Theorem 3.5. Let d1, and d2 be two Euler diagrams. The semantic coproduct d1 ⊔ d2
satisfies the following properties.

(i) d1 � d1 ⊔ d2 and d2 � d1 ⊔ d2.
(ii) If d is an Euler diagram such that d1 � d and d2 � d then d1 ⊔ d2 � d.

Proof. In each part of the proof we will use the observation that, for Venn diagrams with
the same contour labels, da � db if and only if every shaded zone in db is also shaded in da,
Z•(db) ⊆ Z•(da).

(i) We begin by replacing d1 with a diagram dV1 which is in Venn form and has the same
label set as d1 ⊔ d2. We do this in two stages. Firstly we add the missing zones of d1 to
form a Venn diagram and secondly we add the contour labels in L(d2)− L(d1) to the
resulting diagram; the result is dV1 . By repeated applications firstly of Theorem 3.3 (iii)
and secondly of Theorem 3.3 (ii), it follows that d1 ≡� dV1 .
Now d1 ⊔ d2 and dV1 are Venn diagrams with the same label set and every shaded zone
in d1 ⊔ d2 is also shaded in dV1 . By the observation above, it follows that dV1 � d1 ⊔ d2
and therefore d1 � d1 ⊔ d2. A similar proof clearly works for d2.

(ii) Suppose that d is an Euler diagram such that d1 � d and d1 � d.
We modify each of d1, d2 and d to give a semantically equivalent Venn diagram where all
the modified diagrams have the same contour labels. For example, first add the missing
zones of d1 to form a Venn diagram and then add the contour labels in (L(d) ∪ L(d2))−
L(d1) to form a new diagram d∗1. The diagrams d∗2 and d∗ are formed similarly. These
diagrams satisfy the following:

d1 ≡� d∗1, d2 ≡� d∗2, d ≡� d∗ and L(d∗1) = L(d∗2) = L(d∗).

Add the contour labels in L(d)− (L(d1) ∪ L(d2)) to d1 ⊔ d2 to give a semantically
equivalent diagram (d1 ⊔ d2)

∗ = d∗1 ⊔ d∗2.
Since d∗1 � d∗ and d∗2 � d∗ it follows by the observation above that every shaded zone in
d∗ is also shaded in both d∗1 and d∗2. Therefore, by definition of the semantic coproduct,
every shaded zone in d∗ is also shaded in d∗1 ⊔ d∗2. Hence d∗1 ⊔ d∗2 ≡� d∗ so d1 ⊔ d2 ≡� d

as required.

Corollary 3.6. Let Let d1, and d2 be two semantically equivalent Euler diagrams. Then
each is semantically equivalent to d1 ⊔ d2.

Figure 13 illustrates Theorem 3.5. Note that d1 � d and d2 � d since, informally, d asserts
less information than that asserted by each of d1 and d2. For example, d1 asserts B ⊆ A− C
and d2 asserts A ∩ B = ∅ and A ∪ B ⊆ C. The diagram d makes the assertion B ⊆ A ∪ C which
is weaker than that made either by d1 or d2.
In d1 the missing zones are ({A,B,C},∅), ({B}, {A,C}) and ({B,C}, {A}). In d2 there

are missing zones ({A,B,C},∅), ({A,B}, {C}) and ({A}, {B,C}) and a single shaded zone
({B}, {A,C}). Therefore their semantic coproduct d1 ⊔ d2 is a Venn diagram whose shaded
zones are those that are shaded or missing in both d1 and d2, namely ({A,B,C},∅) and

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 21 of 58

({B}, {A,C}). Hence d1 ⊔ d2 asserts A ∩ B ∩C = ∅ and A ∩ B ∩C = ∅. The second of these
is equivalent to B ⊆ A ∪C which is what the diagram d asserts. Hence d1 ⊔ d2 � d.

A C

B

1d
2d

A
C B A

C

B

2d1d

A C

B

d

Figure 13. Illustrating the semantic coproduct.

4. The Normal Form

In this section we develop our normal form for Euler diagrams. We first present a syntactic
characterisation of when a contour label is semantically redundant and may therefore be
removed from a diagram whilst remaining within the same semantic equivalence class. Then
we use the transformations introduced in the Section 3 to obtain, from a given diagram d,
a semantically equivalent diagram dN that has a simple syntactic description and where the
syntactic properties of dN will define our normal form.

4.1. Redundant contour labels

Definition 4.1. Let d be an Euler diagram. A contour label ℓ ∈ L(d) is redundant in d

if removing it results in a semantically equivalent diagram, d ≡� d− ℓ. More generally, a set of
contour labels L ⊆ L(d) is redundant in d if removing it results in a semantically equivalent
diagram, d ≡� d− L .

Theorem 4.1. Let d be an Euler diagram and let ℓ1, ℓ2 ∈ L(d) be two labels in d. Then
{ℓ1, ℓ2} is redundant in d if and only if ℓ1 is redundant in d and ℓ2 is redundant in d− ℓ1.

Proof. Suppose that {ℓ1, ℓ2} is redundant in d. Then d− {ℓ1, ℓ2} ≡� d. Clearly ℓ1 is
redundant in d, so d− ℓ1 ≡� d. From Theorem 3.2, we have d− {ℓ1, ℓ2} = (d− ℓ1)− ℓ2 so
(d− ℓ1)− ℓ2 ≡� d ≡� d− ℓ1. Therefore ℓ2 is redundant in d− ℓ1.
Conversely, suppose that ℓ1 is redundant in d and ℓ2 is redundant in d− ℓ1. Then d ≡�

(d− ℓ1) ≡� (d− ℓ1)− ℓ2 = d− {ℓ1, ℓ2}. Therefore {ℓ1, ℓ2} is redundant in d.

We wish to find syntactic conditions for a contour label to be redundant in a diagram.
By Theorem 3.3, adding a contour label ℓ to a diagram d produces a semantically equivalent
diagram d+ ℓ; thus ℓ is redundant in d+ ℓ. For example, in Figure 7, the contour labelled E is
redundant in d2 = d1 + E. When adding E to d1, each zone in d1 is split in two. Hence, in d2,
every zone that is contained by E has a corresponding zone, which (following [54]) we call its
‘E-twin’, that is excluded by E. Furthermore, the E-twin of every shaded zone is also shaded.
We say that the contour E ‘completely splits’ both the shaded and unshaded regions of d2. We
now make these ideas precise for abstract diagrams.

Page 22 of 58 ANDREW FISH AND JOHN TAYLOR

Definition 4.2.

(i) For ℓ ∈ L, we define the move label function on the set of abstract zones by

mℓ : Z → Z, mℓ(x, y) =

(x− {ℓ}, y ∪ {ℓ}) if ℓ ∈ x

(x ∪ {ℓ}, y− {ℓ}) if ℓ ∈ y

(x, y) otherwise.

(ii) A pair of distinct zones z1, z2 ∈ Z are called ℓ-twins if z2 = mℓ(z1). Thus a pair of
distinct zones are ℓ-twins if and only if they are of the form (x− {ℓ}, y ∪ {ℓ}) and (x ∪
{ℓ}, y − {ℓ}).

(iii) Let d be an Euler diagram. A zone z ∈ Z(d) is an ℓ-single in d if its ℓ-twin does not
belong to d.

(iv) Let r ∈ R(d) be a region in an Euler diagram d and let ℓ ∈ L(d). We say that ℓ

completely splits r if, for each zone z ∈ r, its ℓ-twin is also in r, mℓ(z) ∈ r.

The presence or absence of ℓ-twins in a diagram is important in determining whether ℓ

is redundant but not, perhaps, in the most obvious way. Since d ≡� d+ ℓ (where ℓ is not a
label in d), it follows that ℓ is redundant in d+ ℓ and, by construction, ℓ completely splits
both the shaded and unshaded regions of d+ ℓ. Therefore an obvious initial conjecture is
that completely splitting both the shaded and unshaded regions is the syntactic condition for
contour redundancy. However, this is not correct.
Firstly, nomads can complicate the picture. Consider the four diagrams containing a nomad

in Figure 9. In each diagram, the contour labelled B is redundant. Although B completely
splits the unshaded region in each diagram, B does not completely split the shaded regions
in d2 or d3. Similarly in Figure 14 below, the contour labelled A is redundant in both d1 and
d2; removing A from either of these diagrams gives the semantically equivalent diagram d3.
Although A completely splits the shaded and unshaded regions in d2, it does not split the
shaded region in d1 because the zone ({B,C}, {A}), which is the A-twin of the shaded zone,
is missing in d1. These examples suggest that we only need consider the unshaded zones to
determine whether a contour is redundant.

1d 2d

A

CB

A

CB
CB

3d

Figure 14. Missing twins.

Definition 4.3. Let d be an Euler diagram. A label ℓ ∈ L(d) is a splitting label for d if
ℓ completely splits Z◦(d), the unshaded region of d.

The following lemma captures straightforward consequences of definition 4.3.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 23 of 58

Lemma 4.2. Let d be an Euler diagram.

(i) If ℓ ∈ L(d) is a splitting label for d then, for each shaded zone z ∈ Z•(d), its ℓ-twin
mℓ(z) is either shaded or missing from d.

(ii) If n ∈ L(d) is a nomad in d then n is a splitting label for d if and only if d is entirely
shaded.

As the following theorem shows, the notion of splitting label is the syntactic characterisation
we are seeking for a contour label to be redundant.

Theorem 4.3. A contour label ℓ is redundant in an Euler diagram d if and only if ℓ is a
splitting label for d.

Corollary 4.4. Let d be an Euler diagram with an odd number of unshaded zones. Then
d has no redundant contours.

Before embarking on the proof of Theorem 4.3, we illustrate the approach in establishing the
implication ‘if ℓ is not a splitting label then it is not redundant’ through the following example.

Example 4.1. Suppose that ℓ is not a splitting label in d. Then it does not split the
unshaded region Z◦(d) so there is an unshaded zone in Z◦(d) such that its ℓ-twin is either
shaded or missing, mℓ(z) ∈ Z•(d) or mℓ(z) ∈ Zm(d). These two possibilities are illustrated in
Figure 15 for the zone z = ({C,E}, {A,B}), where the contour labelled B does not split the
unshaded region. In d1, the B-twin of z is shaded and in d2 this B-twin is missing.

A

E

C
B

1d 2d

A

E

C
B

z z

A

E

C

rB(z)

1 2d B d B- = -

Figure 15. B does not split the unshaded region.

To show that d1 −B is not semantically equivalent to d1, we construct a model for d1 −B

for which Ψ(mB(z)) 6= ∅; this is therefore not a model for d1 since Ψ(mB(z)) is empty in any
model for d1. We start with a model for d1 −B in which Ψ(rB(z)) is non-empty. To construct
such a model, take the universal set U to be the set of positive integers Z

+ and define a set

Page 24 of 58 ANDREW FISH AND JOHN TAYLOR

assignment Ψ : L → U by

Ψ(A) = ∅, Ψ(C) = {1, 2}, Ψ(E) = {2}

and

Ψ(ℓ) = Z
+ for all ℓ ∈ L− L(d1 −B) = L − {A,C,E}.

To obtain this model, we listed, as z1, z2, . . ., the unshaded zones within any contour and then
defined Ψ such that Ψ(zi) = {i} and Ψ(z•) = ∅ for any shaded zone z•.
It is easy to verify that this interpretation (Z+,Ψ) is a model for d1 −B but it is not quite

the model we need. Since B ∈ L − {A,C,E}, we defined Ψ(B) = Z
+. We now redefine Ψ(B)

as follows (but without changing Ψ(ℓ) for ℓ 6= B):

Ψ(B) = Ψ(rB(z)) = Ψ(C) ∩Ψ(E) ∩Ψ(A) = {1, 2} ∩ {2} ∩ Z
+ = {2}.

This new interpretation (Z+,Ψ) is still a model for d1 −B since neither the Shaded Zones
Condition nor the Missing Zones Condition in d1 −B involve Ψ(B).
However, in d1, mB(z) = ({B,C,E}, {A}) so

Ψ(mB(z)) = Ψ(B) ∩Ψ(C) ∩Ψ(E) ∩Ψ(A) = {2} ∩ {1, 2} ∩ {2} ∩ Z
+ = {2}.

Since Ψ(mB(z)) 6= ∅ but mB(z) is shaded in d1, this interpretation is not a model for d1 (or
d2). Therefore d1 6≡� d1 −B so B is not redundant in d1.

Before we prove Theorem 4.3, we establish the following technical results on the relationship
between the interpretation of a zone z and the related zones rℓ(z) and mℓ(z).

Lemma 4.5. Let d be an Euler diagram and let (U,Ψ) be a model for d. Let ℓ ∈ L(d) be a
contour label in d and let z ∈ Z(d) be a zone of d. Then

Ψ(z) =

{

Ψ(rℓ(z)) ∩Ψ(ℓ) if ℓ ∈ in(z)

Ψ (rℓ(z)) ∩Ψ(ℓ) if ℓ ∈ out(z).

Proof. Let rℓ(z) = (x, y).
If ℓ ∈ in(z) then z = (x ∪ {ℓ}, y) so

Ψ(z) =
⋂

m∈x

Ψ(m) ∩Ψ(ℓ) ∩
⋂

m∈y

Ψ(m) = Ψ (rℓ(z)) ∩Ψ(ℓ).

If ℓ ∈ out(z) then z = (x, y ∪ {ℓ}) so

Ψ(z) =
⋂

m∈x

Ψ(m) ∩
⋂

m∈y

Ψ(m) ∩Ψ(ℓ) = Ψ (rℓ(z)) ∩Ψ(ℓ).

Corollary 4.6. Let d be an Euler diagram and let (U,Ψ) be a model for d. Let ℓ ∈ L(d)
be a contour label in d and let z ∈ Z(d) be a zone of d. Then

Ψ(mℓ(z)) =

{

Ψ(rℓ(z)) ∩Ψ(ℓ) if ℓ ∈ in(z)
Ψ (rℓ(z)) ∩Ψ(ℓ) if ℓ ∈ out(z).

Proof of Theorem 4.3.
We first deal with the case where ℓ is itself a nomad. If ℓ is a splitting label then d is entirely

shaded by Lemma 4.2(ii). Hence d ≡� d− ℓ since both diagrams assert that the universe U is

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 25 of 58

empty. Conversely, if d ≡� d− ℓ where ℓ is a nomad, then the universe U = ∅ in any model so
the diagrams are entirely shaded. Hence ℓ is trivially a splitting label.
Henceforth, suppose that ℓ is not a nomad. First suppose that ℓ is a splitting label for d.

Since ℓ splits the unshaded region, any ℓ-singles are shaded. If d has any ℓ-singles then we may
add the ℓ-twin of each such zone to obtain d′. We know from Theorem 3.3(iii) that adding a
missing zone (as a shaded zone) gives a semantically equivalent diagram; hence d ≡� d′.
All of the shaded zones in d′ are ℓ-twins by construction and, since ℓ is a splitting label for

d, all of the unshaded zones are also ℓ-twins. Therefore ℓ splits both the shaded and unshaded
regions of d′ so that, syntactically, d′ is the same as (d′ − ℓ) + ℓ. It therefore follows that
d′ ≡� d′ − ℓ, by Theorem 3.3(ii).
Hence d ≡� d′ − ℓ and it remains to show that d− ℓ = d′ − ℓ. The only zones introduced

into d to give d′ were the twins of ℓ-singles in d. Since a zone and its ℓ-twin both map to
the same zone under the remove label mapping rℓ,d, the zones of d− ℓ and d′ − ℓ are equal,
Z(d− ℓ) = Z(d′ − ℓ). Since ℓ is a splitting label for d, ℓ splits Z◦(d) so the zones introduced into
d to give d′ are the twins of shaded zones in d. Hence, for each zone z ∈ Z(d− ℓ) = Z(d′ − ℓ),
the only case where r−1

ℓ,d(z) is different in d and d′ is when r−1
ℓ,d(z) is a single shaded zone in d

but a pair of shaded twins in d′. In such a case, z is shaded in both d− ℓ and d′ − ℓ. Therefore
the shaded zones of d− ℓ and d′ − ℓ are equal, Z•(d− ℓ) = Z•(d′ − ℓ). Hence d− ℓ = d′ − ℓ

and so d ≡� d− ℓ. Hence ℓ is a redundant contour label in d.
Conversely, suppose that ℓ is not a splitting label for d. Then ℓ does not split the unshaded

region Z◦(d). Hence there is an unshaded zone z in Z◦(d) such that its ℓ-twin is either shaded
or missing, mℓ(z) ∈ Z•(d) or mℓ(z) ∈ Zm(d). (This is the situation considered in example 4.1.)
In either case, in any model of d, we have Ψ(mℓ(z)) = ∅. Now, by Corollary 4.6,

Ψ(mℓ(z)) =

{

Ψ(rℓ(z)) ∩Ψ(ℓ) if ℓ ∈ in(z)
Ψ(rℓ(z)) ∩Ψ(ℓ) if ℓ ∈ out(z).

Since z is unshaded in d it follows that the corresponding zone rℓ(z) in d− ℓ is unshaded.
Hence there are models for d− ℓ for which Ψ(rℓ(z)) is not empty. Choose a model (U,Ψ) for
d− ℓ for which Ψ(rℓ(z)) 6= ∅. Since neither the Shaded Zones Condition nor the Missing Zones
Condition of d− ℓ involves Ψ(ℓ), we may redefine Ψ(ℓ) as follows, but without changing Ψ(ℓ′)
for any ℓ′ 6= ℓ:

Ψ(ℓ) =

{

Ψ(rℓ(z)) if ℓ ∈ in(z)
Ψ(rℓ(z)) if ℓ ∈ out(z).

Now, with this choice of Ψ(ℓ), we have

Ψ(mℓ(z)) =

{

Ψ(rℓ(z)) ∩Ψ(ℓ) = Ψ(rℓ(z)) ∩Ψ(rℓ(z)) = Ψ(rℓ(z)) if ℓ ∈ in(z)
Ψ(rℓ(z)) ∩Ψ(ℓ) = Ψ(rℓ(z)) ∩Ψ(rℓ(z)) = Ψ(rℓ(z)) if ℓ ∈ out(z).

Since Ψ(mℓ(z)) = Ψ(rℓ(z)) 6= ∅, it follows that (U,Ψ) is not a model for d. Therefore d is not
semantically equivalent to d− ℓ, and so ℓ is not a redundant contour label in d.

4.2. A normal form

In this section, we describe a normal form for Euler diagrams with shading. The normal form
will be structurally simple although, at the concrete level, it need not have a nice drawing.
Further, each Euler diagram will be semantically equivalent to a unique diagram in normal
form. A diagram d in normal form will have the minimal number of contour labels and the
minimal number of zones amongst all of the diagrams in its semantic equivalence class 〈d〉.
In general, if d has no nomads then each shaded zone may be removed and the resulting

diagram is semantically equivalent to d by Theorem 3.3(iv). The resulting abstract diagram
may not have a corresponding concrete diagram that is ‘nicely drawable’; for example, it may

Page 26 of 58 ANDREW FISH AND JOHN TAYLOR

be the case that the concrete diagram is only drawable with ‘concurrent contours’ – that is,
contours that run over one another for some or all of their length.

2d

3d

1d

A

C

B A

C

B

A

C

BA

C B

4d

Figure 16. Deleting shaded zones.

This process is illustrated in Figure 16. The diagram d1 has three shaded zones

z1 = ({B,C}, {A}), z2 = ({B}, {A,C}), z3 = ({A}, {B,C}).

Deleting these in turn produces the diagrams d2, d3 and d4 respectively. In d3, the contour
labelled B is indicated by a thicker line. In this diagram, parts of the contours labelled A and
B are concurrent. In diagram d4, the contours labelled A and B are entirely concurrent. The
zones of d4 are ({A,B,C},∅), ({A,B}, {C}) and (∅, {A,B,C}).

Definition 4.4. An Euler diagram dN is in normal form if either it contains no contours
or it satisfies the following three properties:

(i) dN had no splitting labels;
(ii) dN has no shaded zones outside nomads; that is, if z ∈ Z•(dN) then z ∈ ZinN

(d);
(iii) if dN has nomads then these are represented by a single shaded zone outside all of the

other contours; that is, if N (dN) 6= ∅ then (N (dN), L(dN)−N (dN)) ∈ Z•(dN).

Note that conditions (ii) and (iii) imply that if N (dN) 6= ∅ then Z•(dN) = {(N (dN), L(dN)−
N (dN))}.
Let d be an Euler diagram. If d is semantically equivalent to dN , where dN is in normal

form, then we say that dN is the normal form of d.

Note that there are two diagrams in normal form that contain no contours. One is the
unshaded diagram d◦ with L(d◦) = ∅, Z(d◦) = {(∅,∅)} and Z•(d◦) = ∅. In fact, d◦ meets
the three conditions in the second part of the definition. The other is the completely shaded
diagram d• with L(d•) = ∅ and Z(d•) = {(∅,∅)} = Z•(d•). Any unshaded Venn diagram has
d◦ as its normal form and any completely shaded diagram has d• as its normal form.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 27 of 58

There is an algorithm to obtain the normal form dN of a diagram d. The steps in obtaining
dN are described informally as follows:
(1) if d is completely shaded, Z(d) = Z•(d), then replace d with d•;
(2) otherwise, carry out the following steps

(i) remove any splitting labels
(ii) remove any shaded zones that do not lie within a nomad
(iii) exile any nomads.

Figure 17 illustrates the algorithm to obtain the normal form. The diagram d in Figure 17
has two redundant contours; these are the splitting labels B and G. The first step is to remove
these to obtain d1. Next the shaded zone ({A,C}, {E,F}) in d1 that is not part of a nomad is
removed to obtain d2. Finally, the two nomads E and F are moved to form a single zone ‘in
the outside zone’. This gives the diagram dN which is in normal form.

1d
d

A C

B

E

F

G

(i.e. remove

redundant

contours)

A C

E

F

remove shading

outside nomads

2d

A C

E

F

A C

E F

Nd

exile the

nomads

remove

splitting

labels

Figure 17. Obtaining the normal form.

The following theorem follows from the semantic equivalences established in Theorem 4.3,
Theorem 3.3 (iv) and Theorem 3.4.

Theorem 4.7. Let d be an Euler diagram that is not entirely shaded and let dN be the
Euler diagram in normal form obtained by applying the following three steps to d.
(1) Remove all splitting labels. Replace d with d1 = d− L where L = {ℓ ∈ L(d) :

ℓ is a splitting label for d}.
(2) Remove any shaded zones that do not lie within a nomad. Replace d1 with the diagram

d2 obtained by removing each zone in Z•
outN

(d1).
(3) Exile all nomads. If N (d2) 6= ∅, replace d2 by dN which is d2 with nomads exiled.
Then d is semantically equivalent to dN .

Page 28 of 58 ANDREW FISH AND JOHN TAYLOR

Theorem 4.8. Let d1 and d2 be an Euler diagrams and suppose that their normal forms
dN1 and dN2 are not the same diagram. Then d1 and d2 are not semantically equivalent.

Proof. First note that if dN1 = d• but dN2 6= d• then d1 is entirely shaded but d2 is not. The
only model of d1 had U = ∅ but d2 has models with a non-empty universe, so d1 and d2 are
not semantically equivalent.
Now assume that neither diagram is completely shaded. By Theorem 4.7, it is sufficient to

prove that, if d1 and d2 are two different Euler diagrams, both in normal form, then d1 and d2
are not semantically equivalent. So suppose that d1 and d2 are in normal form and d1 6= d2.
Then Z(d1) 6= Z(d2) or Z

•(d1) 6= Z•(d2).
Firstly, consider the case where Z•(d1) 6= Z•(d2). Since d1 and d2 are in normal form, this

implies that the two diagrams have different sets of nomads, N (d1) 6= N (d2). Without loss
of generality, we may suppose that d1 contains a nomad n ∈ L that is not in L(d2). In any
model of d1, we have Ψ(n) = ∅ but, since n 6∈ L(d2), there will be models for d2 where the
interpretation of n is not empty. Therefore d1 and d2 are not semantically equivalent.
Now suppose that Z•(d1) = Z•(d2) but Z(d1) 6= Z(d2). Without loss of generality, we may

suppose that d1 contains a non-shaded zone z ∈ Z◦(d1) that is missing in d2. In any model of
d2, we have Ψ(z) = ∅. However there will be models for d1 for which Ψ(z) 6= ∅. For example,
we may modify any model (U,Ψ) for d1 by replacing U with U ∪ {u∗}, where u∗ 6∈ U and, for
each ℓ ∈ in(z), replace Ψ(ℓ) with Ψ(ℓ) ∪ {u∗}. Thus d1 and d2 are not semantically equivalent.

5. Extension to Euler diagrams with projections

5.1. Syntax of projections

The introduction of projections or projected contours into Euler diagrams has been
considered by various authors [30], [31], [52], [53], [54]. Projections give ‘local’ information
about a set relative to a ‘context’ and hence allow the representation of partial information
about the set; projections provide the freedom to show only those intersections that are of
interest. They also provide a choice of ways of representing relationships between sets, just as
shading and missing zones provide different ways of making the same assertions. Syntactically,
we distinguish projected contours from standard or ‘given’ contours by using dashed lines to
represent projected contours.

Example 5.1. Figure 18 shows an Euler diagrams with projections. The projected contours
are those labelled E, F and G. Since they express ‘local’ information about the interaction of
the contour and its context, we allow more than one projected contour with the same label in a
diagram. In fact we will (usually) draw Euler diagrams with projections so that each projected
contour is drawn within a zone of the ‘underlying’ Euler diagram defined by the given contours.
For a discussion of different ways of drawing Euler diagrams with projections, see section 6.2
below.
The context of a projected contour is the smallest region defined in terms of the non-projected

contours that contains the projected contour. Thus the context of the contour labelled E is
the region inside the contour A. Similarly, the context of the contour labelled F is the region
outside the contour A and the context of the projected contour G is the region inside B and
outside the contour A.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 29 of 58

A

E

B

F

G

E

E

F

Figure 18. An Euler diagram with projections.

A projected contour only gives information about the intersection of the set denoted by the
contour label with the set denoted by its context. Thus, if we use (non-italic) X informally to
denote the set represented by contour X , the diagram in Figure 18 expresses the following.

– A ∩ E = ∅ since both the projected contours labelled E are shaded;
– (F ∩G) ∩ (B ∩ A) = ∅ since, within the region inside B but outside A, the projected
contours labelled F and G are disjoint;

– F ∩ (A ∩ B) = ∅ since the projected contour labelled F that is outside both A and B is
shaded.

Definition 5.1. An Euler diagram with projections d (with labels in L) is a quadruple
〈LG(d), LP (d), Z(d), Z•(d)〉 whose components are described as follows.

(i) LG(d) and LP (d) are disjoint subsets of L. The contour labels in LG(d) are called given
contour labels and those in LP (d) are called projected contour labels.

(ii) A zone in d is a quadruple† (xG, xP , yG, yP) where
(a) {xG, yG} is a partition of LG(d) (where xG and yG are allowed to be empty)
(b) xP and yP are disjoint subsets of LP (d)
(c) if (xG, xP , yG, yP) and (x′

G, x
′
P , y

′
G, y

′
P) are zones such that xG = x′

G and yG = y′G
then xP ∪ yP = x′

P ∪ y′P .
The set Z(d) is a set of zones such that for every ℓ ∈ LG(d) there is a zone
(xG, xP , yG, yP) ∈ Z(d) such that ℓ ∈ xG.

(iii) Z•(d) ⊆ Z(d) is the set of shaded zones.

The diagram in Figure 18 has the following abstract description:

– the given contour label set is LG = {A,B};
– the projected contour label set is LP = {E,F,G};
– the zone set is

Z = {(∅,∅, {A,B}, {F}), (∅, {F}, {A,B},∅),

({A},∅, {B}, {E}), ({A}, {E}, {B},∅),

({A,B},∅,∅, {E}), ({A,B}, {E},∅,∅),

({B},∅, {A}, {F,G}), ({B}, {F}, {A}, {G}), ({B}, {G}, {A}, {F})};

– the shaded zone set is

Z• = {(∅, {F}, {A,B},∅), ({A}, {E}, {B},∅), ({A,B}, {E},∅,∅)}.

†Sometimes it will be convenient to regard a zone as a pair (zG, zP) where zG = (xG, yG) and zP = (xP , yP).

Page 30 of 58 ANDREW FISH AND JOHN TAYLOR

Definition 5.2. Let d be an Euler diagram with projections.
(i) The underlying Euler diagram (without projections) of d is dU = 〈Z(dU), Z

•(dU)〉,
the Euler diagram with label set L(dU) = LG(d) where
– Z(dU) = {(xG, yG) : there exists xP , yP such that (xG, xP , yG, yP) ∈ Z(d)}
– Z•(dU) = {(xG, yG) ∈ Z(dU) : every (xG, xP , yG, yP) ∈ Z(d) is shaded}
The zone set of dU is called the set of underlying zones of d, denoted ZU (d). Thus
ZU (d) = Z(dU) and we use these two notations interchangeably.
The function v : Z(d) → ZU (d), given by v(xG, xP , yG, yP) = (xG, yG) returns the
underlying zone of each zone (xG, yG) ∈ Z(d). A missing underlying zone of d is
a zone that is missing in the underlying diagram dU ; the set of missing underlying
zones is V Z(L(dU))− Z(dU).

(ii) Let ℓP ∈ LP (d) be a projected contour label. The context of ℓP , κ(ℓP), is the region
in the underlying diagram ‘containing’ ℓP ,

κ(ℓP) = {(xG, yG) : there exists (xG, xP , yG, yP) ∈ Z(d) such that ℓP ∈ xP ∪ yP }.

(iii) Let (xG, yG) ∈ ZU (d) be a zone of the underlying diagram. The set of intersectors of
(xG, yG), Λ(xG, yG), is the set of projected contour labels that intersect with the zone,

Λ(xG, yG) = {ℓP ∈ LP (d) : (xG, yG) ∈ κ(ℓP)}.

The set of zones in (xG, yG) is

Z(xG, yG) = {z ∈ Z(d) : z = (xG, xP , yG, yP) for some xP , yP }.

The set of shaded zones in (xG, yG) is

Z•(xG, yG) = Z(xG, yG) ∩ Z•(d).

Example 5.2. Consider the diagram in Figure 18. The underlying diagram is the Venn
diagram with contour labels A and B; that is, dU has zones (∅, {A,B}), ({A}, {B}), ({B}, {A})
and ({A,B},∅).
The contexts of the projected contour labels are:

κ(E) = {(xG, yG) : (xG, xP , yG, yP) ∈ Z(d) and E ∈ xP }

= {({A}, {B}), ({A,B},∅)};

κ(F) = {(xG, yG) : (xG, xP , yG, yP) ∈ Z(d) and F ∈ xP }

= {(∅, {A,B}), ({B}, {A})};

κ(G) = {(xG, yG) : (xG, xP , yG, yP) ∈ Z(d) and G ∈ xP }

= {({B}, {A})}.

Therefore the sets of intersectors of the underlying zones are:

Λ(∅, {A,B}) = {ℓP ∈ {E,F,G} : (∅, {A,B}) ∈ κ(ℓP)} = {F},

Λ({A}, {B}) = {ℓP ∈ {E,F,G} : ({A}, {B}) ∈ κ(ℓP)} = {E},

Λ({B}, {A}) = {ℓP ∈ {E,F,G} : ({B}, {A}) ∈ κ(ℓP)} = {F,G},

Λ({A,B},∅) = {ℓP ∈ {E,F,G} : ({A,B},∅) ∈ κ(ℓP)} = {E}.

Lemma 5.1. Let d be an Euler diagram with projections and let (xG, yG) be an underlying
zone of d. Then Λ(xG, yG) = {xP ∪ yP : there exists (xG, xP , yG, yP) ∈ Z(d)}.

Let d be an Euler diagram with projections. For each zone (a, b) of the underlying diagram
dU , the intersectors of the zone form a ‘projected diagram embedded within the zone’. For

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 31 of 58

example, in the diagram of Figure 18, the projected diagram embedded in the zone ({B}, {A})
comprises two separated contours labelled F and G. The following definition makes this precise.

Definition 5.3. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with projections
and let (xG, yG) ∈ ZU (d) be a zone in the underling diagram dU . The projected diagram of
d embedded in (xG, yG), dP (xG, yG), is the Euler diagram (without projections) that has:
– label set L(dP (xG, yG)) = Λ(xG, yG),
– zone set Z(dP (a, b)) = {(xP , yP) : (xG, xP , yG, yP) ∈ Z(xG, yG)}
– shaded zone set Z•(dP (xG, yG)) = {(xP , yP) : (xG, xP , yG, yP) ∈ Z•(xG, yG)}.

We will also refer to dP (xG, yG) as an embedded projected diagram.

Lemma 5.2. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with projections and
let (xG, yG) ∈ ZU (d) be a zone in the underling diagram dU . The mapping w : Z(xG, yG) →
Z(dP (xG, yG)) given by

w(xG, xP , yG, yP) = (xP , yP)

is a bijection and hence defines a correspondence between the zones in Z(xG, yG) and the zones
in the projected diagram of d embedded in (xG, yG).

Example 5.3. Consider the diagram d in Figure 19. Firstly, we evaluate dP ({A}, {B}),
the projected diagram embedded in the zone ({A}, {B}) of the underlying diagram.
The intersectors of the zone are Λ({A}, {B}) = {E,F}. The sets of zones and shaded zones

in ({A}, {B}) are

Z({A}, {B}) = {({A},∅, {B}, {E,F}), ({A}, {E}, {B}, {F}),

({A}, {E,F}, {B},∅), ({A}, {F}, {B}, {E})},

Z•({A}, {B}) = Z({A}, {B}) ∩ Z•(d) = {({A}, {E}, {B}, {F})}.

Therefore the sets of zones and shaded zones of dP ({A}, {B}) are

Z(dP ({A}, {B})) = {(xP , yP) : ({A}, xP , {B}, yP) ∈ Z(xG, yG)}

= {(∅, {E,F}), ({E}, {F}), ({E,F},∅), ({F}, {E})},

Z•(dP ({A}, {B})) = {(xP , yP) : ({A}, xP , {B}, yP) ∈ Z•({A}, {B})}

= {({E}, {F})}.

The embedded projected diagrams dP ({A}, {B}) and dP ({B}, {A}) are shown in Figure 19.
The remaining two embedded projected diagrams, dP (∅, {A,B}) and dP ({A,B},∅), are the
diagram d◦, the diagram with empty label set.

E

F

A B
E

F

G

d

E

F

E

F

G

({ },{ })Pd A B ({ },{ })Pd B A

Figure 19. The projected diagrams within underlying zones.

Page 32 of 58 ANDREW FISH AND JOHN TAYLOR

We will need to be able to add and remove syntactic elements to Euler diagrams with
projections in a similar way to adding and removing syntactic elements to Euler diagrams.
However we will need to distinguish between given and projected syntactic elements when
defining the operations to add or delete syntactic elements. We illustrate this with a
consideration of how we add contours to Euler diagrams with projections.
Let d be an Euler diagram with projections and let ℓg be a contour label not in L(d). Adding

ℓg as a given contour is similar to adding a contour to an Euler diagram – see definition 3.4. In
Figure 20, the diagram d1 is obtained from d by adding C as a given contour, d1 = d+ C. As
for Euler diagrams, the new contour C splits each existing zone into two new zones in d+ C.

A B

G

C

d

F

E

1d

A B

G

F

E

A B

G

F

E

G

2d

Figure 20. Adding contours to an Euler diagram with projections.

Definition 5.4. Let d be an Euler diagram with projections and let ℓg be a contour label
not in L(d). The diagram d with ℓg added as a given contour, d+ ℓg, has the following
components.

(i) LG(d+ ℓg) = L(d) ∪ {ℓg}
(ii) LP (d+ ℓg) = LP (d)
(iii) For every zone (xG, xP , yG, yP) ∈ L(d) there are zones (xG ∪ {ℓg}, xP , yG, yP) and

(xG, xP , yG ∪ {ℓg}, yP) in Z(d+ ℓg) so that

Z(d+ ℓg) = {(xG ∪ {ℓg}, xP , yG, yP) : (xG, xP , yG, yP) ∈ Z(d)}

∪ {(xG, xP , yG ∪ {ℓg}, yP) : (xG, xP , yG, yP) ∈ Z(d)}

(iv) Z•(d+ ℓg) = {(xG ∪ {ℓg}, xP , yG, yP) : (xG, xP , yG, yP) ∈ Z•(d)}

∪{(xG, xP , yG ∪ {ℓg}, yP) : (xG, xP , yG, yP) ∈ Z•(d)}

To add a contour label as a projected contour label, we need to specify the underlying zone
into which it is to be inserted. In Figure 20, the diagram d2 is obtained from d by adding
the projected contour G into the zone ({A}, {B}) of the underlying diagram of d. We will
denote d2 by d+ (G → ({A}, {B})). Note that the contour G that is added as a projected
contour already exists as a projected contour in the diagram but not in the underlying zone
({A}, {B}). The zones outside ({A}, {B}) are unchanged by the addition of G and all the zones
inside ({A}, {B}) are split by G. We now formalise this notion.

Definition 5.5. Let d be an Euler diagram with projections and let (xG, yG) ∈ ZU (d) be
a zone of the underlying diagram. Let ℓp ∈ L be a contour label that is not a given contour
of d and is not an intersector of (xG, yG), ℓp 6∈ LG(d) ∪ Λ(xG, yG). The Euler diagram d with

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 33 of 58

ℓp added into (xG, yG), denoted d+ (ℓp → (xG, yG)), is d
′ = 〈LG(d

′), LP (d
′), Z(d′), Z•(d′)〉

where

(i) LG(d
′) = LG(d);

(ii) LP (d
′) = LP (d) ∪ {ℓp};

(iii) Z(d′) = {z : z ∈ Z(d), z 6∈ Z(xG, yG)}
∪ {(xG, xP ∪ {ℓp}, yG, yP) : (xG, xP , yG, yP) ∈ Z(xG, yG)}
∪ {(xG, xP , yG, yP ∪ {ℓp}) : (xG, xP , yG, yP) ∈ Z(xG, yG)}; and

(iv) Z•(d′) = {z : z ∈ Z•(d), z 6∈ Z(xG, yG)}
∪ {(xG, xP ∪ {ℓp}, yG, yP) : (xG, xP , yG, yP) ∈ Z•(xG, yG)}
∪ {(xG, xP , yG, yP ∪ {ℓp}) : (xG, xP , yG, yP) ∈ Z•(xG, yG)}.

5.2. Semantics of projections

Projected contours only provide information ‘relative to their context’. For example, in
Figure 19, the diagram d does not express that the sets (represented by) F and G are disjoint
but only their intersections with A ∩B are disjoint. Our definition of zones allows us to extend
definition 2.4 of interpretations in the obvious way. Modifying the definition of an abstract
zone to be any quadruple (xG, yP , yG, yP) of pairwise disjoint finite subsets of L, the only
modification to definition 2.4 is in the interpretation of zones

Ψ(xG, yP , yG, yP) =
⋂

ℓ∈xG∪xP

Ψ(ℓ) ∩
⋂

ℓ∈yG∪yP

Ψ(ℓ).

To define the semantics predicate for an Euler diagram with projections d, we need the
concept of a missing projected zone in an underlying zone, which we now define.

Definition 5.6. Let d be an Euler diagram with projections. Let (xG, yG) ∈ ZU (d) be an
underlying zone of d with intersectors Λ(xG, yG). The projected Venn zone set in (xG, yG)
is

V ZP (xG, yG) = {(xG, xP , yG, yP) : xP ∪ yP = Λ(xG, yG)}.

The set of missing projected zones in (xG, yG) is

Zm
P (xG, yG) = V ZP (xG, yG)− Z(xG, yG).

Lemma 5.3. Let d be an Euler diagram with projections and let (xG, yG) ∈ ZU (d)
be an underlying zone of d with intersectors Λ(xG, yG). The mapping w : Z(xG, yG) →
Z(dP (xG, yG)), defined by w(xG, xP , yG, yP) = (xP , yP) extends to a bijection Zm

P (xG, yG) →
Zm(dP (xG, yG)). Hence there is a bijective correspondence between the missing projected zones
in (xG, yG) in d and the missing zones of the embedded projected diagram dP (xG, yG).

Example 5.4. Consider the underlying zone ({B}, {A}) in the diagram d in Figure 19.
The intersectors of the zone are

Λ({B}, {A}) = {E,F,G}

Page 34 of 58 ANDREW FISH AND JOHN TAYLOR

so

V ZP ({B}, {A}) = {({B}, xP , {A}, yP) : xP ∪ yP = {E,F,G}}

= {({B}, {E,F,G}, {A},∅), ({B}, {E,F}, {A}, {G}),

({B}, {E,G}, {A}, {F}), ({B}, {F,G}, {A}, {E})

({B}, {E}, {A}, {F,G}), ({B}, {F}, {A}, {E,G}),

({B}, {G}, {A}, {E,F}), ({B},∅, {A}, {E,F,G})}.

Hence the missing projected zones in ({B}, {A}) are

Zm
P ({B}, {A}) = {({B}, {E,F,G}, {A},∅), ({B}, {E,F}, {A}, {G}),

({B}, {E,G}, {A}, {F}), ({B}, {F,G}, {A}, {E})}.

By contrast, the underlying zone ({A}, {B}) has intersectors Λ({A}, {B}) = {E,F} and
projected Venn zone set

V ZP ({A}, {B}) = {({A}, xP , {B}, yP) : xP ∪ yP = {E,F}}

= {({A}, {E,F}, {B},∅), ({A}, {E}, {B}, {F}),

({A}, {F}, {B}, {E}), ({A},∅, {B}, {E,F})}.

Since Z({A}, {B}) = V ZP ({A}, {B}), there are no missing projected zones in ({A}, {B}),

Zm
P ({A}, {B}) = ∅.

Definitions 2.5 and 2.7 extend to Euler diagrams with projections in the obvious way.

Definition 5.7. Let d be an Euler diagram with projections and let I = (U,Ψ) be an
interpretation. We define the semantics predicate of d, denoted Pd(I), to be the conjunction
of the following conditions.

(i) Shaded Zones Condition

Each shaded zone represents the empty set:
∧

z∈Z•(d)

Ψ(z) = ∅.

(ii) Missing Zones Condition
Each missing zone represents the empty set.
For convenience, we split this into the conjunction of two sub-conditions.
(a) Missing Underlying Zones Condition

Each missing underlying zone represents the empty set:
∧

z∈Zm(dU)

Ψ(z) = ∅.

(b) Missing Projected Zones Condition

Each missing projected zone represents the empty set:
∧

(xG,yG)∈ZU (d)

∧

z∈Zm
P

(xG,yG)

Ψ(z) = ∅.

We say I is a model for d, denoted I |= d, if and only if Pd(I) is true. Also, we say d is
satisfiable if and only if d has a model.

Definition 5.8. Let d1 and d2 be Euler diagrams with projections. Then d1 semantically
entails d2 (and d2 is a semantic consequence of d1), denoted d1 � d2, if every interpretation
(U,Ψ) that is a model for d1 is also a model for d2.
If d1 � d2 and d2 � d1 then we say that d1 and d2 are semantically equivalent, denoted

d1 ≡� d2.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 35 of 58

Example 5.5. Consider the Euler diagram with projections d given in Figure 21.
There are two shaded zones, ({A}, {E}, {B,C},∅) and ({B},∅, {A,C},∅) so the Shaded

Zones Condition for d is
(

Ψ(A) ∩Ψ(E) ∩Ψ(B) ∩Ψ(C) = ∅

)

∧
(

Ψ(A) ∩Ψ(B) ∩Ψ(C) = ∅

)

.

Note that the second of these shaded zones is a shaded zone of the underlying diagram dU .
In this case, since the interpretation of the zone does not involve the interpretation of the
projected contour labels, the condition

Ψ(A) ∩Ψ(B) ∩Ψ(C) = ∅

is just the Shaded Zones Condition for the underlying diagram.
There are two missing underlying zones, ({A,B,C},∅) and ({A,C}, {B}). Hence the missing

underlying zones condition for d is

(Ψ(A) ∩Ψ(B) ∩Ψ(C) = ∅) ∧ (Ψ(A) ∩Ψ(B) ∩Ψ(C) = ∅).

There are missing projected zones in two of the six underlying zones. In the underlying zone
({A,B}, {C}), the projected zone ({A,B}, {E,F}, {C},∅) is missing and in the underlying
zone ({C}, {A,B}) the projected zone ({C}, {F}, {A,B}, {G}) is missing. Hence the missing
projected zones condition for d is

Ψ(A) ∩Ψ(B) ∩Ψ(C) ∩Ψ(E) ∩Ψ(F) = ∅

∧ Ψ(A) ∩Ψ(B) ∩Ψ(C) ∩Ψ(F) ∩Ψ(G) = ∅.

A
B

F
G

E

F

C

d

Figure 21. The semantics of projections.

In Table 5.2, we give the interpretations of all of the zones in the diagram d in Figure 21. The
zones of d are listed in column 3, grouped by their underlying zones. The interpretations of the
underlying zones and the zones in d are given in the second and fourth columns respectively.
To aid readability of the interpretation columns of the table, we have again replaced Ψ(X)
with a (non-italic) X for each contour label.
Table 5.2 highlights that the interpretation of each zone z in d can be expressed as

Ψ(z) = Ψ(v(z)) ∩Ψ(w(z))

where v(z) is the underlying zone of z in the underlying diagram dU and w(z) is the
corresponding zone in the embedded projected diagram dP (v(z)). For example, for the zone
z = ({C}, {G}, {A,B}, {F}) we have v(z) = ({C}, {A,B}), w(z) = ({G}, {F}) and

Ψ(z) =
(

A ∩ B ∩ C
)

∩
(

F ∩G
)

= Ψ(v(z)) ∩Ψ(w(z)).

Page 36 of 58 ANDREW FISH AND JOHN TAYLOR

Underlying Interpret- Zone Interpretation
zone ation

(∅, {A,B,C}) A ∩ B ∩C (∅,∅, {A,B,C},∅) A ∩ B ∩ C

({A}, {B,C}) A ∩ B ∩C ({A},∅, {B,C}, {E}) A ∩ B ∩ C ∩ E
({A}, {E}, {B,C},∅) A ∩ B ∩ C ∩ E

({A,B}, {C}) A ∩ B ∩C ({A,B},∅, {C}, {E,F}) A ∩ B ∩ C ∩ E ∩ F
({A,B}, {E}, {C}, {F}) A ∩ B ∩ C ∩ E ∩ F

({A,B}, {F}, {C}, {E}) A ∩ B ∩ C ∩ E ∩ F

({B}, {A,C}) A ∩ B ∩C ({B},∅, {A,C},∅) A ∩ B ∩ C

({B,C}, {A}) A ∩ B ∩C ({B,C},∅, {A}, {G}) A ∩ B ∩ C ∩G
({B,C}, {G}, {A},∅) A ∩ B ∩ C ∩G

({C}, {A,B}) A ∩ B ∩C ({C},∅, {A,B}, {F,G}) A ∩ B ∩ C ∩ F ∩G
({C}, {G}, {A,B}, {F}) A ∩ B ∩ C ∩ F ∩G
({C}, {F,G}, {A,B},∅) A ∩ B ∩ C ∩ F ∩G

Table: 5.2 Interpreting the zones of d in Figure 21.

Lemma 5.4. Let d be an Euler diagram with projections and let z ∈ Z(d) be a zone in d.
For any interpretation (U,Ψ),

Ψ(z) = Ψ(v(z)) ∩Ψ(w(z))

where v(z) is the underlying zone of z, v(z) ∈ Z(dU), and w(z) is the corresponding zone in
the embedded projected diagram w(z) ∈ Z(dP (v(z))).

Proof. Let z = (xG, xP , yG, yP) be a zone of the d that lies in the underlying zone v(z) =
(xG, yG). Then w(z) = (xP , yP). Now

Ψ(z) =
⋂

ℓ∈xG∪xP

Ψ(ℓ) ∩
⋂

ℓ∈yG∪yP

Ψ(ℓ)

=
⋂

ℓ∈xG

Ψ(ℓ) ∩
⋂

ℓ∈yG

Ψ(ℓ) ∩
⋂

ℓ∈xP

Ψ(ℓ) ∩
⋂

ℓ∈yP

Ψ(ℓ)

= Ψ(xG, yG) ∩Ψ(xP , yP) = Ψ(v(z)) ∩Ψ(w(z)).

The next lemma extends Theorem 3.3 (ii) by showing that adding a (given or projected)
contour to an Euler diagram with projections results in a semantically equivalent diagram.

Lemma 5.5. Let d be an Euler diagram with projections.
(i) Let ℓg ∈ L − L(d). Then d ≡� d+ ℓg.
(ii) Let zU be an underlying zone of d and let ℓp ∈ L − (LG(d) ∪ Λ(zU)).

Then d ≡� d+ (ℓp → zU).

Proof.
(i) This is essentially the same as Theorem 3.3 (ii).

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 37 of 58

(ii) Let (U,Ψ) be an interpretation that is a model for d and let d′ = d+ (ℓp → zU) where
zU = (xG, yG) is an underlying zone of d.
Suppose that z is a shaded zone of d′ in zU . Then z = (xG, xP ∪ {ℓp}, yG, yP) or z =
(xG, xP , yG, yP ∪ {ℓp}) for some shaded zone (xG, xP , yG, yP) of d in zU . In the first case,
Ψ(z) = Ψ(xG, xP , yG, yP) ∩Ψ(ℓp) and in the second case, Ψ(z) = Ψ(xG, xP , yG, yP) ∩
Ψ(ℓp). Hence, by the Shaded Zones Condition for d, Ψ(z) = ∅. Since the zones outside
zU remain unchanged, (U,Ψ) satisfies the Shaded Zones Condition for d′.
Since the underlying diagrams for d and d′ are equal, the Missing Underlying Zones
Condition for d′ follows from that for d.
A missing projected zone z = (xG, xP ∪ {ℓp}, yG, yP) or z = (xG, xP , yG, yP ∪ {ℓp}) for
some missing projected zone (xG, xP , yG, yP) of d in zU . Then, as above, Ψ(z) = ∅

by the Missing Projected Zones Condition for d. Hence (U,Ψ) satisfies the Missing
Projected Zones Condition for d′.
Therefore (U,Ψ) is a model for d′.

Conversely, let (U,Ψ) be an interpretation that is a model for d′ = d+ (ℓp → zU).
Suppose that z = (xG, xP , yG, yP) is a shaded zone of d in zU . Then the zones (xG, xP ∪
{ℓp}, yG, yP) and (xG, xP , yG, yP ∪ {ℓp}) are shaded zones of d′ in zU . We have

Ψ(z) =
⋂

ℓ∈xG∪xG

Ψ(ℓ) ∩
⋂

ℓ∈yG∪yP

Ψ(ℓ)

=

⋂

ℓ∈xG∪xG

Ψ(ℓ) ∩
⋂

ℓ∈yG∪yP

Ψ(ℓ)

 ∩
(

Ψ(ℓp) ∪Ψ(ℓp)
)

=

⋂

ℓ∈xG∪xP∪{ℓp}

Ψ(ℓ) ∩
⋂

ℓ∈yG∪yP

Ψ(ℓ)

 ∪

⋂

ℓ∈xG∪xP

Ψ(ℓ) ∩
⋂

ℓ∈yG∪yP∪{ℓp}

Ψ(ℓ)

= Ψ(xG, xP ∪ {ℓp}, yG, yP) ∪Ψ(xG, xP , yG, yP ∪ {ℓp}).

Hence Ψ(z) = ∅ by the Shaded Zones Condition for d′. Therefore (U,Ψ) satisfies the
Shaded Zones Condition for d.
Again, the Missing Underlying Zones Condition for d follows trivially from that for d′.
Let z = (xG, xP , yG, yP) be a missing projected zone in zU in d. Then the projected zones
(xG, xP ∪ {ℓp}, yG, yP) and (xG, xP , yG, yP ∪ {ℓp}) are missing projected zones of d′ in
zU . Hence, as above, Ψ(z) = Ψ(xG, xP ∪ {ℓp}, yG, yP) ∪Ψ(xG, xP , yG, yP ∪ {ℓp}) = ∅

by the Missing Projected Zones Condition for d′. Therefore (U,Ψ) satisfies the Missing
Projected Zones Condition for d.
Hence (U,Ψ) is a model for d.

To link models of an Euler diagram with projections d with models of its embedded projected
diagrams, we will need to modify the interpretations of the projected diagrams. To see why
this is, consider the shaded zone ({A}, {E}, {B,C},∅) in the diagram d in Figure 21. Suppose
that (U,Ψ) is an interpretation that is a model for d. By the Shaded Zones Condition,
Ψ({A}, {E}, {B,C},∅) = ∅ which gives

Ψ(A) ∩Ψ(E) ∩Ψ(B) ∩Ψ(C) = ∅.

The projected diagram embedded in the underlying zone ({A}, {B,C}) contains a single
contour labelled E, the zone inside E being shaded. From the equation above we cannot infer
the Shaded Zones Condition for the embedded projected diagram, Ψ(E) = ∅.

Page 38 of 58 ANDREW FISH AND JOHN TAYLOR

Definition 5.9. Let (U,Ψ) be an interpretation. Let d be an Euler diagram with
projections, let (xG, yG) be an underlying zone of d and let dP (xG, yG) be the embedded
projected diagram in (xG, yG).
The modified interpretation of dP (xG, yG) is the interpretation of zones and regions in

dP (xG, yG),

Ψ(xG,yG) : Z(dP (xG, yG)) ∪R(dP (xG, yG)) → P(U),

defined as follows.
Each zone in dP (xG, yG) is (xP , yP) for some zone (xG, xP , yG, yP) ∈ Z(xG, yG). We define

Ψ(xG,yG)(xP , yP) = Ψ(xG, yG) ∩Ψ(xP , yP).

This is extended to regions in dP (xG, yG) in the natural way. If r ∈ R(dP (xG, yG)) then we
define

Ψ(xG,yG)(r) =
⋃

(xP ,yP)∈r

Ψ(xG,yG)(xP , yP).

The following theorem provides the link between models of an Euler diagram with projections
d and models of its embedded projected diagrams.

Theorem 5.6. Let (U,Ψ) be an interpretation. Let d be an Euler diagram with projections
with underlying diagram dU and let {dP (zU) : zU ∈ Z(dU)} be the set of embedded projected
diagrams. Suppose that (U,Ψ) is a model for d. Then:

(i) (U,Ψ) is a model for dU ;
(ii) for each underlying zone zU ∈ Z(dU), the modified interpretation (U,ΨzU) is a model

for dP (zU), the projected diagram embedded in zU .

Conversely, if (U,Ψ) is an interpretation satisfying (i) and (ii) then (U,Ψ) is a model for d.

Proof. Let (U,Ψ) be an interpretation that is a model for d.

(i) The pair (U,Ψ) is an interpretation of dU .
If zU ∈ Zm(dU) is a missing zone in the underlying diagram then zU is missing in d.
Hence the Missing Zones Condition for dU follows from the Missing Zones Condition
for d.
If zU = (xG, yG) ∈ Z•(dU) then then every zone (xG, xP , yG, yP) in Z(zU) is shaded in
d. Now

Ψ(zU) =
⋃

z∈V Z(Λ(zU))

Ψ(z)

and every zone in V Z(Λ(zU)) is either shaded or missing. It follows that Ψ(zU) = ∅

by the Shaded and Missing Zones Conditions for d. Hence the Shaded Zones Condition
holds for dU .
Therefore (U,Ψ) is a model for dU as required.

(ii) Let zU = (xG, yG) ∈ Z(dU) be a zone of the underlying diagram dU .
Recall from Lemma 5.2 that the map w : Z(zU) → Z(dP (zU)), given by
w(xG, xP , yG, yP) = (xP , yP), defines a natural bijective correspondence between the
zones in the projected diagram embedded in zU and the zones in Z(zU).
Let (U,Ψ(zU)) be the modified interpretation.
Let z ∈ Zm(dP (zU)) be a missing zone in dP (zU). Then the corresponding zone
z′ = w−1(z) = (xG, xP , yG, yP) is a missing projected zone in (zU), z

′ ∈ Zm
P (zU). By

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 39 of 58

the Missing Projected Zones Condition for d, Ψ(z′) = ∅. Since Ψ(z′) = ΨzU (z) by
Definition 5.9, the Missing Zones Condition is satisfied.
Similarly, let z ∈ Z•(dP (zU)) be a shaded zone in dP (zU). Then the corresponding zone
z′ = w−1(z) = (xG, xP , yG, yP) is a shaded zone in (zU), z

′ ∈ Z•(zU). By the Shaded
Zones Condition for d, Ψd(z

′) = ∅. But Ψd(z
′) = ΨzU (z) by Definition 5.9 so the Shaded

Zones Condition is satisfied by the modified interpretation.
Hence the modified interpretation (U,ΨzU) is a model for dP (zU), the projected diagram
embedded in zU .

Conversely let (U,Ψ) be an interpretation satisfying (i) and (ii).
Let z be a shaded zone, z ∈ Z•(d). If z is a zone of the underlying diagram then Ψ(z) = ∅

by the Shaded Zones Condition for dU . If z is not a zone of dU then z = (xG, xP , yG, yP) where
v(z) = (xG, yG) and Λ(z) = xP ∪ yP 6= ∅. In this case Ψ(z) = Ψ(xG,yG)(x, y) by Definition 5.9.
Now (xP , yP) is a shaded zone in dP (xG, yG) so

Ψ(z) = Ψ(xG,yG)(xP , yP) = Ψ(xG, yG) ∩Ψ(xP , yP) = ∅

by the Shaded Zones Condition for dP (xG, yG). Hence the Shaded Zones Condition holds for
d.
Let z be a missing underlying zone, z ∈ Zm(dU). Then Ψ(z) = ∅ by the Missing Zones

Condition for dU . Hence the Missing Underlying Zones Condition for d is satisfied.
Finally, let z be a missing projected zone in the underlying zone (xG, yG), z ∈ Zm

P (xG, yG).
Then z = (xG, xP , yG, yP) where Λ(z) = xP ∪ yP and, as above, Ψ(z) = Ψ(xG,yG)(xP , yP).
Therefore Ψ(z) = ∅ by the Missing Zones Condition for dP (xG, yG). Hence the Missing
Projected Zones Condition for d is satisfied.
Therefore the interpretation (U,Ψ) is a model for d.

Let d and d′ be two semantically equivalent Euler diagrams with projections. It is not
necessarily the case that their underlying diagrams dU and d′U are semantically equivalent.
This is illustrated in Figure 22. The semantics predicate for each of the diagrams d1 and d2 is
Ψ(A) ∩Ψ(B) = ∅ but their underlying diagrams are not semantically equivalent.

1d 2d

A

B

A B

Figure 22. Equivalent diagrams with inequivalent underlying diagrams.

However, for semantically equivalent diagrams where there is no contour that is given in
one diagram and projected in the other, it does follow that their underlying diagrams are
equivalent. Before we prove this, we need the following technical lemma.

Lemma 5.7. Let d be an Euler diagram with projections and let ℓ ∈ L− L(d) be a label
not in d. Then the underlying diagram of d+ ℓ is the diagram obtained from adding ℓ to the
underlying diagram of d,

(d+ ℓ)U = dU + ℓ.

Page 40 of 58 ANDREW FISH AND JOHN TAYLOR

Proof. Adding ℓ to d splits every zone. Hence, after removing all of the projections, ℓ splits
every underlying zone. This is exactly the same as the addition of ℓ to the underlying diagram
dU .

Theorem 5.8. Let d and d′ be two semantically equivalent Euler diagrams with projections
with the property that there is no contour that is given in one diagram and projected in the
other, LG(d) ∩ LP (d

′) = ∅ and LP (d) ∩ LG(d
′) = ∅. Then their underlying Euler diagrams dU

and d′U are semantically equivalent.

Proof. Let d and d′ be semantically equivalent Euler diagrams with projections satisfying
LG(d) ∩ LP (d

′) = ∅ and LP (d) ∩ LG(d
′) = ∅. Suppose, for a contradiction, that dU and d′U

are not semantically equivalent.
We first add (given) contour labels to d and d′ so that they have the same given contour

sets. More precisely, let

d1 = d+ (LG(d
′)− LG(d)) and d′1 = d′ + (LG(d)− LG(d

′)).

By repeated application of Lemma 5.5 (i), d ≡� d1 and d′ ≡� d′1; hence d1 ≡� d′1.
Consider the underlying diagrams of d1 and d′1. By repeated application of Lemma 5.7, we

have

(d1)U = dU + (LG(d
′)− LG(d)) and (d′1)U = d′U + (LG(d)− LG(d

′)).

Hence, by repeated application of Theorem 3.3 (ii) for Euler diagrams, (d1)U ≡� dU and
(d′1)U ≡� d′U . Therefore the underlying diagrams (d1)U and (d′1)U have the same contour set
but are not semantically equivalent. Without loss of generality, there is an unshaded zone z in
(d1)U that is either shaded or missing in (d′1)U ,

z ∈ Z◦((d1)U) and z ∈ Z•((d′1)U) ∪ Zm((d′1)U).

Consider the sets of zones in d1 and d′1 in the underlying zone z, Zd1
(z) and Zd′

1
(z). Since

z is unshaded in the underlying diagram (d1)U , there is a zone z̃ ∈ Zd1
(z) that is unshaded.

However z̃ is either shaded or missing in Zd′
1
(z) depending on whether z is shaded or missing

in (d′1)U .
Since z̃ is unshaded in d1, there exists an interpretation (U,Ψ) that is a model for d1 where

Ψ(z̃) 6= ∅. However by the Shaded Zones and Missing Zones conditions, for every interpretation
(U ′,Ψ′) that is a model for d′1, we have Ψ′(z̃) = ∅. Therefore (U,Ψ) is not a model for for d′1
which contradicts d1 ≡� d′1.
Therefore dU ≡� d′U , as required.

Theorem 5.9. Let d and d′ be two Euler diagrams with projections that have the same
underlying diagram. Then d is semantically equivalent to d′ if and only if, for each zone zU ∈
Z(dU) = Z(d′U) in the underlying diagram dU = d′U , the embedded projected diagrams dP (zU)
and d′P (zU) are semantically equivalent.

Proof. Let d and d′ be two Euler diagrams with projections that have the same underlying
diagram.
Suppose that, for each zone zU ∈ Z(dU) = Z(d′U), the embedded projected diagrams dP (zU)

and d′P (zU) are semantically equivalent. Let (U,Ψ) be an interpretation that is a model for d.
By Theorem 5.6, (U,Ψ) is a model for dU and, for each zone zU ∈ Z(d), (U,ΨzU) is a model

for dP (zU). Hence (U,Ψ) is a model for d′U and, for each zone zU ∈ Z(d′U), (U,Ψ
zU) is a model

for d′P (zU). Therefore (U,Ψ) is a model for d′ by Theorem 5.6.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 41 of 58

Hence d semantically entails d′. Reversing the roles of d and d′ it follows that d′ semantically
entails d also, so d and d′ are semantically equivalent.
Conversely, suppose that there is an underlying zone zU ∈ Z(dU) = Z(d′U) such that the

embedded projected diagrams dP (zU) and d′P (zU) are not semantically equivalent as Euler
diagrams. First note that, if zU were shaded then dP (zU) and d′P (zU) would be completely
shaded and hence semantically equivalent. Therefore we may assume that zU is unshaded.
The various diagrams constructed in the proof are illustrated in Figure 23.

F

E

Uz

F

E

()P Ud z

d

F

E

Uz

F

E

1d

2d

G

G

z

FE

Uz

2d ¢

G

F
E

1d ¢

G

G

E

Uz

d ¢

G

E

()P Ud z¢

z

Figure 23. Illustrating the diagrams in the proof of Theorem 5.9.

We first add contours to the embedded projected diagrams so that they have the same
contour set. More precisely, let d1 = dP (zU) + (L(d′P (zU))− L(dP (zU))) and d′1 = d′P (zU) +
(L(dP (zU))− L(d′P (zU))). Then, by Theorem 3.3 (ii), d1 ≡� dP (zU) and d′1 ≡� d′P (zU).
We also add the corresponding projected contours into the zone zU in d and d′. In other words,

extending our notation to allow the addition of sets of projected contours in an underlying zone,
let

d2 = d+ ((Λd′(zU)− Λd(zU)) → zU) and d′2 = d′ + ((Λd(zU)− Λd′(zU)) → zU).

Thus d ≡� d2 and d′ ≡� d′2, by Lemma 5.5 (ii), and d2 and d′2 have the same intersectors of zU ,
Λd2

(zU) = Λd′
2
(zU). Since we have added the same projected contours to zU in d as we added (as

given contours) to the embedded projected diagram dP (zU), it follows that d1 is the embedded
projected diagram of d2, d1 = (d2)P (zU), and similarly d′1 = (d′2)P (zU). In particular, there are
bijections w : Zd2

(zU) → Z(d1) and w′ : Zd′
2
(zU) → Z(d′1).

Now d1 and d′1 are two Euler diagrams with the same contour sets that are not semantically
equivalent (since dP (zU) 6≡� d′P (zU)). Without loss of generality, there exists an unshaded zone
z in d1 that is shaded or missing in d′1,

z ∈ Z◦(d1) and z ∈ Z•(d′1) ∪ Zm(d′1).

Let z̃ be the corresponding zone to z in zU in d2, z̃ = w−1(z). Since z is unshaded in d1 and the
underlying zone zU is unshaded in (d2)U = dU , it follows that z̃ is unshaded in d2. Hence there
is an interpretation (U,Ψ) that is a model for d2 for which Ψd2

(z̃) 6= ∅. However, in d′2, z̃ is
either shaded or missing (depending on whether z is shaded or missing). For any interpretation
(U ′,Ψ′) that is a model for d′2 we have Ψ′(z̃) = ∅. Hence (U,Ψ) is not a model for d′2, and so

Page 42 of 58 ANDREW FISH AND JOHN TAYLOR

d2 and d′2 are not semantically equivalent. Therefore d and d′ are not semantically equivalent.

5.3. Redundancy in Euler diagrams with projections

In Euler diagrams with projections, removing projected contours is different from removing
given contours. For projected contours, we need the notion of removing a contour from a (single)
underlying zone. For given contours, we need to consider the embedded projected diagrams
that lie in the various twins relative to the given contour. We begin by considering the operation
of removing a projected contour label ℓp from an underlying zone (xG, yG) in definition 5.10.
If the context of ℓp extends beyond the underlying zone (xG, yG) then the projected contour
set remains unchanged. If the context of ℓp does not contain more than (xG, yG) then ℓp is also
removed from the projected contour label set. The definition of the shaded zone set follows
that given for Euler diagrams – see definition 3.2. Redundancy of projected contour labels
is then defined, in definition 5.11, in terms of this operation. Then Theorem 5.10 relates the
redundancy of projected contours within underlying zones to redundancy of given contours in
the corresponding embedded projected diagram.

Definition 5.10. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with pro-
jections, let ℓp ∈ LP (d) be a projected contour label, and let (xG, yG) ∈ ZU (d) be a zone
in the underlying diagram dU that lies in the context of ℓp. Then the Euler diagram

with projections d with ℓp removed from (xG, yG), denoted r
(xG,yG)
ℓp

(d), is the diagram

d′ = 〈LG(d
′), LP (d

′), Z(d′), Z•(d′)〉 defined as follows.
(i) LG(d

′) = LG(d),
(ii) If the context of ℓp comprises only the underlying zone κ(ℓp) = {(xG, yG)}, then

LP (d
′) = LP (d) − {ℓp}; otherwise LP (d

′) = LP (d).
(iii) For all underlying zones zU 6= (xG, yG), Zd′(zU) = Zd(zU) and Z•

d′(zU) = Z•
d(zU).

(iv) Zd′(xG, yG) = {(xG, xP − {ℓp}, yG, yP − {ℓp}) : (xG, xP , yG, yP) ∈ Zd(xG, yG)}.
(v) Z•

d′(xG, yG) = {(xG, xP − {ℓp}, yG, yP − {ℓp}) : r
−1
ℓp,d

(xG, xP − {ℓp}, yG, yP − {ℓp}) ⊆
Z•
d(xG, yG)} where rℓp,d is the restriction to Z(d) of the mapping rℓp : Z → Z given

by (xG, xP , yG, yP) 7→ (xG, xP − {ℓp}, yG, yP − {ℓp}).

Definition 5.11. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with projec-
tions, let ℓp ∈ LP (d) be a projected contour label and let (xG, yG) ∈ ZU (d) be a zone in the
underlying diagram dU that lies in the context of ℓp. Then ℓp is redundant in (xG, yG) if

d ≡� r
(xG,yG)
ℓp

(d).

Theorem 5.10. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with projec-
tions, let ℓp ∈ LP (d) be a projected contour label and let (xG, yG) ∈ ZU (d) be a zone in the
underlying diagram dU that lies in the context of ℓp. Then ℓp is redundant in (xG, yG) if
and only if ℓp is redundant, as a given contour, in the Euler diagram dP (xG, yG) that is the
embedded projected diagram in (xG, yG).

Proof. Let d′ = r
(xG,yG)
ℓp

(d). Then d and d′ have the same underlying diagrams.

By definition, ℓp is redundant in (xG, yG) if and only if d ≡� d′. By Theorem 5.9, this
is the case if and only if dP (zU) ≡� d′P (zU) for every underlying zone zU . However the
embedded projected diagrams of d and d′ are identical in every underlying zone except (xG, yG).
Therefore d is semantically equivalent to d′ if and only if the embedded projected diagrams
dP (xG, yG) and d′P (xG, yG) are semantically equivalent. But d′P (xG, yG) is precisely the diagram

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 43 of 58

dP (xG, yG) with ℓp removed, d′P (xG, yG) = dP (xG, yG)− ℓp Thus dP (xG, yG) and d′P (xG, yG)
are semantically equivalent if and only if ℓp is redundant in dP (xG, yG).

This theorem is illustrated in Figure 24. The left hand side of the figure shows that the
projected contour label F is redundant in the underlying zone ({A,B},∅) of d. The right hand
side shows that F is redundant when viewed as a given contour label in dP ({A,B},∅), the
projected diagram of d embedded in ({A,B},∅).

A B

E

F

G

d

E F

({ , },)Pd A B Æ

Figure 24. Redundant projection in a zone.

We provide a notion of redundancy of a projected contour label within the whole diagram in
Definition 5.12 and show that it is a natural extension of redundancy within underlying zones
in Theorem 5.11.

Definition 5.12. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with projec-
tions and let ℓp ∈ LP (d) be a projected contour label. Then ℓp is redundant in d if and only if
d ≡� rℓp(d) where rℓp(d) denotes the diagram obtained by successively removing ℓp from every
zone in its context in d.

Theorem 5.11. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with projec-
tions, and ℓp ∈ LP (d). Then ℓp is redundant in d if and only if ℓp is redundant in every zone
in the context of ℓp.

Proof. Follows from the application of Theorem 5.10 to every underlying zone within the
context of ℓp.

Recall that, when removing a contour label ℓ from an Euler diagram d (without projections),
informally we may regard each pair of ℓ-twins as combining to form a single zone in d− ℓ.
If the zones in a pair of ℓ-twins represent the ‘same information’ – that is, they are both
shaded or both unshaded – then the resulting ‘combined zone’ in d− ℓ represents the common
information. It may be the case that a pair of ℓ-twins represents different information; that is,
one is shaded and the other is not. In this case, when removing ℓ from d, the resulting zone in
d− ℓ is unshaded – see Figure 5. We can think off this as removing the information that is not
common to both zones in a pair of ℓ-twins.
When considering Euler diagrams with projections, different information may be represented

by different embedded projected diagrams in the two twins. This situation is illustrated in

Page 44 of 58 ANDREW FISH AND JOHN TAYLOR

Figure 25. In d1 the two embedded projected diagrams assert the following:

dP ({A}, {B}) : Ψ(E) ∩Ψ(F) = ∅, Ψ(G) ⊆ Ψ(F), Ψ(E) ∩Ψ(G) = ∅,

dP ({A,B},∅) : Ψ(E) ∩Ψ(F) = ∅.

To form the diagram d1 −B, we wish to retain, within the contour A, the embedded projected
diagram which represents the information common to the two embedded projected diagrams
dP ({A}, {B}) and dP ({A,B},∅). Recall that the semantic coproduct of two Euler diagrams
captures the semantic information common to both diagrams. Hence, the the embedded
projected diagram within the contour A is the semantic coproduct of the two embedded
projected diagrams dP ({A}, {B}) and dP ({A,B},∅). This is shown in diagram d3 in Figure 25.
The same process applied to removingB from the diagram d2 in Figure 25 produces the diagram
d4.

A B

F

G

F

EE

1d

A B

F

G

G

F

EE

2d

A

F

E

3d

A

F

E

G

4d

Figure 25. Different information represented in B-twins

Definition 5.13. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with projec-
tions and let ℓg ∈ LG(d) be a given contour in d. The Euler diagram with projections d with
ℓg removed, rℓg (d) = d− ℓg, is the Euler diagram with projections d′ satisfying the following
conditions.

(i) The underlying diagram of d′ is the underlying diagram of d with ℓg removed, d′U =
dU − ℓg.

(ii) For each zone (xG, yG) in the underlying diagram d′U , (xG, yG) ∈ Z(d′U), the projected
diagram d′P (xG, yG) embedded in (xG, yG) is the semantic coproduct of the embedded
projected diagrams dP (xG ∪ {ℓg}, yG) and dP (xG, yG ∪ {ℓg}),

d′P (xG, yG) = dP (xG ∪ {ℓg}, yG) ⊔ dP (xG, yG ∪ {ℓg}).

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 45 of 58

Example 5.6. Figure 26 shows the removal of the given contour B from the diagram d.
To form d−B, we first form the underlying diagram, dU −B and then consider each pair of
B-twins in turn.

– B-twins ({A}, {B,C}) and ({A,B}, {C}).
Each zone is shaded and contains an empty embedded projected diagram. Hence the
corresponding zone in d−B, ({A}, {C}) = rB({A}, {B,C}) = rB({A,B}, {C}), is also
shaded and contains an empty embedded projected diagram.

– B-twins ({B}, {A,C}) and (∅, {A,B,C}).
The semantic coproduct of the two embedded projected diagrams is the Venn form of the
embedded projected diagram in (∅, {A,B,C}).

– B-twins ({B,C}, {A}) and ({C}, {A,B}).
The embedded projected diagrams in these two zones are semantically equivalent so their
semantic coproduct is the corresponding Venn diagram with contour labels E and F .

– B-twins ({A,B,C},∅) and ({A,C}, {B}).
The embedded projected diagram in ({A,C}, {B}) is the completely shaded diagram with
no contours d•. The embedded projected diagram in ({A,B,C},∅) contains a single
contour F where the zone inside F is shaded. The semantic coproduct of these two
diagrams is the second diagram (with single contour F).

The diagram d′ on the right in Figure 26 is semantically equivalent to d−B. To form d′ we
have replaced each of the embedded projected diagrams in d−B with its normal form. Our
definition of the semantic coproduct produces a Venn diagram although the corresponding
normal form is often easier to ‘read’. Thus the semantically equivalent diagram d′ is easier to
read than the diagram d−B that arises from removing B from d.

A B

F

G

F

E

E

F F

G

E

F

C

d

A

FE

C

d B-

F

FE

G

A

C

d ¢

F

FE

F

G

Figure 26. Removing a given contour

Definition 5.14. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with pro-
jections and let ℓg ∈ LG(d) be a given contour label in d. Then ℓg is redundant in d if
d ≡� rℓg (d) = d− ℓg.

Example 5.7. In Figure 27, the contour C is redundant in the diagram d. The diagram
d− C is obtained in a similar manner to that described in example 5.6. When forming d− C,
the information in each pair of C-twins (shading and embedded projected diagrams) is the
same in each case. As a result, no information is lost when removing C, so d ≡� d− C.

Page 46 of 58 ANDREW FISH AND JOHN TAYLOR

We can see this more precisely by considering each C-twin in turn. For example, consider
the C-twins ({A,C}, {B}) and ({A}, {B,C}). Let (U,Ψ) be an interpretation that is a model
for d. Then we have

Ψ(A) ∩Ψ(B) ∩Ψ(C) ∩Ψ(F) ∩Ψ(G) = ∅

from the Shaded Zones Condition and

Ψ(A) ∩Ψ(B) ∩Ψ(C) ∩Ψ(F) ∩Ψ(G) = ∅

from the Missing Projected Zones Condition. The conjunction of these is equivalent to

Ψ(A) ∩Ψ(B) ∩Ψ(F) ∩Ψ(G) = ∅

which is part of the Shaded Zones Condition for d− C.

A B

F

G

F

FE

C

G

F
E

FE

A B

F

G

d d C-

Figure 27. A redundant given contour

Theorem 5.12. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with pro-
jections, and let ℓg be a given contour in d. Then ℓg is redundant in d if and only
if

(i) ℓg is a splitting label for the underlying diagram dU , and
(ii) for each pair of ℓg-twins in the underlying diagram, z1 and z2, the embedded projected

diagrams dP (z1) and dP (z2) have the same normal form (as Euler diagrams).

Proof. Suppose that ℓg is redundant in d. Then d ≡� d− ℓg by definition so the underlying
diagrams of d and d− ℓg are semantically equivalent by Theorem 5.8, dU ≡� (d− ℓg)U .
However, the underlying diagram of d− ℓg is dU − ℓg, so dU ≡� dU − ℓg. Hence lg is redundant
in dU . Therefore, by Theorem 4.3, ℓg is a splitting label for dU so (i) holds.
Suppose that there is a pair of ℓg-twins, z1 and z2, in d such that the embedded projected

diagrams dP (z1) and dP (z2) do not have the same normal form. Then dP (z1) 6≡� dP (z2) by
Theorem 4.8. Without loss of generality, we may assume that there is a zone which is unshaded
in dP (z1) but is shaded or missing in dP (z2). Since the semantic coproduct of two diagrams
contains only the shading that is common to both diagrams (once they have been arranged in
Venn form with the same contour set), it follows that dP (z2) is not semantically equivalent to
the coproduct dP (z1) ⊔ dP (z2).

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 47 of 58

By definition, dP (z1) ⊔ dP (z2) is the projected diagram embedded in z in d− ℓg, where
z = rℓg (z1) = rℓg (z2). The schematic diagrams involved in this part of the proof are illustrated
in Figure 28. The top ‘row’ of the diagram illustrates zones in the various Euler diagrams
with projections and the bottom ‘row’ gives the (symbolic representation of the) embedded
projected diagrams within those zones.
Add the contour ℓg back into d− ℓg to give (d− ℓg) + ℓg. The underlying diagrams of d

and (d− ℓg) + ℓg are semantically equivalent since ℓg is a splitting label for dU by part (i).
These underlying diagrams also have the same zone sets; hence they are the same diagram.
By construction, the projected diagram embedded in both z1 and z2 in (d− ℓg) + ℓg is the
semantic coproduct dP (z1) ⊔ dP (z2). Thus the projected diagrams embedded in z2 in d and
(d− ℓg) + ℓg are not semantically equivalent. Hence, by Theorem 5.9, d and (d− ℓg) + ℓg are
not semantically equivalent. However, d− ℓg is semantically equivalent to (d− ℓg) + ℓg by
Lemma 5.5. Therefore d and d− ℓg are not semantically equivalent, which is a contradiction.
Thus part (ii) holds.

1z 2z

gld

1()Pd z 2()Pd z

gd l-

z

()g gd l l- +
gl

1z 2z

2()Pd z1()Pd z 2()Pd z1()Pd z

Figure 28. Illustrating the diagrams in the proof of Theorem 5.12

Conversely, suppose that ℓg is a splitting label for the underlying diagram dU , and for each
pair of ℓg-twins in the underlying diagram, z1 and z2, the embedded projected diagrams dP (z1)
and dP (z2) have the same normal form (as Euler diagrams). Let (U,Ψ) be an interpretation
that is a model for d. Then, by Theorem 5.6, (U,Ψ) is a model for the underlying diagram dU .
Since ℓg is a splitting label for dU , it is redundant in dU by Theorem 4.3. Therefore (U,Ψ) is
a model for dU − ℓg = (d− ℓg)U .
Let z1 and z2 be a pair of ℓg-twins in dU , say z1 = (xG ∪ {ℓg}, yG) and z2 = (xG, yG ∪ {ℓg})

where z = (xG, yG) is a zone in the underlying diagram dU − ℓg. By Theorem 5.6, the modified
interpretation (U,Ψz1) is a model for dP (z1) and the modified interpretation (U,Ψz2) is a model
for dP (z2).
Since dP (z1) and dP (z2) have the same normal form (as Euler diagrams), they are

semantically equivalent and hence they are both semantically equivalent to their semantic
coproduct. This semantic coproduct is the projected diagram embedded in the zone z of d− ℓg,
(d− ℓg)P (z). Hence the modified interpretations (U,Ψz1) and (U,Ψz2) are each models for
(d− ℓg)P (z).
By adding contours and missing zones where necessary, we may assume that dP (z1) and

dP (z2) are Venn diagrams with the same contour label sets. (Strictly, we replace dP (z1) and
dP (z2) with semantically equivalent diagrams in Venn form and with the same contour label
set.) This means that we may assume that dP (z1) and dP (z2) and their semantic coproduct
(d− ℓg)P (z) are all the same diagram. Now for any zone z∗ in this diagram,

Ψz1(z∗) = Ψ(z∗) ∩Ψ(ℓg) and Ψz2(z∗) = Ψ(z∗) ∩Ψ(ℓg).

Page 48 of 58 ANDREW FISH AND JOHN TAYLOR

Hence Ψz1(z∗) ∪Ψz2(z∗) = Ψ(z∗). If z∗ is a shaded zone of (d− ℓg)P (z) then Ψz1(z∗) = ∅

and Ψz2(z∗) = ∅ since (U,Ψz1) is a model for dP (z1) and (U,Ψz2) is a model for dP (z2). It
follows that Ψ(z∗) = ∅ for all shaded zones z∗ of (d− ℓg)P (z). Therefore (U,Ψz) is a model
for (d− ℓg)P (z).
We have shown that (U,Ψ) is a model for (d− ℓg)U and, for each zone z of (d− ℓg)U , the

modified interpretation (U,Ψz) is a model for (d− ℓg)P (z). Hence, by Theorem 5.6, (U,Ψ) is
a model for d− ℓg.
Therefore every model for d is a model for d− ℓg, and so ℓg is redundant in d.

Finally, we provide the definition of the normal form of an Euler diagram with projections
in definition 5.15. Then we give an algorithm for computing the normal form of any Euler
diagram with projections and show that the normal form of any Euler diagram with projections
is semantically equivalent to the original diagram in Theorem 5.13. We need to be careful with
the definition of the normal form since it is not necessarily the case that a given contour which is
redundant in the underlying diagram dU is redundant in d as the following example illustrates.

Example 5.8. Consider the given contour label C in the Euler diagram with projections
d in Figure 29. In the underlying diagram dU , the contour C is redundant. However C is not
redundant in d because the embedded projected diagrams in the C-twins ({C}, {A,B}) and
(∅, {A,B,C}) do not have the same normal form.

F EF

E

A B

C

Udd d C-

A B

C

A B

Figure 29. Redundant contour in dU not redundant in d

In fact the diagram d in Figure 29 has no redundant contours. To obtain the normal form
for d we will remove the shaded zones to obtain the diagram dN shown in Figure 30. This
figure also shows that normal form of the underlying diagram (dU)

N is not the same as the
underlying diagram of the normal form (dN)U . Since C is redundant in dU , it does not appear
in the normal form (dU)

N . However C is not redundant in d, so C appears in the normal form
dN and hence also in its underlying diagram (dN)U .

Definition 5.15. Let d = 〈LG(d), LP (d), Z(d), Z•(d)〉 be an Euler diagram with projec-
tions. Then d is in normal form if either it contains no contours or

(i) the underlying diagram dU has no shaded zones outside nomads: if z ∈ Z•(dNU) then
z ∈ ZinN

(dU);
(ii) if the underlying diagram dU has any nomads, these are exiled; that is, if N (dU) 6= ∅

then Z•(dU) = {(N (dU), L(dU)−N (dU))}.
(iii) for each underlying zone z in Z(dU), the embedded projected diagram dP (z) is in normal

form as an Euler diagram.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 49 of 58

A

B

C

()N
Ud ()N

Ud

A

B

A
B

C

F
E

F

E

Nd

Figure 30. The normal form of d in Figure 29

(iv) if a given contour ℓg is a splitting label for the underlying diagram dU , then there
exists a pair of ℓg-twins in dU , za and zb, with different embedded projected diagrams,
dP (za) 6= dP (zb).

Theorem 5.13. Let d be an Euler diagram with projections and let dN be the Euler
diagram with projections that is obtained from d by applying the following steps.

(1) Replace d with diagram d1 which has the same underlying diagram as d and is such that,
for each underlying zone z, its embedded projected diagram (d1)P (z) is the diagram
dNP (z) which is the normal form (as an Euler diagram) of dP (z).

(2) In the underlying diagram of d1, remove any shaded zones that do not lie within a
nomad; that is, replace (d1)U with the diagram obtained by removing each zone in
Z•
outN

((d1)U). (From step (1), it follows that the embedded projected diagram in any
shaded zone is the diagram d• which is shaded and contains no contours.) For any
unshaded zones of the underlying diagram, the embedded projected diagram remains
unchanged.
Call the resulting diagram d2.

(3) Exile any nomads in the underlying diagram of d2, giving diagram d3.
As in step (2), the embedded projected diagrams (outside nomads) in d3 are the same
as the embedded projected diagrams in d2.

(4) Consider each splitting label ℓ in the underlying diagram of d3 in turn. There are two
possibilities.
(a) For every pair of ℓ-twins, za and zb say, in (d3)U the embedded projected diagrams

are equal, (d3)P (za) = (d3)P (zb).
(b) There is a pair of ℓ-twins, za and zb say, in (d3)U for which the embedded projected

diagrams are not equal, (d3)P (za) 6= (d3)P (zb).
Remove from d3 all those splitting labels satisfying the condition in (a). The resulting
diagram is denoted dN

Then dN is an Euler diagram with projections in normal form, and d is semantically equivalent
to dN .

Proof. Firstly, it is clear by construction that dN is in normal form.
It follows from Theorem 5.9 that d and d1 are semantically equivalent. Note that, in forming

d1, any projected contours in shaded underlying zones are removed since the normal form of
a wholly shaded Euler diagram has no contours. By Theorem 4.7, the underlying diagrams of
d2 and d1 are semantically equivalent. Also, for any underlying zone z ∈ Z(d2), the embedded
projected diagrams (d2)P (z) and (d1)P (z) are equal. Therefore d2 is semantically equivalent

Page 50 of 58 ANDREW FISH AND JOHN TAYLOR

to d1 ; this follows from Theorem 5.9 together with the observation that removing a shaded
underlying zone does not change the semantics predicate as that zone becomes a missing
underlying zone.
Similarly, exiling the nomads in the underlying diagram of d2 does not alter any embedded

projected diagrams and produces a diagram d3 such that (d2)U ≡� (d3)U . Hence d3 is
semantically equivalent to d2.
In step (5) a splitting label ℓ in the underlying diagram of d3 is removed from d3 only when

it is redundant in d3, by Theorem 5.12. Therefore dN is semantically equivalent to d3.
Hence dN is semantically equivalent to d.

Figure 31 illustrates the conversion of an Euler diagram with projections into an Euler
diagram with projections in normal form via the steps in Theorem 5.13. Within each of the
underlying zones of the top Euler diagram with projections, the projected contours are all
converted to be in Euler diagram normal form (Steps (1) and (2) of Theorem 5.13), as shown by
the semantically equivalent diagram given in the middle of the figure. This enables redundancy
of the given contours to be more easily observed within the Euler diagram with projections. Any
such redundant given contours can then be removed from the Euler diagram with projections,
shaded underlying zones containing no projections can be removed, and given contour nomads
can be exiled. We obtain the diagram at the bottom of the figure.

6. Related work

This paper is a significant extension and improvement over the conference paper [26] which
introduced the normal form for the EDS system only. In [47] model based semantics were
provided for Spider diagrams, together with a set of sound and complete inference rules. The
effect of variation of inference rules on the provision of shortest proofs within ED-systems
was investigated in [74], utilising an A∗-based algorithm. Swoboda and Allwein [76] present a
graph-transformation based method for the verification of heterogeneous first order logic and
Euler/Venn proofs.
The distinction between the (drawn) concrete level and the abstract level was considered

in [43]. The common approach in this area is to develop reasoning systems which act at
the abstract level; this brings with it associated problems of the generation of a concrete
diagrams from abstract diagrams (and subsequently the challenge of the dynamic generation
of diagrams which differ by some transformation, whilst preserving the mental map - considered
for graphs by Eades et al. [21].). Alternative equivalent abstractions for EDs were provided
in [24], including the consideration of diagrams as sequences of curve additions instead of
as static objects (using a set of zones). Recently, a new graph-based abstraction for Spider
diagrams was also introduced, in [7], together with a translation of the algebraic reasoning
system into a graph transformation system.
Grunbaum [32] and Moore [64] provided means of constructing families of Venn diagrams.

In [63] they produce exhaustive lists of simple monotone Venn diagrams that have some
symmetry (non-trivial isometry) when drawn on the sphere. Hamburger et al. [35] linked
the existence of the extensibility of Venn diagrams to the existence of Hamiltonian cycles in
their dual graphs. Johnson and Pollack [56] link the complexity of drawing Venn diagrams
with the problem of hypergraph planarity. Bertault and Eades [6] phrase the question
of ED generation in terms of drawing hypergraphs in the subset standard. The problem
of ED generation from an abstract diagram or set system has been investigated, with
foundational graph-based solutions presented by Flower et al. [29] and Chow [10]. Variations
of the wellformedness conditions imposed (e.g. relaxing conditions such as: there are finite
numbers of transverse intersection points) provides problem variations. The conditions imposed

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 51 of 58

A

C

E F

A

W

B
V

A C

B

E

F

G

A

C

E F

A

B

A

W

B

U
V

A

C

E F

A

B

A

W

B

U
V

A

C

E F

Figure 31. Obtaining the normal form.

were natural topological conditions, originally imposed to aid in human comprehension and
reasoning tasks; there have been investigations into the effect on user comprehension of
relaxation of such wellformedness conditions in [27]. Extensions of the methodology for ED
generation to admit further variations of conditions imposed have been developed in [72]
and [69], for example.

Page 52 of 58 ANDREW FISH AND JOHN TAYLOR

Cohn et al. have developed logical calculi for representing and reasoning with qualitative
spatial relations over regions; a survey was provided in [11]. Egenhofer [22] considered the
equivalence of topological relations, and computational problems involved in developing an
inference system which takes basic topological relations such as “A overlaps B” and “B contains
C” between simply connected regions in the plane, have been extensively investigated [62] in
relation to geographic information systems.
Barwise and Echemendy [3, 4] consider heterogeneous reasoning with Hyperproof, permitting

and even requiring logical reasoning with a mix of symbolic and diagrammatic logics. Other
diagrammatic systems include [37, 49, 50]. Conceptual graphs from Sowa [1], based on the
works of Peirce, provides a distinct form of diagrammatic logic. The ALC description logic has
been converted into a diagrammatic logic in [15]. Conceptual Spider diagrams [14] propose a
system utilising a combination of the features from Spider diagrams and Conceptual graphs.

6.1. Variations on the proposed system

Compound diagrams are built from unitary diagrams using logical connectives (disjunction,
conjunction and possibly negation). For example, d1 ∨ (d2 ∧ ¬d3) is a compound diagram,
where each di is a unitary or compound diagram. Two normal forms for compound diagrams,
called ‘literal conjunctive/disjunctive normal form’, were introduced in [73] to obtain a
completeness proof for a system of compound Euler diagrams with shading. These normal
forms are akin to conjunctive and disjunctive normal forms in propositional logic.
John’s thesis [54] provided a foundation for this work, introducing some basic concepts such

as nomads; in [55] metrics to try to capture a nottion of clutter in EDs were provided together
with some empirical justification. In [44], a Spider diagram reasoning system was introduced,
viewable as a precursor to [47]. A notion of ‘border contours’ for Venn diagrams was introduced
in [46]. Our definition of splitting label essentially extends the notion of border contour to Euler
diagrams.
Previously [30, 31, 52, 53, 54], abstract Euler diagrams with projections have been defined

by modifying the definition of abstract Euler diagrams via the introduction of a partition of
the contour label set into given and projected contours. However, with this approach there is a
mismatch between the syntax and semantics. For example, the zone inside contour G in d2 in
Figure 32 is described as ({B,G}, {A,E, F}) in the usual way. Semantically, this zone denotes
the set A ∩ B ∩ F ∩G but the syntactic description also includes the contour E. A consequence
of this mismatch is that one then needs to modify how an interpretation (U,Ψ) interprets zones
relative to the diagram d. To avoid this issue, we have taken a different approach, defining a zone
z by describing separately the given and projected contour labels that contain z and exclude
z, where the excluding projected contours are only those required by the semantics. Thus the
zone inside contour G in d2 in Figure 32 is described as a quadruple ({B}, {G}, {A}, {F})
which says that this zone is inside given contour B and projected contour G and is outside
given contour A and projected contour F .
In [28], nested Euler diagrams were defined, making precise the notion of embedding a

diagram d2 within a zone z∗ of another diagram d1, denoted d2
z⋆

−→ d1. This is closely related to
the embedded projected diagrams: each embedded projected diagram dP (xG, yG) is embedded

in the zone (xG, yG) of the underlying diagram dU , dP (xG, yG)
(xG,yG)
−−−−−→ dU , except that the

embedding relation does not capture the distinction between given and projected contours.

6.2. Variations to syntax and semantics

We have chosen to draw our Euler diagrams with projections so that each (drawn) projected
contour lies within a zone of the underlying diagram. However, there may be more than one
way of drawing a given (abstract) diagram. For example, both of the diagrams in Figure 32

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 53 of 58

have the same abstract syntactic description. Note that the diagram d2 repeats the diagram
shown in Figure 18. In d1, the distinct projected contours have different labels so that each
projected contour label is represented by a single drawn contour in the diagram.

1d 2d

A

E

B

F

G

E

E

A B

F

G

E

F

Figure 32. Different drawings of an Euler diagram with projections.

In [54], John distinguished two kinds of abstract syntax which he calls the ‘course-grained’
and ‘fine-grained’ abstract syntax. His ‘fine-grained’ abstract syntax distinguishes between
the diagrams d1 and d2 in Figure 32 whereas his ‘course-grained’ abstract syntax does not.
Our abstract syntax follows John’s course-grained version (although we have defined zones
differently to John).
Our convention for drawing diagrams, where each projected contour is drawn within a zone

of the underlying diagram, can lead to certain issues. Consider, for example, the Euler diagram
with projections d, with four zones, defined as follows.

– LG(d) = {A,B}
– LP (d) = {E}
– Z(d) = {(∅,∅, {A,B}, {E}), (∅, {E}, {A,B},∅), ({A}, {E}, {B},∅), ({B}, {E}, {A},∅)}
– Z•(d) = {(∅, {E}, {A,B},∅)}.

The context of the projected contour label E is the whole underlying diagram, κ(E) =
{(∅, {A,B}), ({A}, {B}), ({B}, {A})}. The diagram d1 in Figure 33 gives a drawn representa-
tion of d.
If we attempt to draw d so that each projected contour is drawn within a zone of the

underlying diagram, we obtain the diagram d2 in Figure 33. Here there are three projected
contours labelled E, two of which coincide with the given contours labelled A and B

respectively. We may regard d2 and not well-formed (under a sensible definition of ‘well-formed’
for drawn Euler diagrams with projections) since it is not possible to tell that E is a projected
contour when when it coincides with the given contours A or B. The diagram d3 is semantically
equivalent to d1 and d2 and each projected contour is contained within a zone of the underlying
diagram. However d3 represents a syntactically different abstract diagram to d1 and d2.
For Euler diagrams without projections, there are alternative ways of defining the semantics

predicate. In particular, the Missing Zones Condition (definition 2.5) is known to be equivalent
(see [47], for example) to the ‘Plane Tiling Condition’ which states that all elements lie within
sets denoted by zones of d:

⋃

z∈Z(d)

Ψ(z) = U.

In [54], John uses this Plane Tiling Condition to define the semantics predicate for Euler
diagrams with projections.

Page 54 of 58 ANDREW FISH AND JOHN TAYLOR

A B
E A B

E

EE

1d 2d

A B

E

EE

3d

Figure 33. Drawing Euler diagrams with projections.

Let d be an Euler diagram with projections. The Plane Tiling Condition for the underlying
diagram dU says that the union of sets represented by the underlying zones equals the universe

⋃

z∈ZU (d)

Ψ(z) = U

and this is equivalent to our Missing Underlying Zones condition.
We explore this connection for Euler diagrams with projections referring back to the diagram

d in Figure 21 and Table 5.2 which listed the zones of d and their interpretations. The Plane
Tiling Condition for d asserts that the union of the sets in the fourth column of Table 5.2 is
equal to the universe U . However, for arbitrary sets, the union of the sets in the fourth column
of Table 5.2 – the interpretations of the zones in d – is not equal to the union of sets in the
second column – the interpretations of the underlying zones. This is because the sets

A ∩ B ∩ C ∩ E ∩ F and A ∩ B ∩ C ∩ F ∩G

are missing from the right-hand column. However these are precisely the sets that are asserted
to be empty by the Missing Projected Zones condition.
Thus the Plane Tiling Condition for d makes the same assertion as the two Missing Zones

Conditions (for underlying and projected zones). For a general Euler diagram with projections,
this is captured by the following theorem.

Theorem 6.1. Let d be an Euler diagram with projections. The Missing Zones Condition
for d is equivalent to the Plane Tiling Condition for d which says that all elements lie within
sets denoted by zones of d:

⋃

z∈Z(d)

Ψ(z) = U.

7. Conclusion

We have provided normal forms for two ED systems, Euler diagrams with shading (EDS)
and Euler diagrams with projections (EDP). This provides a unique representative amongst
the classes of semantically equivalent diagrams, and for each system we provide a procedure for
transforming any given diagram into its normal form, thereby permitting an easy equivalence
check. Along the way we develop general machinery which will be useful to the field, and
observe that even conservative system extensions require a revisiting of all notions of syntactic
and semantic redundancy due to potential interactions.
In a little more detail, we explore the syntax and semantics of diagram manipulation:

Theorem 3.2 shows the independence of the order of contour removal at the syntactic level,
Theorem 3.3 provides results on inference and equivalence of manipulation rules in EDS and

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 55 of 58

Theorem 3.4 shows the semantic equivalence of any diagram d with d′, which is d with
its nomads exiled. We introduce the notion of semantic coproduct to capture the idea of
the common information contained in two diagrams; Theorem 3.5 shows that the semantic
coproduct satisfies a ‘universal property’ with respect to semantic entailment which explains
the ‘semantic coproduct’ terminology. Theorem 4.3 shows the equivalence between the syntactic
and semantic conditions to capture redundancy of contours within EDS. Theorems 4.7 and 4.8
provide the normal form for the system and show equivalence results.
Introducing projections allows greater choice for representing information within the system

but complicates the process of obtaining a normal form. We introduce a new syntax for
EDPs that allows a more natural semantics. Theorems 5.6-5.9 relate equivalence of EDPs
to equivalence of sets of EDSs (relating to the underlying Euler diagram and its embedded
projected diagrams). Then Theorems 5.10-5.12 identify redundancies of projected contours.
Finally, Theorem 5.13 provides the required normal form for EDP, together with results of
semantic equivalences. As illustrated in Figure 31, the normal form can afford a considerable
syntactic simplification in the representation of information in EDP.
As we noted in Section 1, Euler diagrams form the basis for a variety of diagrammatic

notations that include additional syntax to enrich the system and increase expressiveness. The
work of this paper form a basis for a more systematic study of equivalences in Euler diagram
based systems. The next steps in this direction are to introduce graph based features into the
notation and extend the ideas of this paper to Spider diagrams. Adding syntax to represent
existence of elements introduces further complexity; for example, a syntactic description of
the semantic coproduct is somewhat less obvious. Diagrammatic systems that are used in
software specification and ontology modelling also contain syntax for relations between sets and
a longer term goal of this work is to provide a general framework for considering diagrammatic
equivalences in these systems.

Acknowledgements. The authors would like to thank Chris John, whose PhD thesis
provided foundation and motivation for this work, as well as John Howse, who contributed to
the supervisory team of Chris John, and commented on drafts of the paper.

References

1. Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole
Publishing Co., Pacific Grove, CA., 2000.

2. James F Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–
843, 1983.

3. J. Barwise and J. Etchemendy. Hyperproof. CSLI Press, 1994.
4. J. Barwise and J. Etchemendy. Visual information and valid reasoning. In G. Allwein and J. Barwise,

editors, Logical Reasoning with Diagrams, pages 3–25. Oxford University Press, 1996.
5. J. Barwise and E. Hammer. Diagrams and the concept of logical system. In G. Allwein and J. Barwise,

editors, Logical Reasoning with Diagrams. Oxford University Press, 1996.
6. F. Bertault and P. Eades. Drawing hypergraphs in the subset standard. In Proceedings of the 8th

International Symposium on Graph Drawing, volume 1984 of LNCS, pages 164 – 169. Springer Verlag,
2000.

7. P. Bottoni and A. Fish and F. Parisi Presicce. Spider graphs: a graph transformation system for spider
diagrams. Software & Systems Modeling, 2013.

8. P. Bottoni and A. Fish. Extending spider diagrams for policy definition. Journal of Visual Languages &
Computing, 24(3):169–191, 2013.

9. P. Chapman, G. Stapleton, and A. Delaney. On the expressiveness of second-order spider diagrams. Journal
of Visual Languages and Computing, 24:327–349, 2013.

10. Stirling C. Chow. Generating and Drawing Area-Proportional Euler and Venn Diagrams. PhD thesis,
University of Victoria, 2007.

11. Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts. Qualitative spatial
representation and reasoning with the region connection calculus. Geoinformatica, 1(3):275–316, October
1997.

12. C. Collins, G. Penn, and S. Carpendale. Bubble sets:revealing set relations with isocontours over existing
visualisations. IEEE Trans Visualisation and Computer Graphics, 15(6):1009–1016, 2009.

Page 56 of 58 ANDREW FISH AND JOHN TAYLOR

13. Gennaro Cordasco, Rosario De Chiara, and Andrew Fish. Interactive visual classification with euler
diagrams. In Proc. VL/HCC 2009, pages 185–192. IEEE CS, 2009.

14. F. Dau and A. Fish. Conceptual spider diagrams. In Proc. ICCS 2008, volume 5113 of LNCS, pages
104–118. Springer, 2008.

15. Frithjof Dau and Peter Eklund. A diagrammatic reasoning system for the description logic alc. J. Vis.
Lang. Comput., 19(5):539–573, October 2008.

16. Frithjof Dau and Andrew Fish. Conceptual spider diagrams. In 16th International Conference on
Conceptual Structures, volume 5113 of LNCS, pages 104–118. Springer, 2008.

17. R. DeChiara, U. Erra, and V. Scarano. VennFS: A Venn diagram file manager. In Proceedings of
Information Visualisation, pages 120–126. IEEE Computer Society, 2003.

18. A. Delaney and G Stapleton. Spider diagrams of order. In Proceedings of the VLL 2007 workshop on
Visual Languages and Logic, pages 27–39, Coeur d’Alène, Idaho, USA, 2007.

19. A. Delaney, G. Stapleton, J. Taylor, and S. Thompson. Fragments of spider diagrams of order and their
relative expressiveness. In Proceedings of 6th International Conference on the Theory and Application of
Diagrams, volume 6170 of LNAI, pages 69–83, Portland, Oregon, USA, 2010. Springer-Verlag.

20. A. Delaney, J. Taylor, and S. Thompson. Spider diagrams of order and a hierarchy of star-free regular
languages. In Proceedings of 5th International Conference on the Theory and Application of Diagrams,
volume 5223 of LNAI, pages 172–187, Herrsching, Germany, 2008. Springer-Verlag.

21. P. Eades, W. Lai, K. Misue, and K. Sugiyama. Layout adjustment and the mental map. Visual Languages
and Computing, 6:183–210, 1995.

22. M. Eigenhofer and R. Franzosa. On the equivalence of topological relations. International Journal of
Geographical Information Systems, 9(2):133–152, 1995.

23. L. Euler. Lettres a une princesse dallemagne sur divers sujets de physique et de philosophie. Letters,
2:102–108, 1775. Berne, Socit Typographique.

24. A. Fish and J. Flower. Abstractions of Euler diagrams. In Proceedings of Euler Diagrams 2004, Brighton,
UK, volume 134 of ENTCS, pages 77–101, 2005.

25. A. Fish, J. Flower, and J. Howse. The semantics of augmented constraint diagrams. Journal of Visual
Languages and Computing, 16:541–573, 2005.

26. A. Fish, C. John, and J. Taylor. A normal form for euler diagrams with shading. In Diagrammatic
Representation and Inference, 5th International Conference, Diagrams 2008, Herrsching, Germany,
September 19-21, 2008., volume 5223 of Lecture Notes in Computer Science, pages 206–221. Springer,
2008.

27. A. Fish, B. Khazaei, and C. Roast. User comprehension of Euler diagrams. Journal of Visual Language &
Computing, 22(5):340–354, 2011.

28. J. Flower, J. Howse, and J. Taylor. Nesting in Euler diagrams: syntax, semantics and construction. Software
and Systems Modelling, 3:55–67, March 2004.

29. Jean Flower, Andrew Fish, and John Howse. Euler diagram generation. Visual Languages and Computing,
19(6):675–694, 2008.

30. J. Gil, J. Howse, S. Kent, and J. Taylor. Projections in Venn-Euler diagrams. In Proc. IEEE Symposium
on Visual Languages, pages 119–126. IEEE Computer Society Press, September 2000.

31. J. Gil, J. Howse, and E. Tulchinsky. Positive semantics of projections. Journal of Visual Languages and
Computing, 13(2):197–227, April 2001.

32. B. Grunbaum. The construction of Venn diagrams. The College Mathematics Journal, 15(3):238–247,
1984.

33. C. Gurr. Effective diagrammatic communication: Syntactic, semantic and pragmatic issues. Journal of
Visual Languages and Computing, 10(4):317–342, 1999.

34. C. Gurr and K. Tourlas. Towards the principled design of software engineering diagrams. In Proceedings
of 22nd International Conference on Software Engineering, pages 509–518. ACM Press, 2000.

35. P. Hamburger and R. E. Pippert. Simple, reducible Venn diagrams on five curves and Hamiltonian cycles.
Geometriae Dedicata, 68(3):245–262, 1997.

36. E. Hammer. Logic and Visual Information. CSLI Publications, 1995.
37. E. Hammer and N. Danner. Towards a model theory of Venn diagrams. Journal of Philosophical Logic,

25(4):463–482, 1996.
38. E. Hammer and S. J. Shin. Euler’s visual logic. History and Philosophy of Logic, pages 1–29, 1998.
39. D. Harel. On visual formalisms. In J. Glasgow, N. H. Narayan, and B. Chandrasekaran, editors,

Diagrammatic Reasoning, pages 235–271. MIT Press, 1998.
40. D. Harel and H.A. Kahana. On statecharts with overlapping. ACM Trans. on Software Engineering

Method., 1(4):399–421, 1992.
41. M. Hegarty. Diagrams in the mind and in the world: Relations between internal and external visualizations.

In Proceedings of 3rd International Conference on the Theory and Application of Diagrams, volume 2980
of LNAI, pages 1–13, Cambridge, UK, 2004. Springer.

42. J. Howse, F. Molina, S-J. Shin, and J. Taylor. Type-syntax and token-syntax in diagrammatic systems.
In Proceedings of 2nd International Conference on Formal Ontology in Information Systems, Maine, USA,
pages 174–185. ACM Press, 2001.

43. J. Howse, F. Molina, S-J. Shin, and J. Taylor. On diagram tokens and types. In Proceedings of 2nd
International Conference on the Theory and Application of Diagrams, pages 146–160, Georgia, USA, April
2002. Springer.

EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS Page 57 of 58

44. J. Howse, F. Molina, J. Taylor, S. Kent, and J. Gil. Spider diagrams: A diagrammatic reasoning system.
Journal of Visual Languages and Computing, 12(3):299–324, June 2001.

45. J. Howse and S. Schuman. Precise visual modelling. Journal of Software and Systems Modeling, 4:310–325,
2005.

46. J. Howse, G. Stapleton, J. Flower, and J. Taylor. Corresponding regions in Euler diagrams. In Proceedings
of 2nd International Conference on the Theory and Application of Diagrams, pages 76–90, Georgia, USA,
April 2002. Springer.

47. J. Howse, G. Stapleton, and J. Taylor. Spider diagrams. LMS Journal of Computation and Mathematics,
8:145–194, 2005.

48. John Howse, Gem Stapleton, Kerry Taylor, and Peter Chapman. Visualizing ontologies: A case study.
In The Semantic Web ISWC 2011, volume 7031 of Lecture Notes in Computer Science, pages 257–272.
Springer, 2011.

49. M. Jamnik. Mathematical Reasoning with Diagrams. CSLI, 2001.
50. M. Jamnik, A. Bundy, and I. Green. Automation of diagrammatic reasoning. In Proceedings of the 15th

International Joint Conference on Artificial Intelligence, volume 1, pages 528–533. Morgan Kaufmann
Publishers, 1997.

51. J.F.Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley., Reading,
MA, 1984.

52. C. John. Reasoning with projected contours. In Proceedings of 3rd International Conference on the Theory
and Application of Diagrams, volume 2980 of LNAI, pages 147–150, Cambridge, UK, 2004. Springer.

53. C. John. Projected contours in Euler diagrams. In Euler Diagrams 2004, volume 134 of ENTCS, pages
103–126, 2005.

54. C. John. Measuring and Reducing Clutter in Spider Diagrams with Projections. PhD thesis, University
of Brighton, 2006.

55. Chris John, Andrew Fish, John Howse, and John Taylor. Exploring the notion of clutter in Euler diagrams.
In Proceedings of 4th International Conference on the Theory and Application of Diagrams, volume 4045
of LNAI, pages 267–282, Stanford, USA, 2006. Springer.

56. D.S. Johnson and H. O. Pollak. Hypergraph planarity and the complexity of drawing Venn diagrams.
Journal of Graph Theory, 11(3):309–325, 1987.

57. M. Karnaugh. The map method for synthesis of combinational logic circuits. American Institute of
Electrical Engineers, Part I: Communication and Electronics, Transactions of the, 72(5):593–599, 1953.

58. S. Kent. Constraint diagrams: Visualizing invariants in object oriented modelling. In Proceedings of
OOPSLA97, pages 327–341. ACM Press, October 1997.

59. H. Kestler, A. Muller, T. Gress, and M. Buchholz. Generalized Venn diagrams: A new method for
visualizing complex genetic set relations. Journal of Bioinformatics, 21(8):1592–1595, 2005.

60. H.A. Kestler, A. Müller, J.M. Kraus, M. Buchholz, T.M. Gress, H. Liu, D.W. Kane, B.R. Zeeberg, and
J. Weinstein. Vennmaster: Area-proportional Euler diagrams for functional GO analysis of microarrays.
BMC Bioinformatics, 9:67, 2008.

61. J. Larkin and H. Simon. Why a diagram is (sometimes) worth ten thousand words. Journal of Cognitive
Science, 11:65–99, 1987.

62. C. Papadimitriou M. Grigni, D. Papadias. Topological inference. In 14th conf on Artificial Intelligence,
pages 901–906, 1995.

63. Khalegh Mamakani, Wendy Myrvold, and Frank Ruskey. Generating simple convex venn diagrams. Journal
of Discrete Algorithms, 16(0):270 – 286, 2012.

64. T. More. On the construction of Venn diagrams. Journal of Symbolic Logic, 23:303–304, 1959.
65. N. H. Riche and T. Dwyer. Untangling Euler diagrams. IEEE Transactions in Visualisation and Computer

Graphics, 16(6):1090–1099, 2010.
66. F. Ruskey and M. Weston. A survey of Venn diagrams. Electronic Journal of Combinatorics, 1997, updated

2001, 2005. www.combinatorics.org/Surveys/ds5/VennEJC.html.
67. Atsushi Shimojima. Inferential and expressive capacities of graphical representations: Survey and some

generalizations. In Diagrammatic Representation and Inference: proceedings of Diagrams 2004, volume
2980 of Lecture Notes in Computer Science, pages 18–21. Springer, 2004.

68. S.-J. Shin. The Logical Status of Diagrams. Cambridge University Press, 1994.
69. P. Simonetto, D. Auber, and D. Archambault. Fully automatic visualisation of overlapping sets. Computer

Graphics Forum, 28:967–974, 2009.
70. G. Stapleton and A. Delaney. Evaluating and generalizing constraint diagrams. Journal of Visual Languages

and Computing, 19:499–521, 2008.
71. G. Stapleton, J. Howse, P. Chapman, A. Delaney, J. Burton, and I. Oliver. Formalizing concept diagrams.

In 19th International Conference on Distributed Multimedia Systems, Visual Languages and Computing,
pages 182–187. Knowledge Systems Institute, 2013.

72. G. Stapleton, J. Howse, and P. Rodgers. A graph theoretic approach to general Euler diagram drawing.
Theoretical Computer Science, 411(1):91–112, 2010.

73. G. Stapleton and J. Masthoff. Incorporating negation into visual logics: A case study using Euler diagrams.
In Visual Languages and Computing 2007, pages 187–194. Knowledge Systems Institute, 2007.

74. G. Stapleton, J. Masthoff, J. Flower, A. Fish, and J. Southern. Automated theorem proving in Euler
diagrams systems. Journal of Automated Reasoning, 39:431–470, 2007.

Page 58 of 58 EQUIVALENCES IN EULER-BASED DIAGRAM SYSTEMS

75. G. Stapleton, S. Thompson, J. Howse, and J. Taylor. The expressiveness of spider diagrams. Journal of
Logic and Computation, 14(6):857–880, December 2004.

76. N. Swoboda and G. Allwein. Using DAG transformations to verify Euler/Venn homogeneous and
Euler/Venn FOL heterogeneous rules of inference. Journal on Software and System Modeling, 3(2):136–149,
2004.

77. J. Thièvre, M. Viaud, and A. Verroust-Blondet. Using euler diagrams in traditional library environments.
In Euler Diagrams 2004, volume 134 of ENTCS, pages 189–202. ENTCS, 2005.

78. J. Venn. On the diagrammatic and mechanical representation of propositions and reasonings. Philosophical
Magazine Series 5, 10:1–18, 1880.

79. Leland Wilkinson. Exact and approximate area-proportional circular venn and euler diagrams. IEEE
Transactions on Visualization and Computer Graphics, 18(2):321–331, 2012.

Andrew Fish and John Taylor
School of Computing, Engineering and
Mathematics

University of Brighton
Brighton, UK

Andrew.Fish@brighton.ac.uk
John.Taylor@brighton.ac.uk

